INVESTIGATION OF BACK-OFF BASED INTERPOLATION BETWEEN RECURRENT NEURAL NETWORK AND N-GRAM LANGUAGE MODELS

X. Chen, X. Liu, M. J. F. Gales, and P. C. Woodland

University of Cambridge Engineering Department, Cambridge, U.K.
{xc257,xl207, mjfg, pcw}@eng.cam.ac.uk

ABSTRACT

Recurrent neural network language models (RNNLMs) have become an increasingly popular choice for speech and language processing tasks including automatic speech recognition (ASR). As the generalization patterns of RNNLMs and n-gram LMs are inherently different, RNNLMs are usually combined with n-gram LMs via a fixed weighting based linear interpolation in state-of-the-art ASR systems. However, previous work doesn’t fully exploit the difference of modelling power of the RNNLMs and n-gram LMs as n-gram level changes. In order to fully exploit the detailed n-gram level complementary attributes between the two LMs, a back-off based compact representation of n-gram dependent interpolation weights is proposed in this paper. This approach allows weight parameters to be robustly estimated on limited data. Experimental results are reported on the three tasks with varying amounts of training data. Small and consistent improvements in both perplexity and WER were obtained using the proposed interpolation approach over the baseline fixed weighting based linear interpolation.

Index Terms— Speech recognition, perplexity, language model interpolation, recurrent neural network

1. INTRODUCTION

Statistical language models (LMs) are vital components of speech and language processing systems designed for tasks such as speech recognition and machine translation. Back-off n-gram LMs are most widely used form of language models during last several decades due to their simple model structures, efficient parameter estimation and discounting techniques. When large quantities of training data are available, good generalization performance can be obtained using back-off n-gram LMs. A key part of the statistical language modelling problem for many tasks including speech recognition is to appropriately model the long-distance context dependencies. This usually presents a severe data sparsity problem for n-gram LMs. In order to address this issue, language modelling techniques that can represent longer span preceding history contexts in a continuous and lower dimensional vector space, for example, recurrent neural network language models (RNNLMs) can be used. RNNLMs have been reported to yield consistent performance improvements over back-off n-gram LMs across a range of tasks [1, 2, 3, 4, 5, 6, 7]. The intrinsic modelling characteristics and generalisation patterns of n-gram LMs and RNNLMs are different and complementary to each other. In order to draw strengths from both, n-gram LMs and RNNLMs are usually combined using a context independent, fixed weighting based linear interpolation in state-of-the-art ASR systems [1, 2, 3, 6, 7]. The same approach was previously used to combine multiple n-gram LMs trained, for example, on a diverse collection of data sources. In order to reduce the mismatch between the interpolated LM and the task of interest, interpolation weights may be tuned by minimizing the perplexity on some held-out data [8, 9, 10, 11, 12]. These interpolation weights indicate the “usefulness” of individual component LMs for a particular task.

In order to fully exploit the locally varying complementary attributes among component LMs during interpolation, a more general history context dependent form of interpolation can be used to combine n-gram LMs [13]. A similar local variation of probabilistic contribution from n-gram LMs and RNNLMs across different contexts during interpolation was also reported in previous research [14]. The perplexity analysis over n-gram LMs and RNNLMs in [14] suggests such variation is heavily correlated with the underlying context resolution of component n-gram LMs. For example, RNNLMs assign higher probabilities when the n-gram LMs’ context resolution is significantly reduced via the back-off recursion to a lower order, and reversely when a longer history context can be modelled by the n-gram LMs without using back-off. Inspired by these findings, a back-off based compact representation of n-gram dependent interpolation weights is investigated in this paper. This approach allows robust weight parameter estimation on limited data. Experiments are conducted on the three tasks with varying amounts of training data. Small and consistent improvements in both perplexity and WER were obtained using the proposed interpolation approach over the baseline fixed weighting based linear interpolation.

This paper is organized as follows. Section 2 gives a brief review of n-gram LMs and RNNLMs. Section 3 presents the conventional linear interpolation between n-gram LMs and RNNLMs. Section 4 proposes a novel back-off based interpolation between n-gram LMs and RNNLMs. Experimental results are reported on three tasks with different amount of training data in Section 5. Conclusions are drawn and possible future work is discussed in Section 6.

2. LANGUAGE MODELS

Statistical language models (LMs) assign a probability to a given sentence $W = \langle w_1, w_2, ..., w_N \rangle$.

$$P(W) = \prod_{i=1}^{N} P(w_i | h_i^{i-1})$$
where \(h_{i-1}^{1} \) denotes the history context for word \(w_i \). The probability distribution given any history context \(h_{i-1}^{1} \) is required to satisfy a positive and sum-to-one constraint
\[
\sum_{w} P(w|h_{i-1}^{1}) = 1. \tag{1}
\]

In addition to extrinsic LM performance evaluation metrics that are based on, for example, word error rates for speech recognition tasks, the generalization performance of language models can also be evaluated using the perplexity measure. This is defined as
\[
PPL = \exp \left(-\frac{1}{N} \sum_{i=1}^{N} \ln P(w_i|h_{i-1}^{1}) \right). \tag{2}
\]

In general, a language model with lower perplexity generalise better when used to predict unseen data.

2.1. n-gram LMs

Back-off n-gram LMs have been the dominant form of statistical language models (LMs) during the last few decades due to their simple model structures, efficient parameter estimation techniques and discounting algorithms to improve robustness. Good generalization performance can be obtained using back-off n-gram LMs when large quantities of training data are available. Under a Markov chain assumption, the probability of the current word being predicted only depends on preceding \(N - 1 \) words. This is given by
\[
P(w_i|h_{i-1}^{1}) = P_N(w_i|h_{i-N+1}^{1}). \tag{3}
\]

The n-gram LM probabilities \(P_N(w_i|h_{i-N+1}^{1}) \) are computed using the following back-off recursion
\[
P_N(w_i|h_{i-N+1}^{1}) = \left\{ \begin{array}{ll}
P_N(w_i|h_{i-N+1}^{1}) & \text{if } C(w_i, h_{i-N+1}^{1}) > C_N \\
\alpha(h_{i-N+1}^{1}) P_N(w_i|h_{i-N+2}^{1}) & \text{otherwise} \end{array} \right. \tag{4}
\]

Where \(C_N \) is the \(N \)th order count cut-off, and \(C(w_i, h_{i-N+1}^{1}) \) is the frequency count of a particular n-gram \(\langle w_i, h_{i-N+1}^{1} \rangle \) in the training corpus. The history dependent normalisation term \(\alpha(h_{i-N+1}^{1}) \) ensures \(P_N(w_i|h_{i-N+1}^{1}) \) be a valid probability distribution.

A key part of the statistical language modelling problem for many applications including speech recognition is to model the long-distance context dependencies in natural languages. Directly modelling long-span history contexts using n-gram LMs can in general lead to a severe data sparsity problem. In order to improve robustness, in state-of-the-art speech recognition systems, n-gram LMs are often constructed using sophisticated parameter smoothing techniques represented by, for example, modified KN smoothing [15].

2.2. Recurrent Neural Network LMs

In contrast to n-gram LMs, recurrent neural network LMs [1] represent the fixed weighted based linear interpolation, the full, non-truncated history \(h_{i-1}^{1} = (w_1, \ldots, w_{i-1}) \) for word \(w_i \) using a 1-of-\(k \) encoding of the previous word \(w_{i-1} \) and a continuous vector \(v_{i-2} \) for the remaining context. For an empty history, this is initialised, for example, to a vector of all ones. An out-of-vocabulary (OOV) input node can also be used to represent any input word not in the chosen recognition vocabulary. The topology of the recurrent neural network used to compute LM probabilities \(P_{\text{RNN}}(w_i|w_{i-1}, v_{i-2}) \) consists of three layers. The full history vector, obtained by concatenating \(w_{i-1} \) and \(v_{i-2} \), is fed into the input layer. The hidden layer compresses the information from these two inputs and computes a new representation \(v_{i-1} \) using a sigmoid activation to achieve non-linearity. This is then passed to the output layer to produce normalized RNNLM probabilities using a softmax activation, as well as recursively fed back into the input layer as the “future” remaining history to compute the LM probability for the following word \(P_{\text{RNN}}(w_{i+1}|w_i, n_{i-1}) \). An example RNNLM architecture with an unclustered, full output layer is shown in Figure 1.

![RNNLM with a full output layer and OOS nodes.](image-url)

RNNLMs can be trained using an extended form of the standard back propagation algorithm, back propagation through time (BPTT) [16], where the error is propagated through recurrent connections back for a specific number of time steps, for example, 4 or 5 [2]. This allows RNNLMs to keep information for several time steps in the hidden layer. To reduce the computational cost, a shortlist [17, 18] based output layer vocabulary limited to the most frequent words can be used. To reduce the bias to in-shortlist words during RNNLM training and improve robustness, an additional node is added at the output layer to model the probability mass of out-of-shortlist (OOS) words [19, 20, 21].

RNNLM training is computationally expensive. This practical issue limits the quantity of data and the number of possible application areas for RNNLMs. In order to solve this problem, recently there has increasing research interest in deriving efficient parallel training algorithms for RNNLMs [22, 23, 24, 25]. In particular, RNNLMs with a full output layer were efficiently trained on a graphics processor unit (GPU) using a spliced sentence bunch based parallel training algorithm on large amounts of data in [25]. A modified version of the RNNLM toolkit [26] supporting the above GPU based parallel RNNLM training method and the full output RNNLM architecture shown in Figure 1 is used in this paper. RNNLM training is more time-consuming compared to n-gram LMs. In order to improve efficiency, for state-of-art ASR tasks, n-gram LMs are often trained on a significantly larger quantities of data, while RNNLMs are trained on smaller amounts of in-domain data. In this work, n-gram LMs and RNNLMs are trained on the same data to allow a fair comparison.
As RNNLMs use a vector representation of full histories, they are mostly used for N-best list rescoring. For more efficient lattice rescoring using RNNLMs, appropriate approximation schemes, for example, based on clustering among complete histories proposed in [21] can be used.

3. LANGUAGE MODEL INTERPOLATION

Methods to combine multiple language models had been studied and compared in [27, 13, 28]. Most of these techniques are investigated on n-gram LMs and their derivations, such as topic based n-gram LM and cached based n-gram LM. RNNLMs are inherently different from n-gram LMs in terms of their generalisation patterns. For this reason, RNNLMs are usually linearly interpolated with n-gram LMs to obtain both a good context coverage and strong generalisation [1, 3, 17, 18, 19, 20]. The interpolated LM probability is given by

\[P(w_i|h_{i-1}^{-1}) = \lambda P_{NG}(w_i|h_{i-1}^{-1}) + (1 - \lambda) P_{RN}(w_i|h_{i-1}^{-1}) \] (5)

\(\lambda \) is the global weight of the n-gram LM distribution \(P_{NG}(\cdot) \), which can be optimized using the EM algorithm on a held-out set.

4. BACK-OFF BASED LM INTERPOLATION

4.1. Generalized LM Interpolation Using Weight Clustering

As discussed in sections 1 and 3, in order to fully exploit the complementary attributes between n-gram LMs and RNNLMs that vary among individual n-gram contexts, a more general form of linear probability interpolation between the two based on n-gram dependent weights can be considered. However, this approach requires a large number of interpolation weight parameters to be robustly estimated and therefore leads to a severe data sparsity problem when given limited data. A general solution to handle this problem is to share weights within groups of contexts where the contribution from given limited data. A general solution to handle this problem to share weights can be considered. However, this approach requires a large number of interpolation weight parameters to be robustly estimated on a small amount of held-out data. The associated weight classing scheme is expected to reflect the variation of the probabilistic contribution from these two component LMs. In previous research it was found that such variation is heavily correlated with the n-gram LM’s underlying context resolution. The above example analysis suggests back-off order can provide a highly compact representation of n-gram LMs and RNNLMs that vary in perplexity against the RNNLM over different back-off orders on the PTB test data shown in table 1. The 5-gram LM outperformed the RNNLM in terms of the overall perplexity. As expected, significant perplexity reduction was further obtained using standard optimized linear interpolation (3rd line in table 1). A large variation in the 5-gram LM’s contribution characterized by the rank ordering in perplexity against the RNNLM over different back-off orders is also clearly shown in table 1. This is due to the fact that n-gram LMs and RNNLMs employ inherently different mechanism to acquire generalization. n-gram LMs are more powerful in predicting the probabilities of frequently occurring n-grams using higher order context modelling, while RNNLMs’ strength lie in their ability to predict rare events. However, this approach requires a large number of interpolation weight parameters to be robustly estimated on a small amount of held-out data. The associated weight classing scheme is expected to reflect the variation of the probabilistic contribution from these two component LMs. In previous research it was found that such variation is heavily correlated with the n-gram LM’s underlying context resolution. This is represented by the highest available n-gram order obtained through the back-off recursion in n-gram LM in equation (4).

Such correlation is analyzed again in this paper on the Penn TreeBank (PTB) corpus. A detailed breakdown of the perplexity performance of the baseline 5-gram LM, RNNLM and their linear interpolation over different n-gram context groups of varying back-off orders on the PTB test data is shown in table 1. The 5-gram LM outperformed the RNNLM in terms of the overall perplexity. As expected, significant perplexity reduction was further obtained using standard optimized linear interpolation (3rd line in table 1). A large variation in the 5-gram LM’s contribution characterized by the rank ordering in perplexity against the RNNLM over different back-off orders is also clearly shown in table 1. This is due to the fact that n-gram LMs and RNNLMs employ inherently different mechanism to acquire generalization. n-gram LMs are more powerful in predicting the probabilities of frequently occurring n-grams using higher order context modelling, while RNNLMs’ strength lie in their ability to predict rare events.

The above example analysis suggests back-off order can provide a highly compact representation of n-gram level varying probabilistic contribution from the back-off n-gram LMs and RNNLMs. As the interpolation weights are clustered into a small number of classes associated with the back-off orders, the weight parameters can be robustly estimated on a small amount of held-out data. The associated weight classing scheme is expected to reflect the variation of the probabilistic contribution from these two component LMs. In previous research it was found that such variation is heavily correlated with the n-gram LM’s underlying context resolution. This is represented by the highest available n-gram order obtained through the back-off recursion in n-gram LM in equation (4).

4.2. Interpolation using back-off for weight clustering (n-gram LM + RNNLM)

A central part of the n-gram class dependent interpolation approach given in equation (6) is to derive an appropriate form of n-gram context classing \(\Phi(\cdot) \). For the particular form of interpolation between back-off n-gram LMs and RNNLMs considered in this paper, a suitable weight classing scheme is expected to reflect the variation of the probabilistic contribution from these two component LMs. In previous research it was found that such variation is heavily correlated with the n-gram LM’s underlying context resolution. This is represented by the highest available n-gram order obtained through the back-off recursion in n-gram LM in equation (4).

Such correlation is analyzed again in this paper on the Penn TreeBank (PTB) corpus. A detailed breakdown of the perplexity performance of the baseline 5-gram LM, RNNLM and their linear interpolation over different n-gram context groups of varying back-off orders on the PTB test data is shown in table 1. The 5-gram LM outperformed the RNNLM in terms of the overall perplexity. As expected, significant perplexity reduction was further obtained using standard optimized linear interpolation (3rd line in table 1). A large variation in the 5-gram LM’s contribution characterized by the rank ordering in perplexity against the RNNLM over different back-off orders is also clearly shown in table 1. This is due to the fact that n-gram LMs and RNNLMs employ inherently different mechanism to acquire generalization. n-gram LMs are more powerful in predicting the probabilities of frequently occurring n-grams using higher order context modelling, while RNNLMs’ strength lie in their ability to predict rare events.

The above example analysis suggests back-off order can provide a highly compact representation of n-gram level varying probabilistic contribution from the back-off n-gram LMs and RNNLMs. As the interpolation weights are clustered into a small number of classes associated with the back-off orders, the weight parameters can be robustly estimated on a small amount of held-out data. The associated weight classing scheme is expected to reflect the variation of the probabilistic contribution from these two component LMs. In previous research it was found that such variation is heavily correlated with the n-gram LM’s underlying context resolution. This is represented by the highest available n-gram order obtained through the back-off recursion in n-gram LM in equation (4).
interpolation weight classing is thus computed as

\[\Phi\left(w_i, h_{i-1}^{-1} \right) = \Phi_{NG} \left(w_i, h_{i-N+1}^{-1} \right) \]

\[= \begin{cases} N & \text{if } <w_i, h_{i-N+1}^{-1}> \in \mathcal{G}_{NG} \\ \Phi_{NG} \left(w_i, h_{i-N+2}^{-1} \right) & \text{otherwise} \end{cases} \]

where \(\mathcal{G}_{NG} = \{ \ldots, <w', h'>, \ldots \} \) contains all the unique observed n-gram contexts that the n-gram LM \(P_{NG}(\cdot) \) models. However, the optimization of interpolation weights is not easy due to the normalisation term \(Z(h_{i-1}^{-1}) \) in Equation 7. Stochastic gradient descent is applied for optimization on a held-out set and the condition \(\lambda_{NG}(w_i, h_{i-1}^{-1}) + \lambda_{NG}(w_i, h_{i-1}^{-1}) = 1 \) is retained for each back-off level during optimization. This form of interpolation will be denoted as n-gram LM \(\otimes \) RNNLM.

4.3. Back-off based interpolation with rescaling (n-gram LM \(\otimes \) RNNLM)

The n-gram class dependent interpolation approach given in equation (6) requires a normalisation term \(Z(h_{i-1}^{-1}) \) to be computed for each distinct history context over multiple weight classes. As such term is also dependent on the interpolation weights, a direct optimization of the weight parameters by maximising the interpolated LM probabilities in equation (6) is a non-trivial problem. Computationally expensive numerical optimization methods are required.

In order to improve efficiency, an alternative novel form of n-gram class dependent interpolation between back-off LMs and RNNLMs is considered in this paper. This is given by

\[P_{BOInt}(w_i|h_{i-1}^{-1}) = \lambda_{BOInt}(w_i|h_{i-1}^{-1}) P_{NG}(w_i|h_{i-1}^{-1}) \]

\[+ \left(1 - \lambda_{BOInt}(w_i|h_{i-1}^{-1}) \right) P_{RNN}(w_i|h_{i-1}^{-1}) \]

where the n-gram context class and history dependent normalisation term \(\beta_{\Phi}(w_i, h_{i-1}^{-1}), h_{i-1}^{-1} \) is independent of interpolation weight parameters and computed as below.

\[\beta_{\Phi}(w_i, h_{i-1}^{-1}), h_{i-1}^{-1} = \frac{\sum \Phi(\cdot, w_{i}) \Phi(\cdot, h_{i-1}^{-1}) P_{NG}(w'|h_{i-1}^{-1})}{\sum \Phi(\cdot, w_{i}) \Phi(\cdot, h_{i-1}^{-1}) P_{BOInt}(w'|h_{i-1}^{-1})} \]

Recalling the general form of interpolation in Equation 6, Equation 9 is a specific case of it under the following conditions,

\[\lambda_{NG}(w_i, h_{i-1}^{-1}) = \lambda_{BOInt}(w_i|h_{i-1}^{-1}) \]

\[\lambda_{RNN}(w_i, h_{i-1}^{-1}) = (1 - \lambda_{BOInt}(w_i|h_{i-1}^{-1})) \beta_{\Phi}(w_i, h_{i-1}^{-1}), h_{i-1}^{-1} \]

\[Z(h_{i-1}^{-1}) = 1 \]

As the above normalisation term is no longer dependent on the interpolation weights, weight parameters associated with different classes can be optimized independently of each other using the conventional EM algorithm on held-out data. During evaluation, this normalisation term can be computed for each pairing of the underlying weight class and history context only once and cached for efficiency. In common with the interpolation approach given in equation (6), the form of interpolation in equation (9) also requires a suitable form of interpolation weight class assignment among different n-gram contexts. The back-off based interpolation weight classing given in equation (8) is used.

The resulting back-off based interpolation given in equation (9) retains the probability mass of all n-grams sharing a common history and the same back-off based weight class. This probability mass is then be redistributed using the RNNLM distribution during interpolation. In this process, potential bias to the n-gram LM distribution may be introduced in the final interpolated LM probabilities. In order to address this issue, it is possible to further improve generalisation performance by combining the interpolated LM probabilities obtained using equation (9) with RNNLMS using the conventional fixed weighting based interpolation.

\[P(w_i|h_{i-1}^{-1}) = \lambda_{BOInt}(w_i|h_{i-1}^{-1}) + (1 - \lambda) P_{RNN}(w_i|h_{i-1}^{-1}) \]

The back-off class dependent interpolation weights \(\{\lambda_{BOInt}(w_i|h_{i-1}^{-1})\} \) and the top level linear interpolation weight \(\lambda \) can be optimized iteratively using the EM algorithm on a held-out set. This form of interpolation will be denoted as n-gram LM \(\otimes \) RNNLM + RNNLM.

5. EXPERIMENTS

Experiments are conducted on three tasks with different amounts of training data to show the effect of back-off based interpolation. First, the Penn TreeBank (PTB) Corpus is used for experiment to validate the previous findings reported in [14]. The 860k word PTB training data and a 10k vocabulary were used. A development data set of 70k words was used parameter tuning. A separate 79k word test test was used for performance evaluation. The perplexity (PPL) results of the 5-gram LM and RNNLM are shown in Table 2. The PPL scores the two LMs over different context groups associated with varying back-off n-gram orders are shown in the first two rows. These results were previously presented and discussed in table 1 in Section 4.2. The third line (5G+RNN) shows the PPL score breakdown of the final linear interpolated LM. The linear interpolation weight \(\lambda \) was perplexity optimized on the development set. According to these results, the conventional form of linear interpolation gave good generalisation performance on each back-off order context groups via a simple probability averaging. The overall PPL was reduced from 141.5 to 118.3. In particular, this standard fixed weighting based interpolated LM gave significant improvements in PPL for the group of contexts where the 5-gram LM backed off to 1-gram.

The fourth line (5G\(\otimes \)RNN) gives the results of the first back-off based interpolation method introduced in Section 4.2, the interpolation weights were optimized with stochastic gradient descent. It gave a slight overall PPL improvement. The fifth line (5G\(\otimes \)RNN) presents the results of the back-off based interpolation approach of Section 4.3. As discussed, this form of back-off based interpolation retains the n-gram LM’s probability mass of all n-grams sharing a common history and the same back-off order based weight class, and re-distributes it using the RNNLM distribution during interpolation. It could be seen from Table 2 that the PPL score was improved on each back-off level compared to the baseline 5-gram LM.
The interpolation weight λ_n on each back-off level was efficiently optimized independently via the EM algorithm on the development data. The optimal interpolation weights $\{\lambda_n\}$ for the 5-gram LM were `{0.25, 0.4, 0.5, 0.55, 0.55}` for varying back-off levels from 1 to 5. As expected, a general trend could be found that the n-gram weight increases with the back-off order. The back-off based interpolated LM probabilities could be further linearly interpolated with the RNLM (with a weighting 0.9:0.1) using equation (11). This gave further small improvements in perplexity.

The next experiment was conducted on the BABEL corpus (i.e. IARPA-babel202b-v1.0d) and used Full Language Pack (FLP) of the Swahili language. A 3-gram LM (3glm) with slight pruning and RNLM were both trained on 290K words of text data. The test set includes 52K words. The vocabulary size is 24K. All vocabulary words were used in RNLM input and output word list during training. A total of 200 hidden units were used. RNLMs were trained on GPU as described in [25]. The PPL and WER results are shown in Table 3. A pattern similar to that observed on the PTB task in Table 2 was found. Standard linear interpolation reduced the overall PPL score by 7% relative compared with the 3-gram LM. A detailed analysis on each back-off level showed that linear interpolation improved the PPL score by 25% relative on the words where the 3-gram LM backs off to 1-gram, while no improvements were obtained for the other two back off levels. The back-off based interpolation by simply clustering (3G⊕RNN) provided slight PPL reduction and obtained the same WER as linear interpolation. The back-off based interpolation (3G⊗RNN) reduced the PPL consistently on each back-off level compared with the 3-gram LM. A small overall PPL reduction was also obtained over the conventional fixed weight based linear interpolation. The optimal interpolation weights assigned to the 3-gram LM was `(0.25, 0.6, 0.65)` for the back-off levels from 1-gram to 3-gram.

Table 3. PPL and WER results on Swahili for Babel

<table>
<thead>
<tr>
<th>LM</th>
<th>PPL</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>#words</td>
<td>19687</td>
<td>28355</td>
</tr>
<tr>
<td>3G</td>
<td>2387.3</td>
<td>145.6</td>
</tr>
<tr>
<td>RNN</td>
<td>2618.3</td>
<td>107.9</td>
</tr>
<tr>
<td>3G⊕RNNLM</td>
<td>2602.6</td>
<td>107.6</td>
</tr>
<tr>
<td>3G⊕RNN</td>
<td>2933.9</td>
<td>102.0</td>
</tr>
<tr>
<td>3G⊗RNN+RNN</td>
<td>2850.4</td>
<td>103.0</td>
</tr>
</tbody>
</table>

ASR experiments were then conducted on the same BABEL task. The acoustic models were trained on 46 hours of speech. Tandem and hybrid DNN systems were trained separately. A frame level joint decoding was then applied to combine the acoustic scores of the two systems [29]. The baseline 3-gram LM was used in the first decoding stage for lattice generation. N-best (N=50) rescoring was then applied using the interpolation between the RNLM and 3-gram LM. The word error rate (WER) results are shown in Table 3. The baseline 4-gam gave a WER score of 47.3%. Standard linear interpolation gave an absolute 0.5% WER reduction. The back-off based interpolation gave a comparable WER score of 46.9%. A further linear interpolation using equation (11) between the back-off based interpolated LM and the RNLM (with a weighting 0.9:0.1) gave the lowest WER of 46.7% in the table.

The previous experiments were conducted on a relatively small amount of training data. In the next experiment a much larger training set based on the BBC Multi-Genre Broadcast (MGB) challenge was used. 650M words of text data were used in the baseline 4-gram LM (4glm) and RNLM training. The hybrid DNN acoustic model was trained on 700 hours of data. A 64K vocabulary was used. A total of 500 hidden nodes were used in the RNLM. A 46K input shortlist and 40K output shortlist were used in RNLM training. The results are shown in Table 4. The complementary attributes of 4-gram LM (4glm) and the RNLM on each back-off level were consistent with the previous two tasks. There was only 3.6% of all n-gram requests that back off to 1-gram due to the large amount of training data being used and low pruning threshold. In common with the previous two tasks, RNLM was found to perform better than 4-gram LM when the latter backs off to 1-gram or 2-gram probabilities, while vice versa when it retained a 3-gram or 4-gram modelling resolution. The baseline linear interpolation gave a significant overall reduction in perplexity. On each back-off level, the reduction in perplexity increases when the back-off level decreases. Again the back-off based interpolation with simply clustering (4G⊕RNN) gave slight PPL improvement and the same WER compared to linear interpolation. The back-off based interpolation with rescaling (4G⊗RNN) slightly outperformed the conventional linear interpolation. In terms of WER results, The linear interpolation reduce the WER by 0.7% absolutely. 4G⊕RNN and 4G⊗RNN gave a small further reduction of 0.1% absolute and gave an overall improvement 0.8% absolute over the baseline 4-gram LM.

Table 4. PPL and WER results on MGB task

<table>
<thead>
<tr>
<th>LM</th>
<th>PPL</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td>#words</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4G</td>
<td>110.71</td>
<td>71.32</td>
</tr>
<tr>
<td>RNN</td>
<td>5868.1</td>
<td>564.3</td>
</tr>
<tr>
<td>4G⊕RNN</td>
<td>6782.0</td>
<td>560.3</td>
</tr>
<tr>
<td>4G⊗RNN</td>
<td>6440.7</td>
<td>563.0</td>
</tr>
<tr>
<td>4G⊗RNN+RNN</td>
<td>7145.7</td>
<td>593.5</td>
</tr>
<tr>
<td>4G⊕RNN+RNN</td>
<td>6800.4</td>
<td>584.2</td>
</tr>
</tbody>
</table>

6. CONCLUSIONS AND FUTURE WORK

In order to exploit the complementary features among n-gram LM and RNLMs, a standard form of linear interpolation based on fixed weights is widely used to combine them. Motivated by their inherently different generalization patterns that are correlated with the variation of the underlying n-gram LM context resolution, a novel back-off based compact representation of n-gram dependent interpolation weights is proposed in this paper. The proposed technique

\[1\] A 4-gram LM gave no further improvements of ASR performance given the small amount of training data
allows the interpolation weights shared at each back-off level to be estimated both efficiently and robustly. Experimental results on three tasks of varying amounts of training data show that the proposed back-off based linear interpolation between n-gram LMs and RNNLMs provided a simple but powerful way to combine them. Small but consistent improvements in terms of both perplexity and WER reductions were obtained over the conventional fixed weighting based linear interpolation. Alternative interpolation methods to further improve the combination between RNNLMs and n-gram LMs will be investigated in future research.

7. REFERENCES