
Engineering Part IIB: Module 4F10

Statistical Pattern Processing

Lecture 7: Multi-Layer Perceptrons II

Phil Woodland: pcw@eng.cam.ac.uk

Michaelmas 2012

Cambridge University Engineering Department

Engineering Part IIB: Module 4F10



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Error Back Propagation
So far the training of MLPs has not been discussed. Originally interest in MLPs
was limited due to issues in training. These problems were partly addressed with
the development of the error back propagation algorithm.

Error back propagation algorithm is
based on gradient descent. Hence

the activation function must be
differentiable: need to be able to
compute the derivative of the error
function with respect to the weights
of all layers.

Inputs

xd

x2

x1

Hidden
layer

Output 
layer

y (x)K

y (x)2

1y (x)

Outputs

All gradients are evaluated at the current model parameters.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 1



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Single Layer Perceptron
Want to minimise e.g. the square error between the target of the output, tp, and
the current output value y(xp). Assume training criterion is least squares and the
activation function is a sigmoid function. The cost function may be written as

E =
1

2

n
∑

p=1

(y(xp)− tp)′(y(xp)− tp)) =
n
∑

p=1

E(p)

To simplify notation, we will only consider a single observation x with associated
target values t and current output from the network y(x). The error with this
single observation is denoted E.

How does the error change as y(x) changes?

∂E
∂y(x)

= y(x)− t

But we are not interested in y(x)
How do we find the effect of varying the weights?

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 2



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

SLP Training (cont)Using the chain rule:

∂E
∂z

=
∂E

∂y(x)
∂y(x)

∂z
∂E
∂wi

=
∂E
∂z

∂z
∂wi

∂E
∂wi

=
∂E

∂y(x)
∂y(x)

∂z
∂z
∂wi

Using

∂y(x)
∂z

= y(x)(1− y(x)) then
∂E
∂wi

= (y(x)− t)y(x)(1− y(x))xi

This has been computed for a single observation. For the complete training set,
the total error is the sum of the individual error values, so

∇E =
n
∑

p=1

(y(xp)− tp)y(xp)(1− y(xp))x̃p

So for a single layer we can use gradient descent schemes to find the “best”
weight values. We can also apply the above to compute the derivatives wrt the
weights for the final hidden to output layer for an MLP.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 3



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Error Back Propagation Algorithm
For node, i, of hidden layer k, the input
to the node is x̃(k) and the output y(k)

i .

Have derived derivative of error function
wrt the weights of the output layer.
Now need derivative wrt kth hidden
layer weights.

Σwi2

wi1

1

x

x

x

1

2

wi0

yi
zi

function
Activation

(k)

(k)

(k) (k)

(k)

(k)

(k)

(k)

(k)wiN(k−1)

N(k−1)

A general error criterion, E, will be used [but assume that the output nodes can
be treated independently - not true for softmax ...] Assume use of a sigmoid
activation function. Output layer will be the L + 1th layer.

Training observations are assumed independent and so

E =
n
∑

p=1

E(p)

where E(p) is error cost for pth observation & observations are x1, . . . ,xn.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 4



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Error Back Propagation Algorithm (cont)
We are required to calculate ∂E

∂w̃
(k)
ij

for all layers, k, and all rows and columns of

W̃(k). Applying the chain rule

∂E

∂w̃(k)
ij

=
∂E

∂z(k)
i

∂z(k)
i

∂w̃(k)
ij

= δ(k)i x̃(k)
j where

∂E

∂z(k)
i

= δ(k)i

and δ’s sometimes known as individual “errors” (that are back-propagated).

For the output nodes the evaluation of δi is straightforward. To evaluate the δi’s
for hidden layers

δ(k)i =
∑

m

[

∂E

∂z(k+1)
m

∂z(k+1)
m

∂z(k)
i

]

δ(k)i = y(k)
i (1− y(k)

i )
∑

m

w̃(k+1)
mi δ(k+1)

m

assuming that only the units in layer k + 1 are connected to units in layer k.
Note just evaluating differential of error at the output wrt weights throughout
the network using the chain rule for partial derivatives.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 5



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Error Back Propagation
To calculate ∇E(p)

∣

∣

θ[τ ] (θ[τ ] is the set of “current” (training epoch τ) values of
the weights) we use the following algorithm.

1. Apply the input vector xp to the network and use the feed forward matrix
equations to propagate the input forward through the network. For all layers
this yields y(k) and z(k).

2. Compute ∂E
∂y(x)

∣

∣

∣

θ[τ ]
(the gradient at the output layer).

3. Using the back-propagation formulae back-propagate the δs back through the
network, layer by layer and hence the partial derivatives for each weight.

Having obtained the derivatives of the error function with respect to the weights
of the network, we need a scheme to optimise the value of the weights.

The obvious choice is gradient descent

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 6



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Gradient Descent
Initially consider a batch update rule. Here

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ ]− η

∂E

∂w̃(k)
i

∣

∣

∣

∣

∣

θ[τ ]

where θ[τ ] = {W̃(1)[τ ], . . . ,W̃(L+1)[τ ]}, w̃
(k)
i [τ ] is the ith row of W̃(k) at

training epoch τ and

∂E

∂w̃(k)
i

∣

∣

∣

∣

∣

θ[τ ]

=

n
∑

p=1

∂E(p)

∂w̃(k)
i

∣

∣

∣

∣

∣

θ[τ ]

For N weights in the network, all N derivatives use O(N) operations. However
in common with other gradient descent schemes there are problems as:

• we need a value of η that achieves a stable, fast descent;

• the error surface may have local minima, maxima and saddle points.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 7



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Training Schemes
• Batch update: weights are updated after all n training examples have seen.

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ ]− η





n
∑

p=1

∂E(p)

∂w̃(k)
i

∣

∣

∣

∣

∣

∣

θ[τ ]







• Sequential update: the weights are updated after every sample. Now

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ ]− η

∂E(p)

∂w̃(k)
i

∣

∣

∣

∣

∣

θ[τ ]

and we cycle around the training vectors. This can be used for online learning.

In practice typically update the weights after each minibatch - important to
have frequent updates for fast convergence with large training sets. Known
as stochastic gradient descent where only have a sample of the training set to
produce each gradient.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 8



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Refining Gradient Descent
Some simple techniques can refine standard gradient descent. Consider the
learning rate η. Can make this vary with each iteration. One of the simplest rules
is to use

η[τ + 1] =

{

1.1η[τ ]; if E(θ[τ ]) < E(θ[τ − 1])
0.5η[τ ]; if E(θ[τ ]) > E(θ[τ − 1])

Also possible to add a “momentum” term. Update formula is

w̃
(k)
i [τ + 1] = w̃

(k)
i [τ ] +∆w̃

(k)
i [τ ]

where

∆w̃
(k)
i [τ ] = −η[τ + 1]

∂E

∂w̃(k)
i

∣

∣

∣

∣

∣

θ[τ ]

+ α[τ ]∆w̃
(k)
i [τ − 1]

Using α[τ ] smooths successive updates & helps avoid small local minima. However
it introduces an additional tunable parameter.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 9



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Iris Data
Famous (standard) database from machine learning/pattern recognition literature.
Measurements taken from three forms of iris

• sepal length and width

• petal length and width

Only petal information considered here.

Split data into two sets

• half for training of MLP

• half for evaluating MLP

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

Petal Length

P
et

al
 W

id
th

Setosa     
Versicolour
Virginica  

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 10



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Iris Data - MLP Classification (1)

• 3-unit hidden-layer with tanh hidden, softmax output layer activation functions

• data transformed - zero mean +/-5 range

• batch update, η = 0.1, α = 0.8

Data split into 75 training samples, 75 test samples.

Figures show initial errors on training data; training data error progression and
test data classification.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Class 1
Class 2
Class 3
Errors 

0 5 10 15 20 25 30
0

5

10

15

20

25
training error (epoch size = 75)

epoch

er
ro

r

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Class 1
Class 2
Class 3
Errors 

Final performance is 1 error /75 on training set; 4/75 on test set

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 11



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Iris Data - MLP Classification (2)

Same training setup (input data, learning parameters, activation functions) as
before but

• compare different number of hidden units 3 vs 100

0 5 10 15 20 25 30
0

5

10

15

20

25
training error (epoch size = 75)

epoch

er
ro

r

0 2 4 6 8 10 12 14 16 18 20
10

15

20

25

30

35

40
training error (epoch size = 75)

epoch

er
ro

r

3 hidden units 100 hidden units

Plots show stability issues, in this case as the number of hidden units is increased.

How to set learning rates to get stable training?

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 12



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Quadratic Approximation
Gradient descent makes use of first-order derivatives. What about higher order
techniques? Consider the vector form of the Taylor series:

E(θ) = E(θ[τ ]) + (θ − θ[τ ])′g +
1

2
(θ − θ[τ ])′H(θ − θ[τ ]) +O(3)

where

g = ∇E(θ)|θ[τ ] and (H)ij = hij =
∂2E(θ)

∂wi∂wj

∣

∣

∣

∣

θ[τ ]

Ignoring higher order terms we find

∇E(θ) = g +H(θ − θ[τ ])

Equating this to zero we find that the value of θ at this point θ[τ + 1] is

θ[τ + 1] = θ[τ ]−H−1g

This gives a simple update rule. The direction H−1g is the Newton direction.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 13



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Problems with the Hessian

1. The evaluation of the Hessian may be computationally expensive as O(N2)
parameters must be accumulated for each of the n training samples.

2. Hessian must be inverted to find direction, O(N3). This gets very expensive
as N gets large.

3. The direction given need not head towards a minimum - it could head towards
a maximum or saddle point. This occurs if the Hessian is not positive-definite

i.e. v′Hv > 0 for all v.

4. If the surface is highly non-quadratic the step sizes may be too large and the
optimisation becomes unstable.

Approximations to the Hessian are commonly used.

The simplest approximation is to assume that the Hessian is diagonal. This
ensures that the Hessian is invertible and only requires N parameters.

The Hessian may be made positive definite using H̃ = H+ λI
If λ is large enough then H̃ is positive definite.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 14



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

QuickProp
An interesting approximate second-order approach is quickprop. Assumptions:

• error surface is quadratic in nature

• the change of slope of error function wrt to a weight may be treated
independently of all other weights (diagonal Hessian)

Yields an interesting update rule. For a single weight denoted by θ

E(θ) ≈ E(θ[τ ]) + b(θ − θ[τ ]) + a(θ − θ[τ ])2

∂E(θ)
∂θ

≈ b + 2a(θ − θ[τ ])

The following information is then used to find a and b

• the update difference, ∆θ[τ − 1], and gradient, g[τ − 1], at iteration τ − 1

• the gradient at iteration τ is g[τ ]

• after unknown offset ∆θ[τ ] the gradient should be zero (a minimum)

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 15



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

The following equalities are obtained

g[τ − 1] = b − 2a∆θ[τ − 1], 0 = b + 2a∆θ[τ ], g[τ ] = b

and solving gives

∆θ[τ ] =
g[τ ]

g[τ − 1]− g[τ ]
∆θ[τ − 1]

• Assumed quadratic error surface in
blue

• Quickprop statistics in red

The new-estimate will lie exactly
at the minimum of the quadratic
approximation

θ[τ + 1] = 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4

4.5

5

5.5

6

6.5

7

θ[τ−1] θ[τ] 

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 16



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Input Transformations
If the input to the network are not normalised the training time may become very
large. It is advantageous to normalise the input data by applying a transformation:

xpi =
xpi − µi

σi

where

µi =
1

n

n
∑

p=1

xpi and σ2
i =

1

n

n
∑

p=1

(xpi − µi)
2

The transformed data has zero mean and variance 1.

This transformation may be generalised to whitening. Here the covariance matrix
of the original data is calculated. The data is then decorrelated and the mean
subtracted. This results in data with zero mean and an identity matrix covariance
matrix.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 17



4F10: Statistical Pattern Processing Lecture 7: Multi-Layer Perceptrons II

Regularisation
One of the major issues with MLP training is ensuring generalisation. One
commonly echnique is weight decay. A regulariser is used. Here

Ω =
1

2

N
∑

i=1

w2
i

where N is the total number of weights in the network.

A new error function is defined

Ẽ = E + νΩ

Using gradient descent on this gives

∇Ẽ = ∇E + νw

The effect of this regularisation term Ω penalises very large weight terms. From
empirical results this has resulted in improved performance.

Cambridge University
Engineering Department

Engineering Part IIB: Module 4F10 18


