
Natural Language Engineering 12 (1): 35–75. c© 2005 Cambridge University Press

doi:10.1017/S1351324905003815 First published online 6 December 2005 Printed in the United Kingdom
35

A weighted finite state transducer
translation template model

for statistical machine translation

S H A N K A R K U M A R, Y O N G G A N G D E N G and

W I L L I A M B Y R N E
Center for Language and Speech Processing,

Department of Electrical and Computer Engineering,
The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA

email: {skumar,dengyg,byrne}@jhu.edu

(Received 24 March 2004; revised 8 September 2004 )

Abstract

We present a Weighted Finite State Transducer Translation Template Model for statistical
machine translation. This is a source-channel model of translation inspired by the Alignment
Template translation model. The model attempts to overcome the deficiencies of word-to-
word translation models by considering phrases rather than words as units of translation.
The approach we describe allows us to implement each constituent distribution of the model
as a weighted finite state transducer or acceptor. We show that bitext word alignment and
translation under the model can be performed with standard finite state machine operations
involving these transducers. One of the benefits of using this framework is that it avoids
the need to develop specialized search procedures, even for the generation of lattices or
N-Best lists of bitext word alignments and translation hypotheses. We report and analyze
bitext word alignment and translation performance on the Hansards French-English task
and the FBIS Chinese-English task under the Alignment Error Rate, BLEU, NIST and
Word Error-Rate metrics. These experiments identify the contribution of each of the model
components to different aspects of alignment and translation performance. We finally discuss
translation performance with large bitext training sets on the NIST 2004 Chinese-English
and Arabic-English MT tasks.

1 Introduction

The premise underlying the statistical approach to automatic machine translation

is that statistics describing the translation of words and word sequences (phrases

and sentences) can be reliably and consistently extracted from large collections

of example translations (bitext) and used to create systems capable of translation.

In general terms, the methodology is to formulate a model of translation, refine

the model using information derived from the available bitext, and embed the

model in a system to generate translations of sentences not seen in the original

bitext.
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The original and influential work in this area is a generative source-channel

model of translation (Brown et al. 1990; Brown et al. 1993). Bitext is modeled as

observations of a stochastic process that first generates source (English) sentences

and then transforms them into target (French) sentences by reordering the English

words and then translating them into French. As usual with generative probabilistic

models, translation is performed by inverting the channel. Given a French sentence,

the system searches for the English sentence that, under the model, is most likely

to have generated the French sentence. This English sentence is chosen as the

translation hypothesis. The original framework was a series of models of increasing

complexity, known as IBM Models 1 through 5, along with estimation procedures

by which the models can be refined from bitext. To date, the IBM models have been

found to be very effective for modeling word alignment in bitext but less effective

in actual translation, despite enhancements to the IBM models themselves (Vogel,

Ney and Tillmann 1996; Och and Ney 2000) and improved translation search

algorithms (Wang and Waibel 1997; Knight and Al-Onaizan 1998; Tillmann and

Ney 2003; Och, Ueffing and Ney 2001; Germann et al. 2001). In translation,

the IBM models are particularly weak relative to the Alignment Template Model

developed by Och, Tillmann and Ney (1999) which overcomes the limitations of

word-to-word translation models by using phrases rather than words as the basis for

translation.

One of the challenges in the source-channel approach to translation is that the

transformation of a generative model into an effective translation system, or decoder,

is rarely straightforward. Searching for the best English translation of a given French

sentence becomes more difficult as the underlying model becomes more powerful.

If a model formulation cannot be transformed into an efficient and exact decoder,

translation can be achieved only through simplifying approximations that may yield

sub-optimal translations and thus undo even powerful models of translation. The

best strategy in formulating a model may be to forgo some descriptive power to

ensure that translation can be performed exactly.

In this paper we formulate a generative, source-channel model for phrase-based

translation in such a way that its transformation into a translation system is direct

and clear. The model is named the Translation Template Model (TTM) and it defines

a series of stochastic transformations by which a French sentence is generated from

an English sentence via the translation, reordering, insertion, and deletion of phrases.

Each of these stochastic transformations will be formulated so that it can be imple-

mented as a Weighted Finite State Transducer (WFST). This approach simultan-

eously achieves two results. The stochastic transformations come together to define a

complete probability distribution over French-English sentence pairs. Furthermore,

translation and bitext word alignment can be realized almost immediately by stand-

ard algorithms to merge the component models into an overall processing system

(Mohri, Pereira and Riley 1997). This is the great value of WFST-based model-

ing. Stochastic model formulation and realization are indistinguishable and are

achieved as one.

Consequently our approach focuses almost entirely on modeling. There is almost

no effort spent on decoder design. Instead, the models are designed so that the overall
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system can be exactly realized by a composition of the component transducers. It

may happen that one of the component models must be simplified for the overall

system to be realized efficiently. An example is in the modeling of phrase movement.

The overall model permits English phrases to be reordered arbitrarily, and we do

explore the role of phrase movement in bitext word alignment. However for reasons

that we will discuss, in translation we disable the phrase movement component model

to disallow phrase reordering. This is an instance of sacrificing modeling power to

ensure that the overall system is realized exactly. We may have a slightly weaker

translation model in that it does not allow phrase movement, but this weakness

is clearly identified and we know that the translation hypotheses produced will be

exact with respect to the model.

Our approach is very much influenced by the description of the IBM models

as WFSTs by Knight and Al-Onaizan (1998). In addition to showing how the

IBM Models 1 through 3 can be implemented as WFSTs, they give a tutorial

explanation of the role played by each model component. Motivated by their work,

we developed WFST-based bitext word alignment algorithms and explored their use

under various alignment criteria (Kumar and Byrne 2002). We found however that

the performance of that approach was limited by its reliance on the IBM-3 model,

which is the most complex of the IBM models that can easily be formulated as

a WFST. This experience led us to investigate WFST implementations of phrase-

based translation models. We developed an alignment template formulation that

can be implemented using weighted finite state transducers (Kumar and Byrne

2003) and in doing so generalized the model to support bitext word alignment.

That implementation provided a working translation system that we used as a

basis for the Chinese-to-English translation system submitted in the NIST 2003

MT evaluations (Byrne, Khudanpur, Kim, Kumar, Pecina, Virga, Xu and Yarowsky

2003).

The TTM as described here departs from the original Alignment Template Model

(Och, Tillmann and Ney 1999; Och 2002) in several ways. In addition to the complete

formulation of the source-channel generative model of phrase-based translation and

its implementation via WFSTs, the TTM is wholly phrasal in that it makes no use

of word-to-word alignments at any level; but as we will show this does not prohibit

using the TTM for bitext word alignment. We furthermore allow the insertion of

target language phrases within the generative translation process and this removes

the restriction that the source and target language sentences contain the same

number of phrases.

The recent developments in statistical translation have been accompanied by

progress in the automatic evaluation of alignment and translation performance using

metrics such as Alignment Error Rate (AER) (Och and Ney 2000), BLEU (Papineni,

Roukos, Ward and Zhu 2001), NIST score (Doddington 2002), and multi-reference

Word Error Rate (Och 2002). Like others, we have found these metrics to be

extremely valuable; the development of statistical models on this scale would

be impossible without fast, inexpensive evaluation metrics. We present extensive

experiments analyzing the translation performance of our overall system. Our aim

is to identify the contribution of each model component to overall translation
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performance. In doing so we also analyze some aspects of the performance metrics

themselves; these criteria are complex enough that they can be said to have behavior

of their own.

There has been related work in developing phrase-based models for statistical

machine translation. In particular, there are new techniques available for extracting

phrase pairs from bitext, either using underlying word alignments (Tillmann 2003;

Koehn, Och and Marcu 2003) or not (Zhang, Vogel and Waibel 2003; Marcu

and Wong 2002). Bangalore and Riccardi (2001) have also explored the use of

WFSTs for machine translation and we briefly summarize their work to contrast

it to our own. They first construct word-level alignment of sentence pairs using a

tree-based alignment procedure incorporating a synchronous dependency grammar

and from these alignments they extract word-level and phrase-level lexicons that are

represented using WFSTs. They also extract lexical reordering schemas from the

bitext alignment and encode these in a second WFST. These WFSTs are used in

a two step translation process in which the first WFST is used to map the target

sentence into a sequence of source language words that remain in their original

target language word order. Reordering into source language word order is then

done by the second WFST. These transducers are constructed independently from

word aligned bitext. In contrast our model supports both bitext word alignment

and translation. It is based on a joint translation and reordering process that works

by reordering both phrases and their constituent words. Moreover our work, as

well as that of Knight and Al-Onaizan (1998), is different in spirit in that we focus

on a complete source-channel model of translation which can be realized using

WFSTs.

The article is organized as follows. In section 2 we present the TTM formulation.

In section 3 we describe phrase-pair inventories and their extraction from aligned

bitext. The TTM has six component models, and we discuss each along with

its WFST implementation in section 4. In section 5 we show how bitext word

alignment and translation can be performed with standard FSM operations involving

these transducers. In section 6 we describe exploratory alignment and translation

experiments on the Hansards French-English and the FBIS Chinese-English tasks.

We report Arabic-English and Chinese-English translation performance with large

bitext training sets in section 7 and we discuss these experiments in section 8 and

conclude in section 9.

2 The translation template model

The Translation Template Model (TTM) is a source-channel model of transla-

tion (Brown, Cocke, Della Pietra, Della Pietra, Jelinek, Lafferty, Mercer and Roossin

1990). It defines a joint probability distribution over all possible phrase segmentations

and alignments of target language sentences and their translations in the source

language. The steps in the translation process are presented with the aid of an

example in figure 1, and the conditional dependencies underlying this process are

defined in equation 1.
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Fig. 1. An example showing the generative translation process through which the TTM
transforms a source language sentence into its translation in the target language. We show
the inputs and outputs for each TTM constituent model as well as the TTM variables from
Equation 1. In this example, I = 9, K = 5, R = 7, J = 9.
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(1)

We start with an example (figure 1) showing the generative process through

which the TTM transforms a source language sentence into its translation in the

target language. In this example, the Source Language Model generates the Source

Language Sentence grain exports are projected to fall by 25%. This sentence is

segmented into a source phrase sequence: grain exports are projected to fall by 25 %

under the Source Phrase Segmentation Model. This source phrase sequence is

reordered into the target language phrase order: exports grain are projected to fall

by 25 % under the Phrase Order Model. The reordered source phrase sequence is
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then transformed into a sequence: 1 exports·1 grain are projected to fall by 25 %,

where the integers indicate the length of target phrases to be spontaneously inserted;

this process is governed by the Target Phrase Insertion Model. The above sequence

is next converted into a target language phrase sequence les exportations de grains

doivent fléchir de 25 % under the Phrase Transduction Model. We note that the

words les and de are spontaneously inserted. Finally the target language phrase

sequence is transformed into the target language sentence: les exportations de grains

doivent fléchir de 25% under the Target Phrase Segmentation Model. It should be

understood that all of the above steps are stochastic, and the example shown is only

one possible realization.

We now define some notation. eI1 refers to a sequence of I elements, and eji refers

to the subsequence that begins with the ith element and ends with the jth, e.g. if

eI1 = A B C D, then e3
2 = B C, where I = 4. We next distinguish words and phrases.

We assume that u is a phrase in the source language sentence that consists of a

variable number of words e1, e2, . . . , eM . Similarly, v is a phrase in the target language

sentence of words f1, f2, . . . , fN . Throughout the model, if an I word sentence eI1 is

segmented into K phrases uK1 , we say uK1 = eI1 to indicate that the words in the

phrase sequence are those of the original sentence.

3 The phrase-pair inventory

The Translation Template Model relies on an inventory of target language phrases

and their source language translations. This inventory will be used in the creation of

both the Phrase Transduction Model and the Source Phrase Segmentation Model.

These translations need not be unique, in that multiple translations of phrases in

either language are allowed. The manner by which the inventory is created does not

affect our formulation.

We utilize the phrase-extract algorithm (Och 2002) to extract a library of phrase-

pairs from bitext word alignments for the experiments that will be presented in

this paper. We first obtain word alignments of bitext using IBM-4 word level

translation models (Brown, Della Pietra, Della Pietra and Mercer 1993) trained

in both translation directions (IBM-4 F and IBM-4 E), and then form the union

of these alignments (IBM-4 E ∪F). We will refer to these initial models as the

underlying models. We next use the phrase-extract algorithm to identify pairs of

phrases (u, v) in the target and source language that align well according to a set of

heuristics (Och 2002). The phrase pairs are gathered so that the source and target

words within a phrase pair are aligned only to each other and not to any words

outside the phrase-pair (Och 2002; Koehn, Och and Marcu 2003).

To restrict the memory requirements of the model, we extract only the phrase-

pairs which have at most 5 words in the target phrase. In figure 2 we show the

extraction of phrase-pairs from bidirectional word alignments of an English-French

sentence pair. We augment the phrase-pair inventory by the most likely translations

of each target (source) word from the IBM-4 translation tables (Brown et al. 1993)

so as to get complete coverage of all single word phrases in either language. We note
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Fig. 2. Phrase-Pair collection process from bidirectional word alignments of an
English-French sentence pair.

that monolingual phrase inventories can be created by projecting the phrase-pairs

onto either the target or the source language.

We retain the matrix of word alignments that occurs most frequently for each pair

of source and target phrases. The best phrase-to-phrase alignment of two sentences

is easily obtained under the TTM (section 5). Once this alignment is found, the

best word-to-word alignments of the aligned phrases are found using the matrices

extracted from the training bitext.

4 TTM component models

We now introduce the definitions of the component distributions of the Translation

Template Model in equation 1. In presenting these, we first define the component

probability distribution, and then describe its implementation using a Weighted

Finite State Transducer or an Acceptor.

4.1 Source language model

We specify this model using a standard monolingual trigram word language model

P
(
eI1

)
=

I∏

i=1

P (ei|ei−1, ei−2).

Any n-gram or other language model that can be easily compiled as a weighted

finite state acceptor could be used (Allauzen, Mohri and Roark 2003). We will use

G to denote the language model WFSA.

4.2 Source phrase segmentation model

We construct a joint distribution over all phrase segmentations uK1 = u1, u2, . . . , uK
of the source sentence eI1 as

P
(
uK1 , K|eI1

)
= P

(
uK1 |K, eI1

)
P (K|I).(2)
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We choose the distribution over the number of phrases P (K|I) to be uniform

P (K|I) =
1

I
;K ∈ {1, 2, . . . , I}.(3)

For a given number of phrases, the segmentation model is a uniform distribution

over the set of K-length phrase sequences of eI1

P
(
uK1 |K, eI1

)
=






C uK1 = eI1 and

ui, i ∈ {1, 2, . . . , K} belongs to the source phrase inventory

0 otherwise,

where C is chosen to ensure that the above model is normalized, which means that∑
uK1

P (uK1 |K, eI1) = 1. This distribution assigns a uniform likelihood to all phrase

segmentations of the source sentence that can be obtained using the inventory of

phrases.

The WFST implementation of the Source Phrase Segmentation model involves

an unweighted segmentation transducer W that maps source word sequences to

source phrase sequences. The transducer performs the mapping of source word

strings to phrases for every source phrase in our inventory. A portion of the

segmentation transducer W is presented in figure 3. The ‘ ’ symbol is used to indicate

phrases formed by concatenation of consecutive words. Using W , we construct a

WFST for the distribution P (uK1 |K, eI1) to ensure that
∑

uK1
P (uK1 |K, eI1) = 1 for each

source sentence eI1 and K ∈ {1, 2, . . . , I}. We have described this WFST construction

procedure in earlier work (Kumar and Byrne 2003).

4.3 Phrase order model

We now define a model for the reordering of the source phrase sequence that makes

up the source sentence. The phrase alignment sequence aK1 specifies a reordering

of source phrases into target language phrase order; note that the words within the

phrases remain in the original order. In this way the phrase sequence uK1 is reordered

into ua1 , ua2 , . . . , uaK under the model P (aK1 |uK1 , K, eI1). We now discuss several phrase

order models.

4.3.1 Markov phrase order model

We begin by defining a first order Markov process over phrase alignment sequences

P
(
aK1 |uK1 , K, eI1

)
= P

(
aK1 |uK1

)
(4)

= P (a1)
K∏

k=2

P
(
ak|ak−1, u

K
1

)
.

with ak ∈ {1, 2, . . . , K}. The phrase alignment sequence is further constrained to

be a valid reordering of uK1 , i.e. the phrase alignment sequence is constrained to

be a permutation of the set {1, 2, . . . , K}. The alignment sequence distribution is

constructed to assign lower likelihood to phrase re-orderings that diverge from the

original word order. Suppose uak = el
′

l and uak−1 = em
′

m , we set the Markov chain
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Fig. 3. A portion of the Source Phrase Segmentation Transducer W that maps word sequences
to phrases. There is a distinct loop for each phrase in the source language phrase inventory.
Suppose an example input for this transducer is the source language sentence: What are its
terms of reference, then a possible output of this WFST would be the source language phrase
sequence: what are its terms of reference.

probabilities as follows (Och, Tillmann and Ney 1999)

P
(
ak|ak−1, u

K
1

)
∝ p

|l−m′−1|
0(5)

P (a1 = k) =
1

K
; k ∈ {1, 2, . . . , K}.

In the above equations, p0 is a tuning factor and we normalize the probabilities

P (ak|ak−1) so that
∑K

j=1,j '=ak−1
P (ak = j|ak−1) = 1.

The finite state implementation of the phrase order model involves two acceptors.

We first build a unweighted permutation acceptor ΠU that contains all reorderings

of the source language phrase sequence uK1 (Knight and Al-Onaizan 1998; Kumar

and Byrne 2003). Suppose this acceptor allows reorderings of the source language

phrase sequence we have run away inflation. An example of a reordering would be

run away inflation we have, so that the alignment sequence is given by: a1 = 3, a2 =

1, a3 = 2.

The second acceptor H in the implementation of the Phrase Order Model assigns

alignment probabilities (equation 5) to a given reordering aK1 of the source phrase

sequence uK1 (Kumar and Byrne 2003). Suppose the phrases in the source phrase

sequence are specified as follows: v1 = f1 (we), v2 = f2 (have) and v3 = f5
3

(run away inflation). Given a reordering of this phrase sequence run away inflation

we have with alignment sequence a1 = 3, a2 = 1, a3 = 2, H would assign it a

probability: P (a1 = 3)P (a2 = 1|a1 = 3)P (a3 = 2|a2 = 1) = 0.33 × 0.47 × 0.53 = 0.08.
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4.3.2 Monotone phrase order models

The permutation acceptor described above must be constructed for each segment-

ation uK1 of the source sentence eI1. As a source sentence typically has several

segmentations, it is infeasible to construct a separate permutation acceptor for every

segmentation. Moreover, during decoding, this process has be carried out for every

source sentence that is allowable by the source language model. As a practical

approximation, we therefore consider a degenerate model that does not allow any

reordering of the source phrase sequence uK1

P
(
aK1 |uK1 , K, eI1

)
=

{
1 {a1 = 1, a2 = 2, a3 = 3, . . . , aK = K}
0 otherwise.

(6)

We will refer to this model as the Fixed Phrase Order Model.

4.4 Target phrase insertion model

The steps introduced so far segment the source language sentence into phrases and

then reorder the phrases. But it would be overly restrictive to insist that the source

language phrase sequence have the same number of phrases as the target language

phrase sequence. In particular, we wish to allow for the spontaneous insertion and

deletion of phrases. It may happen that the bitext translations are not literal, so that

not all target language phrases can be generated by phrases in the source language

sentence. Even for literal translations, we may wish to allow for flaws in the phrase-

pair inventory. We note that these phenomena could be captured to a large extent by

allowing null phrase translations in the phrase-pair inventory, although the process

would then be conflated with phrase translation.

We construct a model to allow insertion of target language phrases anywhere

in the reordered source language phrase sequence. This process will be governed

by a probability distribution over insertion of target language phrases so that the

likelihood of inserting a phrase is inversely proportional to the number of words

in the phrase. Therefore there will be a greater penalty for the insertion of longer

phrases.

This model transforms the reordered source language phrase sequence ua1 , ua2 , . . . ,

uak into a new sequence called cK0 . The process replaces each source language phrase

by a structure that retains the phrase itself and additionally specifies how many

target language phrases should be appended to that phrase. Given ua1 , ua2 , . . . , uak ,

an element in the transformed sequence has the following form

ck = uak · pk; pk ∈ {1, 2, . . . ,M}∗

The term pk specifies the number and length of the target language phrases that

can be spontaneously generated to follow the translation of uak . The term has the

following form: pk = pk[1] · pk[2] · . . . and pk[i] ∈ {1, 2, . . . ,M}. For example, if

uak = terms of reference, ck might equal terms of reference · 1 · 3 · 4, which specifies

that the translations of terms of reference must be followed by three target language

phrases of length one word, three words, and four words respectively. We note that

these target language phrases must be drawn from the phrase-pair inventory, and
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therefore are of known maximum word length M. The probability of the element ck
is specified as

P
(
ck|uak

)
=






α0 ck = uak · ε
α

∑
i pk[i] ck = uak · pk

0 otherwise.

(7)

This distribution over ck is specified through the Phrase Exclusion Probability (PEP),

denoted by α. αn is the probability of inserting a target language phrase of length

n. In Section 6.2.1 we will show that the PEP can be used to tune alignment

and translation by governing the tendency of the systems to insert target language

phrases. The parameter α0 is the probability that no target language phrase is

inserted and it is dependent on α so that equation 7 sums to one (see below).

We note that c0, c1, . . . , ck contains one additional term relative to the original

sequence ua1 , ua2 , . . . , uak . This term c0, has the form c0 = ε · p0, and its probability is

given by

P (c0) =






α0 c0 = ε

α
∑

i p0[i] ck = p0

0 otherwise.

(8)

The total probability of the sequence cK0 is obtained as

P
(
cK0 |ua1 , ua2 , . . . , uak

)
= P (c0)

K∏

k=1

P
(
ck|uak

)
.(9)

We now set the value of α0 to ensure that the probability distribution (given in

Equation 7) is normalized.

∑

ck

P
(
ck

∣∣uak
)

= P
(
ck = uak · ε

)
+

∑

pk '=ε

P
(
ck = uak · pk

)

= α0 +
∞∑

l=1

∑

pk:|pk |=l

P
(
ck = uak · pk

)

= α0 +
∞∑

l=1

∑

pk[1]pk[2]...pk[l]

α
∑ l

i=1 pk[i]

= α0 +
∞∑

l=1

l∏

i=1

M∑

j=1

αj

= α0 +
∞∑

l=1

(
M∑

j=1

αj

)l

.

We can set α so that
∑M

j=1 α
j < 1. This imposes a permissible range on α values:

0 ≤ α < αmax, so that (
∑M

j=1 α
j)l forms an infinite geometric series in l with sum of
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Fig. 4. A portion of the Weighted Finite State Transducer Φ used to implement the Target
Phrase Insertion Model. Suppose an example input for this transducer is the reordered source
language phrase sequence exports grain are projected to fall, then a possible output of the
WFST is the sequence 1 exports · 1 grain are projected to fall, which means that two target
phrases are spontaneously inserted in the translation of source phrase sequence. The first
target phrase is of length one word and inserted at the start of the sentence, and the second
target phrase, also of length one, follows the translation of the source phrase exports.

its terms given by

S =

( ∑M
j=1 α

j
)

1 −
(∑M

j=1 α
j
) .

Therefore
∑

ck
P (ck) = α0 + S , so that α0 is fixed by α as α0 = 1 − S .

The WFST Implementation of the Target Phrase Insertion Model involves a

transducer Φ shown in figure 4. When a source phrase sequence is composed with Φ,

it spontaneously inserts target phrases to generate an output sequence cK0 according

to equation 9.

4.5 Phrase transduction model

We have described the segmentation and reordering processes that transform a

source language sentence into source language phrases in target language phrase

order and we have described the process by which target phrases are spontaneously

inserted within this reordered source phrase sequence. The next step is to map the

sources phrases in this sequence to target phrases.

We assume that the target phrases are conditionally independent of each other

and depend only on the source language phrase which generated each of them. Each

term ck is mapped to a sequence of target phrases dk which are concatenated to
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Table 1. A portion of the phrase-pair inventory used in constructing the Phrase Trans-

ducer Y . Y is a trivial single state transducer with number of arcs equal to the size of

the inventory

Phrase transduction
Source phrase Target phrase probability

run away inflation inflation galopante 0.5
run away inflation une inflation galopante 0.5
hear hear bravo 0.8
hear hear bravo bravo 0.15
hear hear ordre 0.05
terms of reference mandat 0.8
terms of reference de son mandat 0.2

obtain the final target phrase sequence vR1 = dK0 .

P
(
vR1 , d

K
0 |cK0 , aK1 , uK1 , K, eI1

)
= P

(
dK0 |cK0

)
1
{
dK0 = vR1

}
(10)

P
(
dK0 |cK0

)
=

K∏

k=0

P (dk|ck)

=

|p0|∏

l=1

P (d0|c0l)
K∏

k=1

1+|pk |∏

l=1

P (dkl |ckl),

where 1{dK0 = vR1 } ensures that the target phrase sequence vR1 agrees with the

sequence dK0 produced by the model. We note that this is the main component

model of the TTM. We estimate the phrase translation probabilities by the relative

frequency of phrase translations found in bitext alignments. We will implement this

model using a transducer Y that maps any reordering of the target language phrase

sequence into a source language phrase sequence vR1 as in Equation 10. For every

phrase u, this transducer allows only the target phrases v which are present in our

library of phrase-pairs. In addition, for each m ∈ {1, 2, . . . ,M}, the transducer allows

a mapping from the target-phrase symbol m to all the m-length target phrases from

our phrase-pair inventory Vm
T with probability given by

P (v|m) =
1∣∣Vm
T

∣∣ ; v ∈ Vm
T .(11)

A small portion of the phrase-pair inventory used in constructing the transducer Y

is shown in Table 1.

4.6 Target phrase segmentation model

The operations described so far allow a mapping of a source language sentence

into a sequence of target language phrases. We now specify a model to enforce the

constraint that words in the target sentence fJ1 agree with those in the target phrase

sequence vR1 .

P
(
fJ1 |vR1 , dK0 , cK0 , aK1 , uK1 , K, eI1

)
= 1

{
fJ1 = vR1

}
,
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where 1{fI1 = vR1 } enforces the requirement that words in the target sentence agree

with those in the phrase sequence. The WFST implementation of this model involves

a simple unweighted segmentation transducer Ω that maps target phrase sequences

to target sentences. We build a transducer Ω for each target language sentence fJ1 to

be translated. Suppose we have built the segmentation transducer Ω for the target

language sentence: nous avons une inflation galopante. When Ω is composed with a

valid phrase segmentation, e.g. nous avons une inflation galopante, it generates the

target sentence: nous avons une inflation galopante.

5 Bitext word alignment and translation under the TTM

We now describe how the TTM can be used to perform word-level alignment of

bitexts and translation of target language sentences.

5.1 Bitext word alignment

The word-to-word alignment between a target language sentence fJ1 and a source

language sentence eI1 can be found using Maximum A Posteriori (MAP) decoding

as:
{
K̂, ûK̂1 , â

K̂
1 , ĉ

K̂
0 , d̂

K̂
0 , v̂R̂1

}
= argmax

K,uK1 ,a
K
1 ,c

K
0 ,d

K
0 ,v

R
1

P
(
K, uK1 , a

K
1 , c

K
0 , d

K
0 , v

R
1 |eI1, fJ1

)
.(12)

ûK̂1 and d̂ K̂
0 = v̂R̂1 specify the MAP source phrase sequence and target phrase

sequence, respectively. ĉK̂0 specifies the position and length of the spontaneously

generated target phrases within the reordered source phrase sequence. âK̂1 describes

the MAP phrase-to-phrase alignment between the phrase sequences so that ĉi is

aligned to the target phrase d̂i. The MAP hypotheses are generated at the phrasal

level, however using the knowledge that ĉi is aligned to d̂i, we can obtain the word

level alignments within the phrases directly from the phrase pair inventory. In this

way we can generate the single MAP word alignment.

We first describe how MAP word alignment under the TTM can be obtained when

all phrase segmentations of the source sentence are considered and no reorderings

of the source phrase sequence are considered. In this case a lattice of possible word

alignments between eI1 and fJ1 can be obtained by the finite state composition

B = T ◦ W ◦ Φ ◦ Y ◦ Ω ◦ S,

where T is an acceptor for the source sentence eI1, and S is an acceptor for the

target sentence fJ1 . An alignment lattice can be generated by pruning B based on

likelihoods or number of states. The MAP alignment B̂ (equation 12) is found as

the path with the highest probability in B.

If only one phrase segmentation of the source sentence is to be considered during

alignment, we follow a two-step procedure proposed earlier (Kumar and Byrne 2003)

in place of equation 12. The first step is MAP phrase segmentation of the source
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sentence, followed by the MAP alignment of the fixed segmentation.
{
ũK̃1 , K̃

}
= argmax

uK1 ,K

P
(
uK1 , K

∣∣eI1
)

(13)

{
ãK̃1 , c̃

K̃
0 , d̃

K̃
0 , ṽ

R̃
1

}
= argmax

aK̃1 ,c
K̃
0 ,d

K̃
0 ,v

R
1

P
(
aK̃1 , c

K̃
0 , d

K̃
0 , v

R
1

∣∣ũK̃1 , K̃, eI1, f
J
1

)
.

This is implemented via WFSTs as follows. We first obtain a segmentation lattice of

the source sentence: U = T ◦W . The MAP source phrase segmentation Ũ is obtained

as the path with the highest probability in U. Given the MAP segmentation Ũ, the

alignment lattice can be obtained by the WFST composition: B = Ũ ◦ Φ ◦Y ◦ Ω ◦ S .

The above presentation assumes that the source phrase sequence is not reordered

while performing alignment. If reorderings of the MAP source phrase segmentation

are to be considered when obtaining MAP word alignment, we perform the following

procedure. We first obtain the MAP phrase segmentation of the source language

sentence as described above. We next build a permutation acceptor ΠŨ that generates

reorderings of the source phrase sequence Ũ. The N-best reorderings of Ũ are

obtained by considering the N most likely paths in the permutation acceptor under

the Markov Phrase Order Model (equation 5). Given this set of reorderings of the

source phrase sequence, the alignment lattice is found by a WFST composition.

These two steps are given by

ΠN
Ũ

= N-Best Paths(ΠŨ ◦ H)(14)

B = ΠN
Ũ

◦ Φ ◦ Y ◦ Ω ◦ S.

5.2 Translation

The translation of a target language sentence fJ1 into the source language can be

found via MAP decoding as:
{
êÎ1, K̂, ûK̂1 , â

K̂
1 , ĉ

K̂
0 , d̂

K̂
0 , v̂R̂1

}
= argmax

eI1 ,K,uK1 ,a
K
1 ,c

K
0 ,d

K
0 ,v

R
1

P
(
K, uK1 , a

K
1 , c

k
0, d

K
0 , v

R
1 |fJ1

)
,(15)

where êI1 is the translation of fJ1 . ûK̂1 , âK̂1 , d̂ K̂
0 = v̂R̂1 and ĉK̂0 are the corresponding source

phrase sequence, alignment sequence, target phrase sequence, and the sequence that

specifies the position and length of spontaneously inserted target phrases within

the reordered source phrase sequence; all these variables are hypothesized in the

decoding process.

In translation we do not consider reorderings of the source phrase sequence due

to limitations in the current WFST translation framework. In this case the set of

possible translations of fJ1 is obtained using the weighted finite state composition:

T = G ◦ U ◦ Φ ◦ Y ◦ Ω ◦ S.

A translation lattice (Ueffing, Och and Ney 2002) can be generated by pruning T
based on likelihoods or number of states. The translation with the highest probability

(equation 15) can be computed by obtaining the path with the highest probability

in T.
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5.3 Source phrase deletion in bitext word alignment

Given a target language sentence and its translation in the source language, bitext

word alignment under the TTM is performed by considering all segmentations of

each sentence and finding the best possible alignment between the phrases under

the constraint that all phrases are aligned. However our inventory of phrase-pairs

is not rich enough to cover all possible sentences, and as a result the sentence-pair

contains phrase-pairs not in the inventory. When a sentence pair cannot be covered

by the inventory, the pair is assigned a probability of zero under the model. We

see such an example in figure 2 where the phrase-pairs extracted from the bitext

do not completely cover the words in either the target or the source sentence. To

overcome this limitation, we allow deletion of source phrases during the alignment

process. This is done in addition to the insertion of target phrases under the Target

Phrase Insertion Model (equation 9). This will make it possible to align sentences

containing phrases not found in the phrase pair inventory. The phrase transducer

Y is modified by adding extra transitions to allow deletions of source phrases. The

parameters P (ε|u) for deletions of source phrases u are not estimated; they are tied

to the Phrase Exclusion Probability (α) introduced in the Target Phrase Insertion

Model so that P (ε|u) = α for all source phrases u in our inventory.

6 Exploratory translation and alignment experiments

We now report alignment and translation performance of the Translation Template

Model. We present experiments on two tasks that involve both word alignment

and translation - the Hansards French-to-English task (Och and Ney 2000) and the

FBIS Chinese-to-English task.

6.1 Source Language Texts, Bitexts, and Phrase-Pair Inventories

6.1.1 French-to-English

The goal of this task is the translation of the Canadian Hansards which are the

official records of the Canadian parliament (Hansards 2003) maintained in both

English and French. The translation model training data consists of 48, 739 French-

English sentence pairs from the Hansards (Och and Ney 2000). The French side

of the bitext contains 816, 545 words (24, 096 unique tokens). The English side has

a total of 743, 633 words (18, 430 unique tokens) and is used to train the source

language model. The test set consists of 500 unseen French sentences from Hansards

for which both reference translations and word alignments are available (Och and

Ney 2000).

On this task our phrase-pair inventory is found as described in Section 3 and

consists of 772, 691 entries, with 473, 741 unique target phrases and 434, 014 unique

source phrases. We restrict the phrase-pairs to the target phrases which have at most

5 words. The distribution of the number of words in the source and target phrases

over the inventory is shown in Table 2.
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Table 2. Distribution of the number of words in the target and source phrases over

the Phrase-Pair Inventory on the French-English Hansards Task. The entries are

phrase-pair counts (in 1000s), and the bold entries denote the maximum count in

each row

Source phrase length
(in English words)

Target phrase length
(in French words) 1 2 3 4 5 6–7 8–10 ≥ 11

1 414.3 53.1 10.7 2.1 0.5 0.1 0.0 0.0
2 102.8 190.0 44.3 12.1 3.2 1.1 0.1 0.0
3 27.8 89.9 119.5 35.0 10.8 4.7 0.5 0.0
4 6.8 30.1 73.6 79.1 27.7 13.6 1.9 0.1
5 1.7 9.9 29.4 57.2 55.5 31.8 5.7 0.4

6.1.2 Chinese-to-English

The goal of this task (NIST 2004) is the translation of news stories from Chinese

to English. The translation model training data consists of the Foreign Broadcast

Information Service (FBIS) Chinese-English parallel corpus (LDC2003E14) that

consists of 9.76M words (49, 108 unique tokens) in English and 7.82M words

(55, 767 unique tokens) in Chinese. The Chinese side of the corpus is segmented

into words using the Linguistic Data Consortium (LDC) segmenter (LDC 2002).

The provided bitext is aligned at the document level. Documents are aligned

automatically at sentence and sub-sentence level into chunk-pairs using a statistical

chunk model (Deng and Byrne 2004) to generate 440, 000 chunk pairs; on an

average there are 38 chunk pairs per document pair, 1.72 chunks per sentence in

each document, and 22 sentences per document pair. Our language model training

data comes from English news text derived from two sources: online archives (Sept

1998 to Feb 2002) of The People’s Daily (16.9M words) (People’s Daily 2002) and the

English side of the Xinhua Chinese-English parallel corpus (LDC2002E18) (4.3M

words). The total language model corpus size is 21M words.

Our translation test set is the NIST 2002 MT evaluation set (LDC2003T17)

consisting of 878 sentences. Each Chinese sentence in this set has four reference

translations. Our alignment test set consists of 124 sentences from the NIST 2001

dry-run MT-eval set that are word aligned manually.

On this task our phrase-pair inventory is found as described in Section 3 and

consisted of 8.05M entries, with 3.12M unique target phrases and 4.98M unique

source phrases. We restrict the phrase-pairs to the target phrases which have at

most 5 words. The distribution of the number of words in the source and target

phrases over the inventory is shown in Table 3.

6.2 Bitext word alignment

The goal of bitext word alignment is to find word-to-word correspondences between

a pair of translated sentences. We measure performance with respect to a reference
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Table 3. Distribution of the number of words in the target and source phrases over the

Phrase-Pair Inventory on the Chinese-English FBIS Task. The entries are phrase-pair

counts (in 1000s), and the bold entries denote the maximum count in each row

Source phrase length
(in English words)

Target phrase length
(in Chinese words) 1 2 3 4 5 6 7–8 ≥ 9

1 3,142.3 1,720.3 775.3 266.2 80.1 24.6 12.2 4.0
2 705.3 1,461.5 1,134.8 635.5 295.4 123.2 69.1 18.6
3 149.4 479.1 781.0 696.2 461.9 262.6 201.7 64.9
4 34.1 130.7 300.5 451.3 441.1 340.7 359.7 162.5
5 9.1 34.2 95.8 196.1 284.0 300.2 449.4 314.3

word alignment created by a competent human translator. We evaluate alignment

performance against the reference alignment using Alignment Precision, Alignment

Recall and Alignment Error Rate (AER) metrics (Och and Ney 2000).

An alignment between a pair of source and target sentences e and f is defined to

be a link set B = {b1, b2, . . . , bm} whose elements are given by the alignment links

bk . An alignment link b = (i, j) specifies that the source word ei is connected to

the target word fj under the alignment. Alignment metrics allow us to measure

the quality of an automatic word alignment B′ relative to a reference alignment

B. In these measurements, links to the NULL word are ignored. This is done by

defining modified link sets B̄ for the reference alignment and B̄′ for the automatic

alignment.

The reference annotation procedure allowed the human transcribers to identify

which links in B̄ they judged to be unambiguous. In addition to the reference

alignment, this gives a set of sure links (S) which is a subset of B̄. The alignment

metrics are defined as follows (Och and Ney 2000):

Alignment Precision (S, B;B′) =
|B̄′ ∩ B̄|

|B̄′|
(16)

Alignment Recall (S, B;B′) =
|B̄′ ∩ S |

|S |(17)

Alignment Error Rate (S, B;B′) = 1 − |B̄′ ∩ S | + |B̄′ ∩ B̄|
|B̄′| + |S |

.(18)

We present in Table 4 word alignment performance of the TTM on the two

alignment tasks. We will use the Fixed Phrase Order Model (equation 6) in all the

TTM experiments presented here. We will justify the choice of this model through

the experiments in section 6.2.3.

As a basis for comparison we measure the Alignment Error Rate (AER) without

any word reordering. The alignment between words in a sentence-pair is set

proportionally, i.e. a target word at position j in a J-length target language sentence

is aligned to the source word at position i = ceil(j ∗ I/J) in the I-length source
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Table 4. TTM alignment performance on the French-English and the Chinese-English

alignment tasks

Alignment metrics (percent)

French-English Chinese-English

Model Precision Recall AER Precision Recall AER

Linear Order 43.6 35.3 59.2 16.5 12.9 85.5
IBM-4 F 89.4 90.5 10.1 82.8 48.0 39.2
IBM-4 E 89.6 90.0 10.2 73.9 58.3 34.9
IBM-4 F ∪ E 84.5 94.5 11.7 66.0 63.1 35.5
TTM 94.5 84.6 9.9 89.0 37.7 47.0

language sentence. We note that the ‘ceil’ function is used to round a real number

upward to the nearest integer value. AER results are given in Table 4 for this

simple alignment. Comparison to other methods shows that linear order alignment

is clearly inferior and that word reordering is crucial.

We also align the bitext using IBM-4 word translation models (Brown et al. 1993;

Och and Ney 2000) trained in both translation directions (IBM-4 E and IBM-4 F),

and their union (IBM-4 E ∪ F).

The Alignment Error Rate of the TTM is comparable to the baseline IBM-4

models on the French-English task, but worse than IBM-4 models on the Chinese-

English task. On both tasks the TTM obtains a very high Alignment Precision

but a relatively poor Alignment Recall unlike IBM-4, which is more balanced in

Alignment Precision and Alignment Recall.

The TTM is the more conservative of the methods. It hypothesizes word align-

ments only within phrase-pairs that were encountered in training, and the hypo-

thesized word alignments are in fact those assigned by IBM-4 to the training bitext.

In this way it achieves high Alignment Precision. In contrast, the word alignments

under IBM-4 need not respect the phrase pair inventory and may also cross phrase

boundaries. In this way the IBM-4 model is able to achieve better Alignment

Recall.

6.2.1 Phrase exclusion probability

MAP word alignment under the TTM is affected by the number of target and source

phrases that are excluded during bitext word alignment; this behavior is governed

by the Phrase Exclusion Probability (PEP) as described in section 5.3. We will now

measure word alignment quality as a function of PEP (α) (figure 5). In figure 5 we

observe that Alignment Precision increases monotonically with PEP over most of its

permissible range, however there is a critical value above which Alignment Precision

decreases. Alignment Recall at first improves slightly with PEP but then decreases.

AER closely follows the Alignment Recall.
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Fig. 5. Alignment performance of TTM as a function of Phrase Exclusion Probability (PEP).
For each value of PEP, we measure Alignment Precision (Panel a), Alignment Recall (Panel
b), and AER (Panel c). Results are shown on the French-English task. At a log PEP value of
−4.6 the AER achieves a minimum value of 9.9%.

We now study this behavior more closely. The TTM is constructed so that as

PEP (α) increases, the likelihood of excluding phrases increases. To assess this we

measure the percentage of Excluded Phrase Counts (EPC) which is the ratio of the

number of source and target phrases excluded under the MAP alignment to the

total number of transductions (phrase-pair transductions, spontaneous insertions of

target phrases, and deletions of source phrases) in the MAP alignment. In figure 6,

we see that EPC is in fact increasing in PEP. We see furthermore that there is a

critical value above which EPC increases rapidly; at this point the model simply

finds it more likely to exclude phrases rather than align them. This has a direct

influence on Alignment Recall (equation 17), which is proportional to the number

of correctly aligned words. This quantity is necessarily dominated by the number

of aligned phrases so that Alignment Recall falls off sharply with a sharp rise in

PEP.

The influence of PEP on Alignment Precision is more complex. As PEP increases

the model is able to avoid aligned phrase pairs whose transduction probability

is low. As a result the phrase pairs that remain in the alignment are those with

higher phrase transduction likelihoods. This quantity for each phrase pair is based

simply on the relative frequency of its occurrence in the bitext word alignments

(see section 4.5). As PEP increases, the alignment favors source language phrases

that are uniquely aligned to one target phrase. It is plausible that the word alignments

within these phrase pairs are of higher quality than found in general. This would

explain the increase in Alignment Precision at intermediate values of PEP.
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Fig. 6. Variation of alignment precision (Panel b) and recall (Panel a) for values of Phrase
Exclusion Probability (PEP) near the critical value. We also plot four additional quantities
derived from the MAP alignment. These include the number of wrongly hypothesized links
q1 (Panel c), penalty per incorrectly hypothesized alignment link q2 (Panel d), the number of
phrase-pair transductions (Panel e), and the percentage of Excluded Phrase Counts (Panel f).
Results are shown on the French-English task.

For PEP above the critical point, we observe a decrease in Alignment Precision

(figure 6e). To analyze this behavior, we write Alignment Precision as

Alignment Precision(S, B;B′) =
|B̄′ ∩ B̄|

|B̄′|
= 1 − q1q2,

where q1 = |B̄′| − |B̄′ ∩ B̄| and q2 = 1
|B̄′ | . Considered in this way, q1 is the number

of incorrectly hypothesized alignment links, and q2 is the penalty associated with

each wrong alignment link; this penalty decreases inversely with the number of

hypothesized links. The interaction between q1 and q2 as PEP varies will determine

the Alignment Precision. In figure 6, we see that as EPC increases (figure 6f) the

absolute number of phrase-pairs in the alignment decreases (figure 6e). The quantity

q2 (figure 6d) can be expected to vary inversely with the number of aligned phrase

pairs, and we in fact observe this behavior. We separately measure q1, the number

of incorrectly hypothesized alignment links, and find that this number does decrease

for PEP above the critical value (figure 6c), suggesting that the relatively few phrase

pairs that remain in the alignments are of high quality. However we see that the

Alignment Precision (figure 6b) is dominated by q2 so that performance falls for

PEP above the critical value.

6.2.2 Multiple source phrase segmentations

Ideally the word alignment of sentence pairs under the TTM is obtained after con-

sidering all possible phrase segmentations of the source sentence (Equation 12). An

alternative, approximate approach could be done following the two-step procedure
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Fig. 7. Effect of multiple phrase segmentations of the source sentence on word alignment
quality. MAP word alignments Under the TTM are obtained using the two-step alignment
process (Equation 13) that considers only a single phrase segmentation of the source sentence
These are compared to MAP word alignments obtained using all segmentations of the source
sentence (Equation 12). In both cases, Alignment Precision (Panel a), Alignment Recall (Panel
b), and AER (Panel c) are measured are functions of Phrase Exclusion Probability.

(Equation 13) that consists of MAP phrase segmentation of the source sentence, then

followed by the MAP alignment of the fixed source sentence phrase segmentation.

Figure 7 compares the performance of the two approaches as a function of the

Phrase Exclusion Probability for values above the critical value. We find that the

two-step approach (Equation 13) is markedly inferior relative to the exact MAP

word alignment (Equation 12).

In experiments not reported here, we have observed that excluding the segmenta-

tion model has almost no impact on the alignment quality. We can therefore avoid

the expensive step which ensures that for a given sentence the probabilities over all

segmentations of a fixed length are correctly normalized.

6.2.3 Source phrase reorderings

In the experiments described thus far we have used the Fixed Phrase Order Model

(equation 6) that does not reorder the source phrase sequence while performing

word alignment (Equation 12). We now measure the effect of reorderings of the

MAP source phrase segmentation on alignment performance of the TTM.

We follow the procedure described earlier (section 5) and obtain an N-best list of

reorderings under the Markov Phrase Order model (equation 5). Word alignment of

each sentence-pair under the TTM (equation 12) is then performed given the N-best

reorderings of the source phrase sequence.

We first derive a quantity that characterizes the tendency of the model to relocate

phrases in order to achieve the MAP word alignment. This quantity, called Average

Phrase Movement (APM) (Och 2002), measures the degree of non-monotonicity in

the MAP word alignment (equation 12). Suppose any two consecutive phrases in the
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Fig. 8. Effect of reorderings of the source phrase sequence on alignment quality. MAP Word
Alignments under the TTM are obtained using a fixed number of reorderings (N = 400) of
the single phrase segmentation of the source sentence. Performance is compared with MAP
word alignments obtained without reordering the source phrase sequence. We measure AER
(Panel a) and Average Phrase Movement (Panel b) as functions of the Phrase Exclusion
Probability (PEP). Results are shown on the French-English Task.

reordered source phrase sequence ûâ1 , . . . , ûâk are given by ûâk = el
′

l and ûâk−1 = em
′

m ,

the movement between these phrases is measured as dk = |l−m′ −1|. The total phrase

movement over the sentence pair is taken as the sum of the individual movements:

d =
∑K

k=1 dk . The Average Phrase Movement is obtained by averaging the total

movement over the sentences in the test set. We emphasize that the target phrase

order is unchanged during the alignment process, so the Average Phrase Movement

measures variation in the source phrase order relative to both the original source

phrase order and the target phrase order.

In this experiment we fix the number of reordered source phrase sequences (an

N-best list of size 400) and obtained MAP word alignments under the TTM as

a function of PEP (α) (figure 8). For each value of PEP we also measure the

percentage of Excluded Phrase Counts (EPC). We observe that there is only a slight

improvement of AER by allowing reorderings relative to the no reordering case.

When reorderings are allowed the Average Phrase Movement drops monotonically

as PEP is increased. We also note the AER peaks at the same value of PEP whether

or not reordering of the source phrase sequence is allowed.

6.2.4 Discussion

We have investigated the role of phrase movement in word alignment. We have

described the role the PEP plays in the overall model and how smaller values
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encourage phrase reordering in MAP alignment. We observe that encouraging

phrase movement need not lead to better AER. However allowing some movement

does lead to gains relative to the Fixed Phrase Order Model, although these gains

are small (< 0.5% AER). Furthermore, the Average Phrase Movement is less

than one word at the best achieved AER. We do not claim that these results

hold generally for other language pairs or other translation models, although we

note that Chinese-English alignment behavior is similar to what we have reported

in French-English alignment. Based on the limited AER gains that come from

phrase reordering, we will use only the Fixed Phrase Order Model for translation.

These experiments show that this is not an entirely unreasonable choice. Given

the small amount of phrase movement observed in the best alignments (less than

one word), we might hope to achieve similar performance using Fixed Phrase

Order models with longer phrase pairs. This is a constraint which can be varied.

The maximum length of the source language phrases is a design parameter in

the construction of the phrase pair inventory. It determines the size of the phrase

pair inventory, and therefore balances the coverage of the test set against memory

usage.

6.3 Translation

We now measure the translation performance of the TTM described in section 5.2.

In implementing translation under the TTM we use the same components analyzed

in our word alignment experiments (section 6.2). We use the unweighted Source

Phrase Segmentation Model (section 4.2). Allowing phrase movement in FSM-based

implementations such as this is expensive in memory usage (Kumar and Byrne 2003;

Knight and Al-Onaizan 1998). We use the Fixed Phrase Order Model (section 4.3.2).

Translation is performed in monotone phrase order, as has been done by others

(Zens and Ney 2004).

Unlike word alignment, translation requires a source language model (section 4.1).

Here we use a trigram word language model estimated using modified Kneser-Ney

smoothing as implemented in the SRILM tookit (Stolcke 2002). As described in

section 6.1, separate source (English) language models are trained for the French-

English and Chinese-English tasks.

Translation performance is measured using the BLEU and NIST MT-eval metrics,

and Multi-Reference Word Error Rate (mWER). The NIST and mWER metrics are

described at length elsewhere (Doddington 2002) (Och 2002), and we will not review

them. However, we wish to provide a detailed analysis of translation performance

under BLEU, so we will review its formulation.

The BLEU score (Papineni et al. 2001) measures the agreement between a

hypothesis translations E ′ and its reference translation E by computing the geometric

mean of the precision of their common n-grams. The score also includes a ‘Brevity

Penalty’ γ(E,E ′) that is applied if the hypothesis is shorter than the reference. The

functional form is

BLEU(E,E ′) = γ(E,E ′) × BPrecision(E,E ′)(19)
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Table 5. Translation performance of the TTM on the French-English and

Chinese-English Translation Tasks. For comparison, we also report performance of

ReWrite Decoder with the French-English and Chinese-English IBM-4 translation

models used to create the Phrase-Pair inventories

French-English Chinese-English

Model BLEUr1n4 (percent) NISTr1n4 BLEUr4n4 (percent) NISTr4n4

IBM-4 17.09 5.02 9.67 3.57
TTM 22.29 5.52 22.45 7.73

BPrecision(E,E ′) = exp

(
1

N

N∑

n=1

log pn(E,E
′)

)
(20)

γ(E,E ′) =

{
1 |E ′| ≥ |E|
e(1−|E|/|E′ |) |E ′| < |E|

(21)

In the above equations, pn(E,E ′) is a modified precision of n-gram matches in the

hypothesis E ′, and is specified as

pn(E,E
′) =

∑
g∈Vn min(#E(g),#E ′ (g))

∑
g∈Vn #E ′(g)

,(22)

where Vn denoted all n-grams (order n), #E(g) and #E ′(g) are the number of

occurrences of the n-gram g in the reference E and in the hypothesis E ′, respectively.

We will use the notation BLEUrXnY to refer to BLEU score measured with respect

to X reference translations and a maximum n-gram length N = Y in equation 20.

The BLEU score (equations 19-22) is defined over all sentences in the test set, i.e.

E ′ and E are concatenations of hypothesis (reference) translations over sentences in

a test set. We can also define a sentence-level BLEU score between the hypothesis

and reference translations of each individual sentence using equations 19-22.

To serve as a baseline translation system, we use the ReWrite decoder (Marcu and

Germann 2002) with the French-English and Chinese-English IBM-4 translation

models used in creating the phrase-pair inventories. We see in Table 5 that the

performance of the TTM compares favorably to that of the ReWrite decoder on

both the Chinese-English and French-English tasks.

Our results are consistent with previously published comparisons between phrase-

based translations and IBM-4 based translations (Och 2002; Marcu and Wong

2002). We know from our experiments in bitext word alignment that IBM-4 models

yield better overall alignments than the TTM, although the TTM achieves better

alignment precision and as such is the more conservative of the two. The same

holds in translation. The TTM creates translations by assembling phrase pairs

extracted from the bitext. IBM-4 based translation has more freedom to generate

novel translations but runs a greater risk of producing invalid translations. The
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TTM may err on the side of caution, but this appears to be the better strategy given

the current quality of the models.

In the TTM translation experiments on the FBIS corpus, the entire translation

process ran without pruning on an IBM X335 with dual Xeon 2.4 GHz processors

and 4GB of RAM. Processing time is 10.1 second per sentence, with 26.1 words per

sentence on average.

6.3.1 Phrase exclusion probability

In section 6.2 we have seen that the Phrase Exclusion Probability (PEP) strongly

influences bitext alignment quality. We now evaluate the effect of this parameter on

translation. The role of PEP in translation is to control spontaneous insertions of

target phrases. This allows the model the flexibility of deleting phrases in sentence

to be translated and it is achieved within the source-channel model through the

insertion of target language phrases. We could also allow the generative model

to delete source language phrases, but this would correspond to the insertion of

English phrases in translation independent of any evidence in the Chinese or French

sentence; in other words, they would be hypothesized entirely by the source language

model. We do not consider this scenario.

We now discuss the role of Phrase Exclusion Probability in translation. We first

observe that there is sensitivity in the BLEU score to the number of reference

translations. In the French-English task we have only one reference per sentence to

be translated, while in the Chinese-English task we have four references. In figure 9

we measure BLEU and WER metrics as functions of PEP when one reference is

considered in measuring performance. We see that BLEU decreases as the PEP

increases to allow target (French/Chinese) phrases to be deleted in translation. As

in bitext word alignment, there is a critical value of PEP above which BLEU and

WER quickly degrade. We note that WER does decrease slightly with PEP, unlike

BLEU.

Since BLEU is influenced by both BPrecision (Equation 20) and Brevity Penalty

(equation 21), we plot these components separately in figure 10. We note first that as

PEP (α) increases, the translations grow shorter as measured by the Source-to-Target

Length Ratio (STLRatio) (figure 10d) which is the ratio of the number of words

in the translation to number of words in the French sentence. This behavior is

consistent with the role of PEP; it allows target phrases to delete in translation. The

Brevity Penalty (figure 10c) is governed by the number of words in the translation

hypothesis, and therefore closely tracks the STLRatio. Somewhat surprisingly, BLEU

score (figure 10a) closely tracks the Brevity Penalty and does not improve despite

gains in BPrecision. Analogous to AER in bitext word alignment, increasing PEP

allows the model to produce higher quality translation when BPrecision (figure 10b)

is taken alone. However, the interaction between BPrecision and Brevity Penalty is

such that the shorter sentences, although of higher precision, incur a very high Brevity

Penalty so that the increase in precision does not improve BLEU overall. WER does

not have an explicit length penalty although it does have an implicit length penalty

in that the number of deletions increases as the hypothesized translations grow
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Fig. 9. Translation performance of the TTM as a function of the Phrase Exclusion Probability
(PEP) when one reference translation is considered. We measure BLEU (Panel a,b) and WER
(Panel c,d) on the French-English and the Chinese-English Tasks.

shorter and deletions are penalized. However, the added cost is linear in the number

of deletions, unlike BLEU where it is exponential (equation 21). As PEP is increased

we first observe an improvement in WER that corresponds with the increase in the

BLEU precision. Beyond a certain value of PEP the translations grow shorter to an

extent that WER also degrades.

The behavior of BPrecision is interesting in itself. Intuitively, it should be possible

to increase the PEP so that only the most likely phrase translations are retained and

thus improve the BPrecision. However we note in figure 10b that BPrecision itself

falls off above a critical value of PEP.

To explain this behavior of BPrecision we study the contribution to the BLEU

precision of the four n-gram precision measures (equation 22) in the French-English

task (figure 11). In the TTM the dominant mechanism by which shorter translations

are produced is simply to delete French phrases (this corresponds to insertions

of target phrases in the generative model). As a result English phrases in the

translation arise from French phrases which are likely to be separated by phrases

that are deleted and not translated. It is unlikely that English phrases generated

would follow each other in a fluent translation, i.e. the hypothesis translation

contains phrases that are unlikely to be found next to each other in the reference
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Fig. 10. Translation performance of the TTM as a function of the Phrase Exclusion Probability
(PEP) on the French-English task. We measure BLEU (Panel a), BPrecision (Panel b), Brevity
Penalty (Panel c), and STLRatio (Panel d) as functions of PEP.

translation. Consequently when precision statistics (equation 22) are gathered over

the translation, the hypothesized n-grams spanning these phrase boundaries are

unlikely to be present in the reference translation, thus reducing precision. figure 11

shows this behavior; the precision of higher n-grams (n > 1) falls off as the

translations get shorter. Because of the need to account for n-grams spanning

phrase boundaries, it is not possible to ‘game’ precision by merely producing shorter

translations.

We now discuss translation performance when multiple reference translations are

available (figure 12). The most notable difference in overall score is that BLEUr4n4

peaks at a log PEP of −1.6. This is in contrast to BLEUr1n4 which is largely

insensitive to PEP below its critical value. BPrecision behaves nearly identically

(except for absolute value) as a function of PEP, but the Brevity Penalty under

BLEUr4n4 has a higher critical value.

The explanation is simply that as the number of references grows, it is more likely

that a translation will find a close match in length. This weakening of the Brevity

Penalty makes it easier to take advantage of the increase in BPrecision that comes

with shorter translations. It is interesting to observe this direct relationship between
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Fig. 11. Analysis of BLEU Precision for values of Phrase Exclusion Probability (PEP) close
to its maximum permissible value. We measure the following as functions of PEP : STLRatio
(Panel a), BPrecision (Panel b) and each of the n-gram precisions, n = 1, 2, 3, 4 (Panels c-f).
Results are shown on the French-English task.

TTM component distributions and behavior of the BLEU score. A system tuned

under BLEUr4n4 may not be optimized with respect to BLEUr1n4.

6.3.2 Translation lattice quality

The goal of this experiment is to study the usefulness of translation lattices for

rescoring purposes. We generate N-best lists of translation hypotheses from each

translation lattice, and show the variation of their oracle-best BLEU scores with

the size of the N-best list (figure 13). The oracle-best BLEU score is obtained in the

following way. We obtain the oracle hypothesis for each sentence in the test set by

selecting from its N-best list the translation with the highest sentence-level BLEU

score. We concatenate these oracle hypotheses over all sentences in the test set and

then measure the test-set BLEU score. This is only an underbound on the actual

oracle BLEU score but it is still useful.

We observe that the oracle-best BLEU score sharply increases with the size of

the N-Best List. We can therefore expect to rescore the lattices and N-best lists

generated by TTM with more sophisticated models and achieve improvements in

translation quality.

6.3.3 Translation examples

We now present and analyze examples of translations under the TTM. The examples

are selected from the NIST 2002 Chinese-English evaluation test set.
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Fig. 12. Translation performance of TTM as a function of the Phrase Exclusion Probability
when multiple reference translations are considered for scoring. We obtain BLEU, BPrecision,
and Brevity Penalty as functions of PEP in two situations: when 1 reference is considered
(Panels a,c,e), and when 4 references are considered (Panels b,d,f).

Fig. 13. Variation of oracle-best BLEU scores with the size of the N-best list on the
French-English Task. For each N-best list on the test set, the oracle BLEU hypothesis is
computed under the sentence-level BLEU metric. The oracle hypotheses are concatenated
over the test set, and the test-set BLEU score is measured.
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Fig. 14. An example of a good translation under the TTM. The top panel shows the
word-segmented Chinese sentence, its English gloss, and target phrase segmentation and
phrase transduction under the TTM. The lower panel shows the four reference translations.

We first show an example sentence for which the TTM produces a good translation

with a sentence-level BLEU score of 85%. In figure 14 we present the Chinese

sentence segmented into words with their English glosses. We also show the Target

Phrase Segmentation and Phrase Transduction of this sentence under the TTM. The

lower panel of this figure shows the four reference translations for this sentence.

We first note that there is an error in word segmentation of the Chinese sentence:

the two word sequence with English gloss “internet” should have been left as a single

word. However, as can be seen in Figure 14, this segmentation error does not affect

the translation of this word sequence because the two words are contained within the

same Chinese phrase. Clearly, word segmentation errors made consistently in training

and test data need not be harmful. A more serious error is the translation of the

Chinese word (with English gloss “whole country”) into the English word the. In the

phrase-pair inventory, this Chinese word occurred with 152 distinct English phrases.

In fact, the was one of least likely alternatives as measured by relative frequencies of

phrase translations in bitext alignments (section 4.5). It clearly is an error that crept

in either due to word alignment errors in the bitext or weaknesses in the phrase-pair

extraction heuristics. However, the was preferred by the language model.

Interestingly, the next most likely translation produced by the TTM was:

By 2005, the national internet users will reach 200 million .

which is correct, but would not be scored any higher under the BLEU score given

these reference translations. This example also shows the need for the model to

allow for the insertion of the phrase the number of in bitext alignment. This phrase

was included by human translators in two of the four reference translations without

strict supporting evidence in the Chinese text.

We next present an example sentence (figure 15) on which the TTM produces a

poor translation with a sentence-level BLEU score of 0%. Though this translation is



66 S. Kumar et al.

Fig. 15. An example of a poor translation under the TTM. The top panel shows the
word-segmented Chinese sentence, its English gloss, and target phrase segmentation and
phrase transduction under the TTM. The lower panel shows the four reference translations.

far from perfect and does not match any of the references, the most significant error

is the incorrect translation of the last Chinese word in the sentence into the English

word tender. This error again points to inaccurate translations in the phrase-pair

inventory underlying the TTM.

7 Translation performance with large bitext training sets

We report the performance of the Translation Template Model on the Chinese-

to-English and Arabic-to-English translation tasks in the NIST 2004 MT evalu-

ation (NIST 2004). We will describe the training and test data, model training

procedures, and the experiments performed in the development of our evaluation

systems.

7.1 Monolingual texts and bitexts

The goal of the NIST 2004 MT task (NIST 2004) is the translation of news stories,

editorials, and speeches from Chinese to English (C-E) and Arabic to English (A-E).

The large data track in this task restricts the allowable bitext to that provided by

the LDC but places no restrictions on the monolingual English text used by the

systems.

Bitexts and source language texts Our translation model training data is derived

from various bitext sources. For the Chinese-English task, these sources include the

FBIS, Hong Kong News, Xinhua News, Hong Kong Hansards, Translations from

the Chinese Treebank, Sinorama Magazine, and the United Nations (LDC2003E14,

LDC2003E25, LDC2002E18, LDC2004E09, LDC2003E07, LDC2002E58, and

LDC2004E12, respectively). For the Arabic-English task we obtain the bitext
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training text from the A-E UN corpus and Arabic news corpora released by the

LDC (LDC2004E13, LDC2004E08, LDC2003E05, LDC2003E09, LDC2004E07, and

LDC2004E11, respectively).

Our language model training data consists of English text derived from the

following English text sources: Xinhua and Agency France Presse (AFP) sections

of the English Gigaword corpus (LDC2003T05), the English side of FBIS, the UN

and A-E news texts, and the online archives from September 1998 to February 2002

of The People’s Daily (PD) (People’s Daily 2002).

Test sets For the Chinese-English task, we report performance on the NIST

2001 (LDC2002T01), 2002 (LDC2003T17), 2003, and 2004 evaluation sets (NIST

2004). The test sets consist of 993, 878, 919, and 1788 sentences respectively. For the

Arabic-English task, we report performance on the NIST 2002 (LDC2003T18), 2003,

and 2004 evaluation sets consisting of 1043, 663, and 1353 sentences respectively.

In both tasks, the NIST 2004 is our blind test set while the other corpora form

our development sets; the performance reported here on the 2004 tasks are our

evaluation results. There are four reference translations for each Chinese (Arabic)

sentence in all test sets.

Automatic Text Processing Our Chinese text processing consists of word seg-

mentation (using the LDC word segmenter (LDC 2002)) followed by grouping of

numbers. For Arabic our text processing consisted of a modified Buckwalter analysis

(LDC2002L49) followed by post processing to separate conjunctions, prepostions

and pronouns, and Al-/w- deletion. The English text is processed using a simple

tokenizer based on the text processing utility available in the the NIST MT

evaluation toolkit (NIST 2004).

Bitext processing Some of these sources in the C-E task (FBIS, Xinhua, HKNews

and HKHansards) are provided in document-aligned form by LDC. These collections

are refined further by a chunk alignment model (Deng and Byrne 2004) which

produces aligned segments within a document pair, possibly allowing for alignment

of subsentence segments.

For the other bitext sources (UN, Sinorama and Chinese Treebank), the original

document pairs are not available; we therefore use the sentence alignments provided

by the LDC. From the LDC sentence alignments, we retain sentence pairs for which:

(1) both English and Chinese sentences are shorter than 60 words and (2) the ratio

of the number of words in the English sentence to the number of words in the

Chinese sentence is less than 6. If a sentence pair violates either condition, it is

realigned at the sub-sentence level to obtain shorter chunk-pairs.

In the A-E task, the original bitext from all sources is aligned at the sentence

level by LDC. As in C-E task, we retain sentence pairs that satisfy conditions 1

and 2 above. The remaining sentence-pairs are realigned at the sub-sentence level to

obtain shorter chunk-pairs.

Statistics computed over the bitext chunk pairs in the C-E and A-E tasks are

shown in Table 6.
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Table 6. Chunk pairs extracted from the Chinese-English and Arabic-English

large-data track training bitext for the NIST 2004 MT evaluation

Chinese-English Arabic-English

# of chunk-pairs (M) 7.6 5.1

# of words
English (M) 207.4 132.6
Foreign (M) 175.7 123.0

Vocabulary sizes
English 169,561 302,282
Foreign 233,183 334,796

7.2 Translation model training

We now describe the procedures involved in training the translation model and the

language model.

IBM-4 translation model training and phrase-pair extraction We partition the bitext

to form manageable training sets for GIZA++ (Och and Ney 2000) to generate

IBM-4 word alignments in each translation direction (IBM4-F, IBM4-E). In the

C-E task we create three partitions that contain 53.5M, 95.5M and 95.6M English

words, respectively, while in the A-E task, we form 2 partitions with 68.5M and

67.5M English words. Following IBM-4 model training, the IBM-4 word alignments

from the training set partitions are merged and phrase-pairs are extracted from the

resulting word alignments (using the procedure described in section 3). For reducing

storage requirements of the phrase-pair inventory, we extract only those phrase-pairs

whose Chinese (or Arabic) side is seen in the test set.

English language models We build language models (LMs) from the English texts

using modified Kneser-Ney smoothing as implemented in the SRILM toolkit (Stolcke

2002). For the C-E task, we train a small trigram LM over 20.5M words from PD

and Xinhua; and we train large trigram and four-gram LMs over 373.3M words

from FBIS, PD, Xinhua, and AFP. For the A-E task, we train a small trigram LM

over 266.0M words from Xinhua, AFP, and A-E news, and we train large trigram

and four-gram LMs over 428.0M words from Xinhua, AFP, Arabic news, and UN.

7.3 Performance of TTM Evaluation Systems

We here report the performance of the C-E and A-E TTM systems. Translation

under the TTM is performed as described in Section 5 except that the translation

lattice generated in an initial pass is rescored using various trigram and four-gram

language models as described below.
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Table 7. Performance of the Chinese-to-English and Arabic-to-English TTM systems

with trigram and four-gram language models. TTM systems are trained on the

large-data track training bitexts for the NIST 2004 MT evaluation

BLEUr4n4 (%)

Chinese-English Arabic-English
Language

Model eval01 eval02 eval03 eval04 eval02 eval03 eval04

Small 3g 29.5 27.0 25.7 – 36.7 38.3 –
Large 3g 30.2 28.0 27.2 26.5 38.1 40.1 33.1
Large 4g 31.2 28.8 27.5 27.6 39.4 42.1 36.1

Translation performance is measured using the case insensitive BLEU score on the

development sets, and using the case sensitive BLEU score on the NIST 2004 test set.

For case-sensitive evaluation, we need to restore case information in our translations;

this is done using a capitalizer (built in the JHU Summer Workshop WS’03 (JHU

WS 2003)) that uses a trigram language model trained on case-preserved English

texts from FBIS, PD, AFP, and Xinhua.

In Table 7 we report the performance of the TTM system under the small trigram

LM (Small 3g), large trigram LM (Large 3g), and the large four-gram LM (Large 4g).

For performing translation under either of the two trigram language models, we first

generate a translation lattice using a pruned version of the language model and then

rescore the lattice using the unpruned language model. For performing translation

under the four gram language model, we first generate a translate lattice under a

pruned version of the large trigram LM (Large 3g), and then rescore this lattice

with the four-gram language model. Language model pruning is performed using

an entropy criterion (Stolcke 1998) as implemented in the SRILM toolkit (Stolcke

2002).

In the C-E task we observe that the large trigram LM outperforms the smaller

trigram LM by about 1.0% absolute in BLEU. The four-gram LM yields a further

improvement of about 1.0% BLEU over the large trigram LM. In the A-E task

the large trigram LM yields an improvement of about 2.0% BLEU over the small

trigram LM. The four-gram LM gives an additional improvement of 1.3 − 3.0%

BLEU over the large trigram LM.

7.4 Pruning in translation, translation speed, and memory usage

All steps in the translation process ran on an IBM X335 with dual Xeon 2.4 GHz

processors running RedHat Linux 9.1 with Kernel version 2.4.26 where the process

size is restricted to be less than 2.7GB. The processing time of the Large 3g system

on the NIST 2002 evaluation set is 1.44 minute per sentence, with 26.1 words per

sentence on average.

We now describe how pruning can be applied to the component WFSTs of

the TTM during translation. We first generate a lattice containing multiple phrase
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segmentations of the target language sentence to be translated and obtain the

shortest phrase segmentation in this lattice. If this segmentation contains more

than 45 phrases, we retain only this segmentation; otherwise, we retain the entire

segmentation lattice. To determine whether to allow deletion of target phrases, we

compute the average number of phrases per target word from the segmentation

lattice. We obtain the number of phrases covering each target language word in the

segmentation lattice. We average this quantity over the words in the target sentence

to obtain the average number of phrases per word. If either the average number

of phrases per word is greater than 2.3 or the number of phrases in the shortest

segmentation is greater than 23, we do not allow any deletion of target phrases in

translation. Finally we apply pruning when generating a translation lattice under

the language model. We prune the lattice so that all paths in the resulting lattice

have a total path likelihood that is within 5.0 of the log-likelihood of the best path.

7.5 Summary of evaluation systems

We have described the use of TTM in building Chinese-English and Arabic-English

MT systems from large bitexts. The respectable performance of the TTM on the

NIST 2004 task shows that our approach is competitive relative to contemporary

research MT systems. Our MT system has benefitted considerably from the experi-

ments in sections 6.2 and 6.3. The WFST-TTM architecture supports the generation

and rescoring of translation lattices and N-best lists, and we have found this to

be valuable in performing rescoring under various language models and decoding

criteria.

8 Discussion

The TTM is a source-channel model of the translation process. It defines a joint

distribution over the phrase segmentations, reorderings, and phrase-pair translations

needed to describe how the source language sentence is translated into the target

language. The model relies on an underlying inventory of target language phrases

and their source language translations. formulation. In this work we have employed

IBM-4 word translation models to generate an initial bitext word alignment and

we extracted the phrase-pair inventory from these alignments (Och 2002). The

quality of the underlying word alignments and the richness of the phrase-pair

inventory play a crucial role in the alignment and translation performance of

the TTM (Kumar and Byrne 2004a; Och 2002; Koehn, Och and Marcu 2003).

Although we have not discussed these issues, we note that any word alignment or

methodology of collecting phrase pairs could be used with the TTM and improving

the phrase-pair inventory would undoubtedly improve translation and alignment

performance.

We have presented the first use of phrase-based models for bitext word alignment.

The technical difficulty that had to be overcome was caused by the inability of the

phrase-pair inventory to cover the bitext. We developed source and target phrase

deletion models that make aligning arbitrary sentence pairs possible even with an
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impoverished phrase-pair inventory. The ability to do this is crucial to implement

iterative parameter estimation procedures such as Expectation Maximization (EM)

for this model. EM re-estimation of a model requires assigning non-zero probability

to the training data. If a finite inventory of phrase-pairs is not rich enough to cover

all possible sentence-pairs in a training set, then there will be sentence-pairs with

probability zero under the model. The ability to delete phrases within a consistent

statistical model was missing from our earlier work (Kumar and Byrne 2003), and

addressing that shortcoming was one of the motivations of the TTM.

The deletion of phrases is governed by the Phrase Exclusion Probability (PEP)

and this parameter can be tuned in both word alignment and translation. In each

case it balances precision against either recall or the Brevity Penalty. Intuitively,

one might think that arbitrary high precision is attainable if these other measures

are ignored. But in both translation and alignment there are mechanisms that limit

precision with resulting practical consequences. In word alignment, even if a user is

willing to sacrifice coverage to gain precision, for instance in picking words aligned

with high confidence in order to obtain a high quality translation lexicon, arbitrarily

high performance cannot be obtained. In translation, choosing only highly likely

phrases is not a successful strategy, even if length penalties are ignored.

In the alignment experiments we investigate what gains in AER can be obtained

from considering multiple phrase segmentations of the source language sentence.

We also study alignment under reordering of the best source phrase segmentation.

Both can improve alignments relative to a single source phrase segmentation in

monotone phrase order, but allowing multiple source phrase segmentations was

far more powerful than the reordering a single segmentation. These results are

not conclusive, but for French-English and Chinese-English tasks we studied,

multiple phrase segmentations within the TTM is the more valuable of the two

approaches. Even though we decided to focus on monotone phrase order models

in translation, it is certainly the case that some language pairs do produce long-

distance word and phrase movement. From a practical point of view, it is not

clear that our model suffers much by ignoring word movement outside phrases or

phrase movement itself. Given the current quality of MT, we chose to focus on

improving word movement within phrases before addressing what we consider the

more challenging problem of moving phrases themselves. Even with our current

implementation, Arabic-to-English translation is very near to state-of-the-art for the

tasks we report, despite the widely made observation that canonical Arabic word

order is Verb-Subject-Object and its translation into English Subject-Verb-Object

order requires modeling long distance word and phrase movement (Schafer and

Yarowsky 2003).

The TTM formulation does in fact allow phrase movement; the difficulty arises

from our insistence on a generative model that can be implemented by WFTs.

We have shown previously that how WFSTs can be used for phrase reordering in

translation (Kumar and Byrne 2003). However that approach was a direct model of

translation, i.e. a direct implementation of P (eI1|fJ1 ), and as such does not correctly

incorporate the source language model. The language model plays an important

role in translation, as is especially evident in section 7.3, and one of the advantages
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of the generative, source-channel approach is that the language model appears in

the model naturally (see equation 1).

There are several potential approaches to model phrase movement based on the

present formulation. As mentioned in section 6.2.3, simply increasing the length

of phrases can account for a great deal of phrase movement. Improvements in

constructing the phrase-pair inventory should certainly address this issue. Another

possibility is simply to rescore the lattices and N-Best lists generated by the current

implementation under a model that allows long distance word and phrase movement.

We have shown that the lattices and N-Best lists are quite rich, and while such a

rescoring approach is not optimal, it may be more effective than incorporating a

complex phrase movement model in the initial translation pass.

We have demonstrated that the TTM can be successfully used to build Chinese-

English and Arabic-English MT systems from large training bitexts. The TTM

approach has shown very competitive performance relative to contemporary research

MT systems on the NIST 2004 tasks. Although not reported here, Minimum Bayes

Risk rescoring under the BLEU criterion can be used to further improve translation

performance (Kumar and Byrne 2004b) providing further evidence that N-Best and

lattice rescoring can be effective.

The results presented here were obtained using the FSM tools publicly available

from AT&T research (Mohri et al. 1997). Other than scripts and other programs for

building the phrase-pair inventory from aligned bitext, all operations were carried out

using standard FSM operations and no special purpose algorithms were employed.

All operations ran with command-line tools that can be downloaded.

9 Conclusion

The main motivation for our investigation into this WFST modeling framework for

statistical machine translation lies in the simplicity of the alignment and translation

processes relative to other dynamic programming or A∗ decoders. The approach

requires a careful construction of the underlying random processes in the translation

model and care must be taken that they can be realized as WFSTs. Once this is

done, both word alignment and translation can be performed using standard FSM

operations that have already been implemented and optimized. It is not necessary to

develop specialized search procedures, even for the generation of lattices and N-best

lists of alignment and translation alternatives.

Our derivation of the TTM was presented with the intent of clearly identifying the

conditional independence assumptions that underly the WFST implementation. This

approach leads to modular implementations of the component distributions of the

translation model. These components can be refined and improved by changing

the corresponding transducers without requiring changes to the overall search

procedure.

The Translation Template Model is a promising modeling framework for statistical

machine translation. The model offers a simple and unified framework for bitext

word alignment and translation and this simplicity has allowed us to perform a

detailed investigation of the alignment and translation performance of the model.
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The model has both strengths and weaknesses for translation and addressing these

will form the basis of our future work.
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