& Objectives: Tight integration of Automatic Speech Recognition (ASR) and phrase-based Statistical Machine Translation (SMT) systems.
 & - ASR word lattices as input to the SMT system
 & - Lattices encode a larger search space
 & - Exploit sub-sentential information

& Modeling issues:
 & - Propagation of ASR information to the SMT component
 & - Correct disfluencies, hesitations, spontaneous speech effects...
 & - Efficient phrase extraction

& Previous work:
 & - (E. Mutavox et al. 2005) reported translation gains using word lattices
 & - (Bertoldi et al. 2005) used confusion networks for integration with the SMT system

& We present: Generative source-channel model of speech to text translation.
 & - Tight coupling of the ASR and SMT systems using word lattices
 & - Implemented using weighted finite state machines (WFMS)

& So what's new?
 & - Conditional models vs joint models of target-source generation
 & - Unified modeling framework
 & - No need for extensive reformulation of underlying ASR and SMT models
 & - Simpler decoding and estimation procedures
 & - Lattice translation is a direct extension of our text translation systems

Generative Model of Speech Translation

- **Noisy channel model for speech translation**

 - Target Speech
 - Target Sentence
 - Target Phrase
 - Source Phrase
 - Source Sentence

- **ASR Word Lattice**

 - Target Phrase
 - Source Phrase
 - Source Language

- **Translating ASR Word Lattices into Phrase Lattices**

 - Formulate speech translation as a modeling problem
 - Efficient extraction of phrases from ASR word lattice
 - ASR lattice pre-processing
 - Map unspoken tokens to NULL
 - Standard SMT operations: expansion, removal, and determination
 - Handling ambiguity in the ASR word lattice
 - Path-based likelihood pruning of ASR word lattices
 - Extracting phrases under the posterior distribution
 - What about the target LM P_{T}'?

- **Conclusion**

 - Presented a modeling framework for statistical speech-to-text translation
 - Extension of the phrase-based TM text translation model
 - Tight coupling of the ASR and SMT subsystems using lattices both as
 - Statistical models
 - WFMs based implementation
 - Demonstrated feasibility of the above approach.

Future Work:
- Initial formulation and implementation has weaknesses
 - Improved integration of the target language model
 - Phrase extraction under the posterior distribution
 - Improved pruning strategies for word lattices
 - Improved phrase coverage
 - Integrated development of the component ASR and SMT systems.