JHU/CUED Chinese-English Translation System
2005 TC-STAR Evaluation

Shankar Kumar, Yonggang Deng, Bill Byrne

Machine Intelligence Laboratory
Cambridge University Engineering Department
Center for Language and Speech Processing
The Johns Hopkins University

wjb31@eng.cam.ac.uk

22 April 2005
Overview

Similar architecture to JHU’04 Chinese→English NIST Translation System
- Optimized for news text
 ▶ Used all bitext sources from LDC: 175M/207M Chinese/English words
 ▶ Subsentence alignment by bitext chunking (Y. Deng’03)
 ▶ Bitext alignments generated under new modeling framework
 ▶ Alignment quality equals IBM Model 4, with fast, exact estimation and search
 ▶ no longer need IBM Model 4
 ▶ Phrase pairs extracted from alignments using the usual heuristics
 ▶ TTM : WFST implementation (Kumar, Deng, Byrne - JNLE’05)
 ▶ MET performed over provided dev sets for text and verbatim conditions
 (used for ASR)
 ▶ 2 pass decoding - LMs estimated with SRI LMTK
 ▶ First pass lattice generation with heavily pruned 3-gram LM
 ▶ Second pass lattice rescoring and generation with 3- and 4-gram LMs
 ▶ MET applied for a contrast system
 ▶ MT Model Training - Y. Deng, Decoder Implementation - S. Kumar
 ▶ Four days total effort : two days in development, two days in evaluation

We in the JHU/CUED team thank TC-STAR for the opportunity to participate!

Cambridge University
Engineering Department
Sentence Alignment

Goal: align sentences across a pair of parallel documents

English Document: \(e_1 \cdots e_m \)
French Document: \(f_1 \cdots f_n \)

Two underlying processes

- **Segmentation**: the bitext is *chunked* into \(K \) segments
- **Alignment**: chunks of sentence are aligned across the documents

\(K = 3: \)

\[
\begin{align*}
& e_1 e_2 e_3 e_4 e_5 e_6 \\
& f_1 f_2 f_3 f_4
\end{align*}
\]

\(a_1^K: a_1 = (1, 2, 1, 1), \ a_2 = (3, 5, 2, 3), \ a_3 = (6, 6, 4, 4) \)

Can describe the alignment of chunks of sentences

\[
P(f_1^n, a, K|e_1^m) = \prod_{k=1}^{K} P^{(w)}(f_{a_k}|e_{a_k}) \cdot P(a_k^{|m, n, k}) \cdot \beta(K|m, n)
\]

- **Translation Model (Coarse)**
- **Alignment Model**
- **Chunk Count Model**
Sentence Alignment via Divisive Clustering (Y. Deng’03)

Proceeds from coarse to fine and allows chunk reordering
Non-monotone alignment process $P(a^K_1|m,n)$

Since the Korean Peninsula was split into two countries, the Republic of Korea has, while leaning its back on the "big tree" of the United States for security, carefully and consistently sought advanced weapons from the United States in a bid to confront the Democratic People's Republic of Korea. An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to "extend its existing missile range" to strike Pyongyang direct. This should have elated South Korea. But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement, what should South Korea do now? It has no choice but spit back the "greasy meat" from its mouth and put the "missile expansion plan" on the back burner. A knowledgeable South Korean speaks the truth: "Because of the summit meeting, we have shelved our own missile plan. If we go ahead with it, it will spoil the excellent situation opened up by the summit meeting."
Sentence Alignment via Divisive Clustering (Y. Deng)

Proceeds from **coarse** to **fine** and allows **chunk reordering**

At each iteration, the single most likely splitting point is chosen.

Since the Korean Peninsula was split into two countries, the Republic of Korea has, while leaning its back on the "big tree" of the United States for security, carefully and consistently sought advanced weapons from the United States in a bid to confront the Democratic People's Republic of Korea. An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to "extend its existing missile range" to strike Pyongyang direct. This should have elated South Korea. But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement, what should South Korea do now? It has no choice but spit back the "greasy meat" from its mouth and put the "missile expansion plan" on the back burner. A knowledgeable South Korean speaks the truth:

"Because of the summit meeting, we have shelved our own missile plan. If we go ahead with it, it will spoil the excellent situation opened up by the summit meeting.
Sentence Alignment via Divisive Clustering (Y. Deng)

Proceeds from coarse to fine and allows chunk reordering
At each iteration, the single most likely splitting point is chosen.

Since the Korean Peninsula was split into two countries, the Republic of Korea has, while leaning its back on the "big tree" of the United States for security, carefully and consistently sought advanced weapons from the United States in a bid to confront the Democratic People's Republic of Korea. An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to "extend its existing missile range" to strike Pyongyang direct. This should have elated South Korea. But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement, what should South Korea do now? It has no choice but spit back the "greasy meat" from its mouth and put the "missile expansion plan" on the back burner.

A knowledgeable South Korean speaks the truth:

"Because of the summit meeting, we have shelved our own missile plan. If we go ahead with it, it will spoil the excellent situation opened up by the summit meeting."
Proceeds from **coarse to fine** and allows **chunk reordering**. At each iteration, the single most likely splitting point is chosen.

<table>
<thead>
<tr>
<th>自从 朝鲜半岛被分裂成两个国家以来，韩国在背靠美国这棵大树以求自安的同时，还小心翼翼地向美国寻求先进武器，以抗衡朝鲜。</th>
<th>Since the Korean Peninsula was split into two countries, the Republic of Korea has, while leaning its back on the "big tree" of the United States for security, carefully and consistently sought advanced weapons from the United States in a bid to confront the Democratic People's Republic of Korea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>据汉城的消息灵通人士称《华盛顿邮报》透露，今年早些时候，美国已秘密地同意韩国“可以扩展它现有的导弹的射程”，使之能够直接轰炸朝鲜首都平壤。这本应是韩国感到欣喜的事业，可眼下半岛局势有了重大变化，朝韩首脑面对面地会了晤，并签署了联合声明，韩国怎么办？只好把到嘴的“肥肉”先吐出来，搁置自己的“导弹射程扩展计划”。</td>
<td>An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to "extend its existing missile range" to strike Pyongyang directly. This should have elated South Korea. But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement, what should South Korea do now? It has no choice but spit back the "greasy meat" from its mouth and put the "missile expansion plan" on the back burner.</td>
</tr>
<tr>
<td>一名韩国知情人士道出了实情：</td>
<td>A knowledgeable South Korean speaks the truth:</td>
</tr>
<tr>
<td>“因为有了首脑会谈，所以我们已经搁置了自己的导弹计划，如果我们再那么干，就会弄糟首脑峰会开创的良好局面。”</td>
<td>"Because of the summit meeting, we have shelved our own missile plan. If we go ahead with it, it will spoil the excellent situation opened up by the summit meeting."</td>
</tr>
</tbody>
</table>
Sentence Alignment via Divisive Clustering (Y. Deng)

Proceeds from **coarse** to **fine** and allows **chunk reordering**. At each iteration, the single most likely splitting point is chosen.

<table>
<thead>
<tr>
<th>自从 朝鲜半岛被分裂成两个国家以来，韩国在背靠美国这棵大树寻求自安的同时，还小心翼翼地向美国寻求先进武器，以抗衡朝鲜。</th>
<th>Since the Korean Peninsula was split into two countries, the Republic of Korea has, while leaning its back on the "big tree" of the United States for security, carefully and consistently sought advanced weapons from the United States in a bid to confront the Democratic People's Republic of Korea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>据汉城的知情人士向《华盛顿邮报》透露，今年早些时候，美国已秘密而单独同意韩国“可以扩展它现有导弹的射程”，使之能够直捣朝鲜首都平壤。</td>
<td>An informed source in Seoul revealed to the Washington Post that the United States had secretly agreed to the request of South Korea earlier this year to "extend its existing missile range" to strike Pyongyang direct.</td>
</tr>
<tr>
<td>这本应是感到欣喜的事儿，可眼下半岛局势有了重大变化，朝韩首脑面对面地会晤，签订了联合声明。韩国怎么办？</td>
<td>This should have elated South Korea. But since the situation surrounding the peninsula has changed dramatically and the two heads of state of the two Koreas have met with each other and signed a joint statement, what should South Korea do now?</td>
</tr>
<tr>
<td>只好把到嘴的"肥肉"先吐出来，搁置自己的"导弹射程扩展计划"。</td>
<td>It has no choice but spit back the "greasy meat" from its mouth and put the "missile expansion plan" on the back burner.</td>
</tr>
<tr>
<td>一名韩国知情人士道出了实情：</td>
<td>A knowledgeable South Korean speaks the truth:</td>
</tr>
<tr>
<td>“因为有了首脑会谈，所以我们已搁置了自己的导弹计划。如果我们再那么干，就会弄糟首脑峰会开创的良好局面。"</td>
<td>"Because of the summit meeting, we have shelved our own missile plan. If we go ahead with it, it will spoil the excellent situation opened up by the summit meeting."</td>
</tr>
</tbody>
</table>
Bitext Alignment Goal: Better Translation Models

Benefits of good chunking
▶ better training alignment improves translation
▶ smaller chunk pairs leads to faster translation model training

A good alignment procedure:
▶ fast
▶ efficient: as little bitext should be discarded as possible
▶ flat-start
▶ language independent
▶ require minimal linguistic knowledge
▶ subsentence chunks

Coarse monotonic alignment followed by fine divisive clustering works well
Goal: Replace IBM Model 4 by ‘simpler’ alignment models

- careful and exact model formulation
- equal alignment and translation performance to Model 4
- efficient training via EM - parallelization: 3 days on 60 CPUs vs 2 weeks on 3 CPUs
- a single set of models over all available bitext - avoid partitioning the bitext training data

Current work:

- estimate phrase pairs under the model to improve test set coverage

Future work:

- direct use of models in translation - support discriminative training, adaptation, etc.
Translation with Finite State Devices, Knight & Al Onaizan, AMTA’98

- Implements the IBM models as WFSTs
 - word-to-word translation, word fertility, and permutation (reordering)

If the component models can be implemented as WFSTs which can be composed, building a decoder is trivial

- Can be limiting, but avoids special-purpose decoders
- The value of this modeling approach has been shown in ASR by the systems developed at AT&T
 - Translation is performed using libraries of standard FSM operations
 - Clear formulation
Generative source-channel model of machine translation

- Takes the best of
 - Och&Ney’s Phrase-based translation models
 - Knight&Al Onaizan WFST description of translation via IBM models
Transformations via stochastic models implemented as WFSTs

Actual source-channel model - with proper component distributions

Implementation is direct using standard WFST operations

Uses publicly available AT&T FSM Tools
TTM and MET

MET can be used to optimize the combination of TTM components

- Cast TTM as a log-linear model with scaling factors $\Lambda = \lambda_1^M$

 \[P_{TTM}(E|F) = \prod_{m=1}^{M} p_m(E, F)^{\lambda_m} \]

 λ’s applied to WFSTs during decoding

- Minimum Error Training (Och 2003): Estimate parameters of a log-linear model to reduce error count over a development set

- Minimize an Error Function \mathcal{E} (BLEU) over a development corpus:

 N-best lists used for training
 Multidimensional search in M dim space by Powell’s algorithm
 MET gives good improvement over a state-of-the-art baseline
Training and Translation Procedures

1. Bitext Chunking
 1.1 Monotone alignment into coarse chunks of documents
 1.2 Divisive clustering into subsentence chunks
2. Generate word alignments in each translation direction
 2.1 No need to partition training sets
 2.2 Training speed is several times faster than IBM Model 4, owing to parallelization
3. Extract phrase pairs using the ‘standard’ heuristic
4. Construct component WFSTs for the TTM
5. Translation lattice generation with pruned trigram
6. Translation lattice rescoring with unpruned 4gram →
7. MET under BLEU →
 7.1 1000-best lists for both text and ‘verbatim’ conditions
Goal: Exploit all available text resources

- **Chinese Text** segmented into words using LDC segmenter (Linguistic Data Consortium)
- **English Text** processed using a simple tokenizer

<table>
<thead>
<tr>
<th>Bitext for Translation Model Training</th>
<th>Chinese-English</th>
</tr>
</thead>
<tbody>
<tr>
<td># of chunk pairs (M)</td>
<td>7.6</td>
</tr>
<tr>
<td># of words (M)</td>
<td>175.7/207.4</td>
</tr>
</tbody>
</table>
English Language Model Training Data

By source - in Millions of words

<table>
<thead>
<tr>
<th>Source</th>
<th>Xin</th>
<th>AFP</th>
<th>PD</th>
<th>FBIS</th>
<th>UN</th>
<th>AR-news</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small 3g</td>
<td>4.3</td>
<td>-</td>
<td>16.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>20.5</td>
</tr>
<tr>
<td>Big 3g</td>
<td>155.7</td>
<td>200.8</td>
<td>16.2</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>373.3</td>
</tr>
<tr>
<td>Big 4g</td>
<td>155.7</td>
<td>200.8</td>
<td>16.2</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>373.3</td>
</tr>
</tbody>
</table>

Available from LDC:

- Xinhua, Agence France Press, People’s Daily, FBIS, United Nations collections, AR-news
Translation Performance: MT Bitext Size

Chinese-English - Decode with Small3g LM

<table>
<thead>
<tr>
<th>Bitext Partition</th>
<th>Contribution by Source: En words (M)</th>
<th>BLEU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FBIS</td>
<td>HKNews</td>
</tr>
<tr>
<td>1</td>
<td>10.5</td>
<td>16.3</td>
</tr>
<tr>
<td>2</td>
<td>10.5</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>10.5</td>
<td>16.3</td>
</tr>
<tr>
<td>1+2+3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decide with Big3g

<table>
<thead>
<tr>
<th></th>
<th>1+2+3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+2+3</td>
<td>27.7</td>
</tr>
<tr>
<td>Unpartitioned training - new procedure</td>
<td>27.9</td>
</tr>
</tbody>
</table>

(XHTS = Xinhua, Hansards, Treebank, Sinorama)
TC-STAR Chinese-English Dev and Eval Results

<table>
<thead>
<tr>
<th></th>
<th>BLEU</th>
<th>BLEU (cased)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dev</td>
<td>Eval</td>
</tr>
<tr>
<td></td>
<td>Text</td>
<td>Verbatim</td>
</tr>
<tr>
<td>Vanilla Decoding</td>
<td>16.8</td>
<td>14.6</td>
</tr>
<tr>
<td>MET</td>
<td>17.4</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Conclusions

- Good, basic system
 - Performed more-or-less as expected in the Text task
 - Needs tuning for ASR and Verbatim conditions

- Our evaluation system was a ‘snapshot’ of a work-in-progress
 - Less than 4 days effort overall, including the evaluation
 - Please don’t draw any conclusions about the overall system quality

Our motivation: Access to data
- Mandarin ASR (lattices) and reference translations