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Minimum Bayes-Risk Word Alignment of Bitexts

� Word alignments of Bitexts are useful for:

– Machine Translation

– Dictionary Induction

– Projecting Linguistic Structures such as Parse-Trees and POS Tags across
Languages

� We introduceAlignment loss functions to measure alignment quality

– Different loss functions capture different features of alignments

– Will show that loss functions can use information from word-to-word links,
parse-trees and POS tags

� We optimize alignment quality by generatingMinimum Bayes-Risk (MBR)
Alignments under each loss function

– This requires an explicit loss function that can be computed between any two
alignments

– Will show performance gains by tuning alignment to the evaluation criterion
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Word-to-Word Bitext Alignment

� A Candidate Alignment

CE  EST TOUT A FAIT COMPREHENSIBLE1 2 3 4 5 6

NULL IT IS QUITE UNDERSTANDABLE0 1 2 3 4

Alignment Links 

� � � � � � �� � � : An English-French Sentence Pair

� Alignment Links: 	 
 � � � � � : � 
 linked to � �

� Alignment is defined by aLink Set � 
 � 	 � � 	 � � � � � � 	� �

� Some links are NULL links e.g.� �� NULL �
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Bitext Alignment Loss Functions

� Given a candidate alignment� � and the reference alignment� � ,
� � � � � � � is theloss function that measures� � wrt � .

� Alignment Error Rate (AER) - Och and Ney (2000)

– AER measures fraction of non-NULL links by which� � differs from � .

– AER ignores all links to the NULL word

� Define new linksets�
�

� �
�

� � � by removing all NULL links

� Loss function defined on

�
� and

�
� �

– Reference Alignments are created by human experts

� The experts identify which links are unambiguous

� These unambiguous links are calledsure links: � �
�

�

– AER is defined wrt human generated alignments

� � � � � � � � � �
� 
 	 � 


�
� � � � 
 � 

�

� � �
�

� 




�

� � 
 � 
 � 


� For technical reasons, AER is an inconvenient loss function for MBR alignment
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Loss Functions for MBR Alignment: Alignment Error

� Derived from AER

� � � � � � � �
� 
 


�
� 
 � 

�

� � 
� � 

�

� �
�

� � 



 

�

� 
 � 

�

� � 
� �
� � �� � � � �� �

� � � 	
�

�

� Measures	 of links by which � � differs from � .

� Unlike AER, � � � doesn’t distinguish between sure and ambiguous links

� If � � 
 � � � � � � � � � 
 � � AER � � � � � � 
 �

� � � � has limitations : it is only sensitive to link identities

– All links that are incorrect are penalized equally (Similar to ASR Word Error
Rate)

– Suppose in any 2 candidate alignments, a specific French verb is aligned to an
incorrect English verb in one alignment and an incorrect English noun in the
other alignment, both these errors are penalized equally
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Loss Functions for MBR Alignment: Generalized Alignment Error

� Extend� � � loss function so that it can incorporate linguistic features

� � � � � � � � � � 
 � �
� � �
�

� � � � �
� 
 � � � � � 
 � � �

	 
 � � � � � � 	 � 
 � � � � � � �

� Word-to-Word Distance Measure� 
 � � � 
 � � � � � � � � � � � � � � � � � � � 
 �

– Sensitive to both the English word identity and its position in�

� � � � � can be almost reduced to� � � (except in its treatment of NULL)
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Examples of Word-to-Word Distance Measures for� � � �

Suppose we have analyzed the English sentence. We would like� � � � to be a function of
the analyses

� Parse Tree Syntactic
Distance:� � � �

� 
 � � � 
 � � � � � � � � � � � � � � �

� Part-of-Speech Tag
Distance:� � 	 �

� 
 � � � 




� POS� � � � 
 POS� � � � �

	 � � 
 � � � � � � �

� Automatic Word Class Distance:� � � �

� 
 � � � 




� � � � � � 
 � � � � � �

	 � � 
 � � � � � � �

TOP

S

NP

PRP i

VP

VBP think SBAR

S

NP

DT that

VP

VBZ is ADJP

JJ good . .

Pairwise Distances

g("i","think") = 4

g("i", "that") = 7

g("i","is") = 7

g("i" , "good") = 8

g("i" , ".") = 8
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Minimum Bayes-Risk Decoding for Automatic Word Alignment

� For the sentence pair� � � � � : � � 
 � � � � � �

– � � is the alignment produced by the decoder�

� Goal: Find the decoder� � � � � � that minimizes the Bayes-Risk

� � � � � � � � � � � � � � � � � � � � � �

� 	 � � 
 � � � � : True Distribution of “human quality” alignments as found in actual
word-aligned bitext.

– Approximated by IBM-3 models.

� MBR decoderhas the following well-known form (e.g. Goel and Byrne 2000)



� 
 � � 
 � � �

� � � � � � �
� � � � � �
� 	 � � 
 � � � �

� � is the set of all alignments of� � � � �

– We approximate� by thealignment lattice: A set of the most likely word
alignments of� � � � �

– Each Lattice transition is an alignment link	 & a lattice path defines a link set�
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Derivation of MBR Alignment Under � � � and � � � �



� 
 � � 
 � � �

� � � � � � �
� � � � � �
� 	 � � 
 � � � � �

Under � � � , MBR decoder reduces to:



� 
 � � 
 � � �

� � � � � � � � �
� � �

� � � 




	 � � 	 � 	 � 
 � � � � � � �
 �

� � � 
 � �

Under � � � � , MBR decoder reduces to:



� 
 � � 
 � � �

� � � � � � � � �
� � �

� � � 

� � �

� 
 � �
�

� � 
 � � � 	 � � 
 � � � � �

� In each case, the MBR alignment is theConsensus Alignment:
It is the most similar to all the competing alignments in the lattice under theloss
function

� Lattice Transition Posterior Probability 	 � � 
 � � � � is the sum of
posterior probabilities of all lattice paths that pass through transition�

� Alignment Link Posterior Probability 	 � 	 
 � � � � is the sum of Lattice transition
posterior probabilities of all transitions in the lattice that contain link	
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Word Alignment Experiments - Setup
& Lattice Generation

� Training Setup

– Modified IBM-3 : Baseline Model to approximate	 � � � � 
 � �

- Distortion Model has a uniform distribution over all� � permutations
(Knight et al. 1998)

– Training Set: Canadian English-French Hansards - 50K sentence-pairs

– GIZA++ toolkit for training IBM-3 (Setup similar to Och and Ney - 2000)

� Alignment Lattice Generation : FSM Implementation based on Knight et al. (1998)
using AT&T toolkit (Mohri et al. 2001)
For a sentence-pair� � � � �

– Build a Acceptor� for �

– Build a transducer for each sub-model of IBM-3
- Word Fertility(� ), NULL Fertility( � ), Word Lexicon(� )

– Build a Permutation Acceptor	 for �

– Composition:� 
 � � � � � � � � 	

– Prune the Composition Output� Lattice!

� Test Set: 207 French-English sentence pairs from Hansards:� has at most 16 words.
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Minumum Bayes-Risk Alignment Experiments

Evaluation: Measure error rates wrt reference alignments from Aachen (F.J. Och)
Alignment Evaluation Metrics

� Alignment Error Rate (AER)

� Generalized Alignment Error Rate (GAER)

� � � � � � � � � � 
 � � � � � � � � � �

� � � � � � � �

– � � � � : � � � � , � � 	 � , � � � �

– Error Rate wrt all links in Reference Alignment

Generalized Alignment Error Rates
Decoder AER (%) PTS (%) POS (%) AWC (%)

ML 18.13 29.39 51.36 54.58
AE 14.87 19.81 36.42 38.58
PTS 23.26 14.45 26.76 28.42
POS 28.60 15.70 26.28 29.48
AWC 24.71 14.92 26.83 28.39

MBR decoder tuned for a loss function
performs the best under the corresponding error rate
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Conclusions and Future Work

� MBR allows bitext word alignment procedure to be tuned for specific loss functions
� Our MBR decoders are built on top of IBM-3 statistical MT models

In general MBR decoding strategies can be applied using other MT model
architectures

� Syntactic features from English parsers and POS taggers can be integrated into a
statistical MT system via appropriate definition of the alignment loss functions
- without retraining it from scratch

� Future Work

– Construct MBR decoders based on loss functions sensitive to word alignment and
parse-trees in both English and French

– Improve French parsing accuracy usingMBR-aligned bitexts under appropriate
loss functions (Hwa et al. 2002)

– Incorporate linguistic knowledge such as morphology and base noun-phrases into
the MBR alignment framework via newer loss functions
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