
CUED RNNLM Toolkit

Xie(Jeff) Chen
xc257@eng.cam.ac.uk

October 31, 2015

Abstract

This document includes a more detailed description about the usage
of CUED-RNNLM Toolkit introduced in [1].

1 Language Model

Language model is a crucial component in many fields, such as speech recogni-
tion, machine translation, spoken language understanding. The aim of language
model is to estimate the probability of a given sentence W as shown in Eqn 1.

P (W) =
∏

i

P (wi|wi−1..w1) ≈
∏

i

P (wi|hi) (1)

Due to their good generalization and easy implementation, n gram LMs have
been dominating the field of language model for several decades. However, there
are two long existing drawbacks for n gram LMs. One is data sparsity. Smooth-
ing techniques are required for robust parameter estimation[2]. The other prob-
lem lies in the n order Markov assumption (where hi =< wi−1..wi−N+1 >). The
predicted probability is only related to the preceding n− 1 words, while longer
history information is ignored. Recurrent neural network provides a good so-
lution for these two issues. Each word is projected into a small, continues
space and the whole sentence history is able to be modelled using the recurrent
connection. Promising results have been reported in many areas and tasks by
combining RNNLM and n gram LM, which raised research upsurge and led to
the development of a range of potential applications during recent years.

However, the heavy computation and slow training speed obstruct the ap-
plication of RNNLMs in processing large amount of data. The efficient training
of RNNLMs on large amount of data as well as model size is necessary in order
to fully explore the power of RNNLMs. We developed an open-source toolkit
which is more suitable for training large amount of data with large model size,
which is named CUED-RNNLM Toolkit.

The remaining of this document is organized as follows. Section 2 gives a
general overview of recurrent neural network language models (RNNLMs). The
main functions of the CUED-RNNLM toolkit are introduced in Section 3. The
usage of the toolkit is depicted in Section 4. Section 5 gives the experimental
results in AMI corpus.

1

2 Overview of RNNLMs

RNNLMs [3] represent the full, non-truncated history hi =< wi−1, . . ., w1 >
for word wi using a 1-of-k encoding of the previous word wi−1 and a continues
vector vi−2 for the remaining context. For an empty history, this is initialised.
An out-of-vocabulary (OOV) input node can also be used to represent any input
word not in the chosen recognition vocabulary. The topology of the recurrent
neural network used to compute LM probabilities PRNN(wi|wi−1, vi−2) consists
of three layers. The full history vector, obtained by concatenating wi−1 and
vi−2, is fed into the input layer. The hidden layer compresses the information
from these two inputs and computes a new representation vi−1 using a sigmoid
activation to achieve non-linearity. This is then passed to the output layer to
produce normalized RNNLM probabilities using a softmax activation, as well
as recursively fed back into the input layer as the “future” remaining history to
compute the LM probability for the following word PRNN(wi+1|wi, vi−1).

For the sake of simplicity, RNNLMs discussed in this section contains single
hidden layer. RNNLMs with multiple hidden layers could be easily extended
and supported in the toolkit.

2.1 RNNLM with full output layer

An example RNNLM architecture with an unclustered, full output layer is shown
in Figure 1. RNNLMs can be trained using an extended form of the standard
back propagation algorithm, back propagation through time (BPTT) [4], where
the error is propagated through the recurrent connections back for a specific
number of time steps, for example, 4 or 5 [5]. This allows RNNLMs to keep
information for several time steps in the hidden layer. To reduce the computa-
tional cost, a shortlist [6, 7] on output layer limited to the most frequent words
can be used. To reduce the bias to in-shortlist words during RNNLM training
and improve robustness, an additional node is added at the output layer to
model the probability mass of out-of-shortlist (OOS) words [8, 9, 10].

Input layer

...

...
...

sigmoid

...

linear

softmax

OOV input node

OOS output node

Hidden layer Output layer

wi−1

vi−2

vi−1

vi−1

PRNN(wi|wi−1, vi−2)

Figure 1: A full output layer RNNLM with OOS nodes.

2

RNNLMs with full output layer are computationally heavy during both
training and evaluation, especially when large output vocabulary is applied.
Assuming that the size of input word layer is S, the hidden layer is H and size
of output layer is V . For each word in the training data, the forward operation
requires H +H ∗H +H ∗ V multiplication totally. And for back propagation,
the computation is comparable to the forward pass. Normally the output layer
size V is significantly larger than hidden layer size H , given a smaller hidden
layer. The computation complexity for each train sample is O(H ∗ V).

2.2 RNNLM with class output layer

An alternative way to improve computation efficiency is using factorizated out-
put layer, e.g. classed based output layer, as illustrated in Figure 2.

Input layer

...

...

...

...

sigmoid

linearOOV input node

Hidden layer Output layer

OOS class output node

softmax

softmax
wi−1

vi−2

vi−1

vi−1

PRNN(ci|vi−1)

PRNN(wi|ci, vi−1)

PRNN(wi|wi−1, vi−2)×

Figure 2: A class based output layer RNNLM with OOS nodes.

In class based RNNLM (CRNNLM), the output layer is factorizated into
two separate layers, one is the word layer as in FRNNLM, and the other is
the class layer. Each target word is assigned to a distinct class. The word
probability in CRNNLM consists of two components, class probability and word
probability given the assigned class. Firstly the class probability p(ci|vi) is
calculated, where ci is the class assignment of word wi. Then all words belonging
to class ci are calculated and normalized, which is the probability of p(wi|ci, vi).
The word probability could be obtained from the multiplication of these two
probabilities. Normally the number of class and number of word within one
class are significantly smaller than the output word vocabulary.

Averagely, there are about
√
V classes and each class contains

√
V words in

the output layer. The computation complexity becomes O(H ∗
√
V) for each

train sample, assumming H is still significantly smaller than
√
V . Hence, by

using this structure, the computation could be reduced significantly. An exten-
sion of this simple class based output could be obtained by using hierarchical
output layer [11] for more efficient computation.

However, there are two potential drawbacks for CRNNLMs. The first is that
the performance is sensitive to the class assignment, the other is that it will be
complicated to apply bunch (i.e. minibatch) mode for training. The words

3

within the same bunch maybe from different classes, which requires different
submatrice in output word layer to be called.

2.3 Spliced Sentence Bunch

One choice for efficient training is bunch (i.e. minibatch) based training, which
was applied widely in deep neural networks (DNNs). However, for recurrent neu-
ral networks, this becomes difficult as the prediction of current target requires
the whole sequence history. Previous work tried to align multiple sentences
for RNNLM training using bunch mode. However, the highly variable sen-
tence length introduces computational inefficiency. To solve this issue, spliced
sentence bunch [12] was proposed to minimize the synchronization overhead
between bunch streams introduced by sentence length variation. The idea of
spliced sentence bunch is illustrated in Figure 3. Multiple sentences are spliced
into one stream. N is the bunch size. During training, an input word vector of
N dimension is formed by taking one word from each stream. The target word
vector is a group of following words in each stream. In this case, RNNLMs could
be trained using bunch mode. The implementation details could be found in
[12].

.

.
.
.

.

.
.
.

Stream 0

Stream 1

Stream N-1

Sent 0

Sent 1

Sent N-1

<s> ... </s>

Sent N

Sent 2N-1

<s> ... </s>

<s> ... </s>

Sent N+1

....

....

....

<s> ... </s>

Sent M-N-2

Sent M-N-1

<s> ... </s>

Sent M-1

NULLs

NULLs<s> ... </s>

<s> ... </s>

<s> ... </s>

<s> ... </s>

time

bunch

Input
 words

Target
 words

Figure 3: RNNLM training with spliced sentence bunch

2.4 Model Structure in CUED-RNNLM

In CUED RNNLM, we aim to utilize the parallel power of GPU for efficient
computation. Hence, we mainly use full output RNNLM for training and eval-
uation1. Sentence bunch mode was used for efficient training. To sum up, there
are mainly three distinct features for the RNNLM trained in the CUED-RNNLM
toolkit.

• full output layer

The use of class layer in the output layer could be very efficient when
RNNLM is trained sample by sample on CPU. However, it is not suitable
for bunch (i.e. minibatch) based training. Samples within the same bunch
are probably from different class, which requires different submatrix in

1class based RNNLMs are also supported

4

output word layer. Hence, we choose to use full output layer RNNLM and
utilize of the computational power of GPU for efficient training.

• specified input, output list, with OOS node

The vocabulary used for RNNLM training is important as it defines the
coverage of words to be estimated. In many situation, the RNNLM vo-
cabulary is task dependent. Taking speech recognition for example, the
vocabulary suitable for RNNLM training maybe not consistent as the vo-
cabulary used for decoding. In our default configuration, we used the
intersection between RNNLM train vocabulary and decode vocabulary as
input layer, and use the most frequent words in the input layer as output
layer. An OOV node is added in the input layer and OOS node added in
output layer for out of shortlist words, which is shown in Figure 1.

• GPU supported

In CUED-RNNLM toolkit, we only provide GPU based training, as the
CPU based training is expected to be very slow due to the use of full
output layer and large output list.

3 CUED-RNNLM Toolkit

3.1 Train

The most common objective function used for RNNLM training is cross entropy
(CE). However, in test time, the explicit normalization in output layer for full
output layer RNNLM is quite slow on CPU. To improve the evaluation effi-
ciency, two improved training criteria are also implemented. They are variance
regularization (VR) and noise contrastive estimation (NCE) respectively.

• Cross Entropy (CE)
The objective function of CE is shown in Eqn. 2.

JCE(θ) = − 1

Nw

Nw
∑

i=1

lnPRNN(wi|hi) (2)

where Nw is the total number of training words. The CE based RNNLM
could be trained on GPU efficiently using bunch (i.e. minibatch) mode,
and full output RNNLM without factorization in the output layer is gen-
erated. Cross entropy is also the default training criterion for training.
However, the softmax layer in output layer requires the computation of
normalization term, as shown in Eqn (3),

PRNN(wi|hi) =
ev

T
i−1

ai

∑

j e
vT
i−1

aj

=
ev

T
i−1

ai

Zi

(3)

where ai is the weight vector associated with word wi. The computation
of normalization term Zi is expensive during both training and test time.

• Variance Regularization
Variance regularization (VR) adds the variance of normalization term into

5

the objective function, which could be written as below,

JV R = JCE +
γ

2

1

Nw

Nw
∑

i=1

((ln(Zi)− (LnZ))2) (4)

where Zi is the normalization term for ith training sample before softmax
function in output layer. LnZ is the mean of log normalization term over
training data, which is estimated dynamically on each minibatch and used
as constant. γ is the penalty term on variance to tune the effect of variance
regularization. More details could be find at [13].

The normalization term is constraint explicitly during training and could
be viewed as a constant C. In test time, the RNNLM probability could
be approximated using the unnomalized probability, as shown in Eqn 5.

PRNN(wi|hi) ≈
ev

T
i−1

ai

C
(5)

• Noise Contrastive Estimation (NCE)
In NCE training, each word in the training corpus is assumed to be gen-
erated by two distributions independently, one is the data distribution,
which is RNNLM, and the other is noise distribution, where unigram is
normally chosen as noise distribution. The objective function of NCE is to
discriminate these two distributions given the training data and a group
of randomly generated noise samples. The objective function could be
written as below,

JNCE(θ) = − 1

Nw

Nw
∑

i=1

(

lnP (CRNN

wi
= 1|wi, hi)

+

k
∑

j=1

lnP (Cn
w̌i,j

= 1|w̌i,j , hi)

 (6)

where wi is the ith target word, w̌i,j is the jth noise word generated for
ith word, and k is the number of noise sample. P (CRNN

wi
= 1|wi, hi) is the

posterior probability of word wi is generated by RNNLM, and P (Cn
w̌i,j

=
1|w̌i,j , hi) is the posterior probability of word w̌i,j is generated by noise
distribution. The details could be find at [14]. In training stage, only
weights associated with the sampled noise words and target words need
to be calculated and updated in each bunch. Hence, the computation
in output layer could be reduced dramatically. Besides, the variance of
normalization term is constraint implicitly during training. In test time,
the unnomalized probability shown in Eqn 5 could be applied as variance
regularisation for fast evaluation.

3.2 Evalution

In order to evaluate RNNLMs trained by CUED-RNNLM, the calculation of
perplexity (PPL) and N-best rescoring are provided. Lattice rescoring is also

6

supported by using an extended version of HTK tool HLRescore 2. This part
of code is implemented and run on CPU.

• Perplexity (PPL)

The PPL could be evaluated alone, or linearly interpolated with other LM.
If it is used for interpolation with other LM, the stream file of the other
LM is required. In current version, the perplexity could only be calculated
using CPU, and it will be slow due to the normalization on output layer
(GPU based PPL calculation will be added later).

• N-best rescoring

The N-best rescoring is quite similar to the use of perplexity calculation.
One difference lies here is that the unnomalized probability could be ap-
plied for RNNLMs trained by VR or NCE for fast evaluation. When
unnomalized probability is applied, the option “-lognorm <float>” need
to be specified in the command line. The log of normalization term will
be substituted by the constant value of lognorm.

• Lattice rescoring

The RNNLM could be used for lattice rescoring as well. HTK lattice is
supported by using an extended version of HLRescore in HTK Toolkit.
Besides, tools to convert Kaldi lattice to HTK lattice are also provided.
Hence, both Kaldi and HTK format lattice are supported.

3.3 Sample

Another application of RNNLM is to generate a large quantities of words. Then
a n gram LM is trained on these sampled words, interpolated with the baseline n
gram LM[15]. This interpolated n gram LM could be used directly for decoding
or lattice rescoring. Previous research has shown that it can retain part of the
improvements from the original RNNLM over the baseline n-gram LM.

3.4 Other options

• additional input feature

The additional input feature is supported to incorporate other informative
feature in the toolkit. E.g. the topic representation vector[16]. The feature
is appended in input layer and each sentence are assumed to use the same
appended feature.

• class based output layer

The class based output layer is also supported. In this way, an additional
class layer is added in the output layer as shown in Figure 2 and trained
on GPU.

• multiple hidden layers

RNNLMs with more than one hidden layer are supported. Currently, only
the first hidden layer is allowed to be recurrent connections.

2the source code of this extended HLRescore could be downloaded in CUED-RNNLM

website

7

• data shuffle

In many applications, the training data is from different sources. The
order of training data for RNNLM could impact the performance. In
order to obtain good performance on the in-domain test data, a general
practice is to present the out of domain data to the network first during
RNNLM training, before the more important in-domain training data is
processed. Taking this into consideration, the training data is not shuffled
during training. It is therefore recommended to shuffle sentences in each
source of data as a separate preprocessing step, while keeping the order of
data sources.

• prerequisite

The toolkit doesn’t require the use of other third-party library except
standard CUDA library for GPU computation. Various CUDA versions
from 5.0 to 7.5 were supported in our experiments. The debug infomation
and output are similar as RNNLM toolkit[17]

8

4 Usage

4.1 Description

This program rnnlm could be used for training, evaluation (perplexity or word
error rate) or sampling words.

4.2 Use

rnnlm is invoked by typing the command line
rnnlm {-train | -ppl | -nbest | -sample} [options]

-train RNNLM training (GPU supported only)

-ppl RNNLM evaluation for calculation of perplexity (CPU supported only)

-nbest RNNLM evaluation for N best rescoring (CPU supported only)

-sample Sample a specified number of words from a well-trained RNNLM (GPU supported only)

9

4.3 Train

• Description
RNNLMs are trained on GPU for CUED-RNNLM toolkit. Three training crite-
ria could be chosen, they are cross entropy (CE), variance regularisation (VR)
and noise contrastive estimation (NCE) repsectively. The input and output list
used to construct the input and output layer need to specified. Various options
are supported for the training of RNNLMs, which could be found from the fol-
lowing command options.
• Use
The RNNLM training is invoked by typing the command line

rnnlm -train [options]
The detailed operation for RNNLM training is controlled by the following com-
mand line options.

-trainfile string Specify the train text file
-validfile string Specify the valid text file
-inputwlist string Specify the input word list
-outputwlist string Specify the output word list
-feafile string Specify the feature matrix file if additional feature is appended

in the input layer
-device int Specify the GPU id for RNNLM training (default: 0)
-minibatch int Specify the minibatch (i.e. bunch) size for training (default: 32)
-layers int : int... : int Specify the model structure and size of RNNLM. The first integer

is the size of input word layer, the last integer is the size of output
word layer. The middle integers set the number of hidden nodes
in each hidden layer

-bptt int Specify the step of back propogation through time (default: 5)
-bptt-delay int Specify the delayed step of update for BPTT (default: 8)
-traincrit string Specify the train criterion [ce (default) | nce | vr]
-learnrate float Specify the initial learning rate (default: 0.8)
-vrpenalty float Specify the penalty of variance regularization γ (default: 0.0)
-ncesample int Specify the number of noise sample in NCE training (default: 10)
-nclass int Specify the number of class in output layer. If nclass is larger

than 0, class based RNNLM will be trained (default: 0)
-lognormconst float Specify the log norm const in NCE training, or specify the log of

normalization term in test time (default: 0.0)
-cachesize int Specify the cache size. When cachesize equals to 0, all train

samples will be loadod into memory without cache (default: 0)
-randseed int Specify the rand seed for random value generation (default: 1)
-readmodel string Specify the existed RNNLM model to continue training
-writemodel string Specify the RNNLM model to be written
-independent int Specify sentence independent or dependent mode. Sentence

independent model to be trained by default (default: 1)
-binformat Specify the model is stored with binary format
-nthread int Specify the number of thread for computation (default: 1)
-min improvement float Specify the minimum improvement to stop RNNLM training

(default: 1.003)
-debug int Specify the debug level (default: 1)

10

• Example
The following example command will train RNNLM with cross entropy. There
is a single hidden layer with 200 hidden nodes. The input and output layer sizes
are 31858 and 20002 respectively. Minibatch size is 64, initial learning rate is
1.0 for each minibatch.

rnnlm -train
-trainfile data/train.dat
-validfile data/dev.dat
-device 0
-minibatch 64
-layers 31858:200:20002
-bptt 5
-traincrit ce
-inputwlist ./wlists/input.wlist
-outputwlist ./wlists/output.wlist
-writemodel h200.mb64/rnnlm.txt
-debug 2
-independent 1
-learnrate 1.0

11

4.4 Evalution

• Description
The evaluation of RNNLMs are run on CPUs. RNNLMs could be evaluated
in terms of perplexity or word error rate. Besides, unnomalized probability as
shown in Eqn 5 could be applied for calculating WER for fast evaluation.
• Use
The RNNLM evaluation is invoked by typing the command line

rnnlm {-ppl | -best} [options]

-readmodel string Specify the RNNLM model to be read
-binformat Specify the model is read with binary format
-testfile string Specify the test file
-feafile string Specify the feature file
-inputwlist string Specify the input word list
-outputwlist string Specify the output word list
-lambda float Specify the interpolation weight for RNNLM (default: 0.5)
-fullvocsize int Specify the full vocabulary size, all OOS words will share the probability
-nglmstfile string Specify the ngram lm stream file for interpolation
-nthread int Specify the number of thread for computation (default: 1)
-debug int Specify the debug level (default: 1)

• Example

rnnlm -ppl
-readmodel h200.mb64/rnnlm.txt
-testfile data/test.dat
-inputwlist ./wlists/input.wlist
-outputwlist ./wlists/output.wlist
-nglmstfile ng.st
-lambda 0.5
-debug 2

rnnlm -nbest
-readmodel h200.mb64/rnnlm.txt.nbest
-testfile data/test.dat
-inputwlist ./wlists/input.wlist
-outputwlist ./wlists/output.wlist
-nglmstfile ng.st
-lambda 0.5
-debug 2

12

4.5 Sample

• Description
RNNLM could be used to randomly sample sentences from a well-trained RNNLM.
If this option is chosen, a specified amount of words will be sampled. This op-
tion is run on GPU for efficient computation.
• Use
The RNNLM sample is invoked by typing the command line

rnnlm -sample [options]

-readmodel string Specify the RNNLM model to be read
-sampletextfile string Specify text file for sampling words from RNNLM
-unigramfile string Specify unigram lm file
-nsample int Specify number of sample word from RNNLM (default: 1000)
-debug int Specify the debug level (default: 1)

• Example

rnnlm -sample
-readmodel h200.mb64/rnnlm.txt
-inputwlist ./wlists/input.wlist.index
-outputwlist ./wlists/output.wlist.index
-unigramfile ./uglm.txt
-sampletextfile text/10k.txt
-nsample 10000
-minibatch 50
-fullvocsize 49413
-device 0
-debug 2

13

4.6 File Format

• trainfile, validfile, testfile

each line contains one sentence. The sentence boundaries (< s > and <
/s >) are optional. An example could be found below.

OKAY
DO YOU WANT TO INTRODUCE YOURSELF AGAIN
SO WHO WOULD LIKE TO GO FIRST
UM WELL THIS IS THE KICK OFF MEETING FOR OUR OUR PROJECT

• inputwlist, outputwlist

each line contains a pair of wordid(< int >) and word(< string >). For the
training of CRNNLM, if it is trained from existed model, each line in output
word list includes three elements, they are <wordid word classid > respectively.
In both input and output layers, the first node is sentence boundary. (< s > for
input layer, < /s > for output layer) and the last node is out-of-short list node
(< OOS >). The two nodes are optional for the inputwlist and outputwlist files.

0 I
1 YOU
2 AND
3 THE
4 TO
...
32633 ROWE
32634 MERCED

• feafile

feafile is used for RNNLM training with additional input feature. The first
line includes the number and dimension of feature. From the second line, each
line contains a feature vector of float value, of specified dimension. When feafile
is applied, in the trainfile and validfile, each line is started by an integer, which
indicates the feature index. Each line will share the same feature.

4 3
0.1 0.8 0.1
0.5 0.3 0.2
0.3 0.3 0.4
0.1 0.2 0.7

• unigramfile

an ARPA formatted unigram file will be used to generate OOS words when
RNNLMs randomly sample words.

14

4.7 Recipe

The example of training, evaluation, sampling could be found from the recipe
file (in example.AMI/Readme).

5 Experiments

Experiments are conducted on the AMI meeting corpus [18]. 78 hours of speech
was used in acoustic model training. 8 meetings were kept from the training
set and used as the development and test sets. A Kaldi acoustic model training
recipe featuring sequence training [19] was applied for DNN training. FMLLR
transformed MFCC feature was used as input and 4000 senones clustered as
target. DNN was trained with 6 hidden layers, each layers with 2048 hidden
nodes. The first part of the Fisher corpus of 13M words was also used to further
improve language modelling performance. A 49k word decoding vocabulary was
used. A 33k RNNLM input vocabulary was constructed from the intersection
between the decoding vocabulary and all words present in the LM training data.
The 22k most frequent words were then selected as output vocabular. BPTT
was applied in RNNLM training with a step of 5. All RNNLMs in this paper
use one hidden layer.

The first experiment is based on 1M AMI transcription for language model
construction. One hidden layer including 200 hidden nodes is used for RNNLMs.
Class based RNNLM (CRNNLM) was trained with RNNLM toolkit3[17] with
200 classes. FRNNLMs were trained by cross entropy(CE), variance regular-
ization(VR) and noise contrastive estimation (NCE) respectively. In ASR ex-
periment, RNNLMs are used for N best and lattice rescoring. The experiment
results are shown in Table 2. It could be seen that RNNLMs obtain signifi-
cant gains over baseline 3 gram LM in terms of PPL and WER. FRNNLMs are
slightly better than CRNNLMs with CE. Lattice rescoring and 50 best rescoring
give comparable results. Unnomalized probability as shown in Eqn 5 is applied
for VR and NCE models. According to the results, VR don’t affect perfor-
mance, while much faster evaluation speedup is achieved by using unnomalized
probability. NCE has a slight performance degradation, but largely improves
both train and test speed.

The next experiment is to evaluate the performance of RNNLMs using ad-
ditional Fisher data. A pruned 3-gram LM was used in the first-pass decoding
and followed by lattice rescoring using an un-pruned 4-gram LM. For RNNLM
training, AMI corpus (1M) was processed after the Fisher data (13M) during
training. RNNLMs with 512 hidden nodes were trained using the cross entropy
criterion. Table 2 shows the performance of RNNLMs trained by RNNLM

and CUED-RNNLM. RNNLMs give significant perplexity and word error
rate (WER) improvements over the baseline 4-gram LM. The full output layer
RNNLM trained by CUED-RNNLM toolkit slightly outperformed the class
based RNNLM. Rescoring lattices and 500-best lists gave comparable perfor-
mance. Additional WER reduction of 0.2% absolute was obtained by confusion
network (CN) decoding performed on the RNNLM rescored lattices, while CN
decoding using the rescored 50-best lists gave no improvement.

3the latest version v0.4 used in this paper

15

Table 1: Performance of CRNNLMs and FRNNLMs trained using RNNLM

and CUED-RNNLM toolkits on 1M (AMI) data
LM Train Re PPL WER
Type Crit score dev eval dev eval

3g - - 93.6 82.8 25.2 25.4

+CRNN CE
lattice

83.3 75.2
24.0 24.1

50 best 23.9 24.1

+FRNN

CE
lattice

81.0 71.7
24.0 23.9

50 best 23.9 24.0

VR
lattice

80.4 71.6
23.9 24.0

50 best 23.9 23.9

NCE
lattice

81.1 72.8
24.1 24.1

50 best 24.0 24.1

Table 2: Performance of CRNNLMs and FRNNLMs trained using RNNLM

and CUED-RNNLM toolkits on 14M (AMI+Fisher) data
LM Re PPL WER
Type score dev eval dev eval

3g - 84.5 79.6 24.2 24.7
4g lattice 80.3 76.3 23.7 24.1

+CRNN
lattice

70.5 67.5
22.4 22.5

50 best 22.4 22.6

+FRNN
lattice

69.8 67.0
22.0 22.3

50 best 22.2 22.5

16

The next experiment investigates the performance of RNNLMs trained us-
ing various criteria. 50-best rescoring was used. The Fisher and AMI corpora
were shuffled separately before being concatenated into single training data file.
Shuffling gave a small reduction of WER 4. The performance of variance reg-
ularisation (VR) and NCE trained RNNLMs are shown in Table 3. RNNLMs
trained using cross entropy (CE), variance regularisation and NCE respectively
were found to give comparable performance. In order to obtain stable conver-
gence, NCE based training required two more epochs than the CE baseline .

Table 3: Performance of RNNLMs trained using various criteria
Train PPL WER
Crit dev eval dev eval

CE 67.5 63.9 22.1 22.4
VR 68.0 64.4 22.1 22.4
NCE 68.5 65.1 22.1 22.4

Table 4 presents the training and evaluation speed of RNNLMs. Dual Intel
Xeon E5-2680 2.5GHz processors with 24 physical cores were used for CPU-
based CRNNLM training and evaluation. The Nvidia GeForce GTX TITAN
GPU was used for training FRNNLMs. As expected, FRNNLM training on
GPU is much faster than CRNNLM training on CPU. NCE training provided
further speedup. FRNNLMs trained the VR and NCE criteria were also found
to be 2.55 times faster than CRNNLMs.

Table 4: Training and testing speed of RNNLMs
RNN Train Train(GPU) Test (CPU)
Type Crit Speed(kw/s) Speed(kw/s)

CRNN CE 0.45 6.0

FRNN
CE 11.5 0.32
VR 11.5 15.3
NCE 20.5 15.3

The training speed heavily depends on the hidden layer size. Table 5 com-
pares the training speed using a varying number of hidden nodes with RNNLM

andCUED-RNNLM. It can be seen that CRNNLMs are efficient when a small
sized hidden layer is used. However, the training speed decreases dramatically
as the hidden layer becomes larger. When the hidden layer size is increased
from 128 to 2048 nodes, the number of words processed per second is decreased
by a factor of 340 to 12 words for CRNNLM. In contrast, the training speed of
FRNNLMs were found less sensitive to such increase in hidden layer size. This
shows the CUED-RNNLM toolkit’s superior scalability when used to train
larger RNNLMs.

6 Acknowledgment

Xie Chen is supported by Toshiba Research Europe Ltd, Cambridge Research
Lab and Cambridge Overseas Trust. The author also would like to thank the

4No improvements obtained on CRNNLMs using data shuffling.

17

Table 5: Train Speed (kw/s) against number of hidden nodes

Toolkit
Hidden node

128 256 512 1024 2048

RNNLM 4.1 1.7 0.45 0.095 0.012
CUED-RNNLM 19.8 14.2 11.5 6.6 3.7

work from Xunying Liu on lattice rescoring and Yanmin Qian on building acous-
tic model and Mark Gales and Phil Woodland for the suggestions about the
document.

References

[1] Xie Chen, Xunying Liu, Yanmin Qian, Mark Gales, and Phil Woodland,
“CUED-RNNLM – an open-source toolkit for efficient training and evalu-
ation of recurrent neural network language models,” in Submitted to Proc.

ICASSP. IEEE, 2016.

[2] Reinhard Kneser and Hermann Ney, “Improved backing-off for n-gram
language modeling,” in Proc. ICASSP. IEEE, 1995.

[3] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev
Khudanpur, “Recurrent neural network based language model.,” in Proc.

ISCA Interspeech, 2010.

[4] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams, Learning
representations by back-propagating errors, MIT Press, Cambridge, MA,
USA, 1988.

[5] Tomas Mikolov, Stefan Kombrink, Lukas Burget, J.H. Cernocky, and San-
jeev Khudanpur, “Extensions of recurrent neural network language model,”
in Proc. ICASSP. IEEE, 2011.

[6] Holger Schwenk, “Continuous space language models,” Computer Speech

& Language, vol. 21, no. 3, pp. 492–518, 2007.

[7] Ahmad Emami and Lidia Mangu, “Empirical study of neural network
language models for Arabic speech recognition,” in ASRU, IEEE Workshop

on. IEEE, 2007.

[8] Junho Park, Xunying Liu, Mark Gales, and Phil Woodland, “Improved
neural network based language modelling and adaptation,” in Proc. ISCA

Interspeech, 2010.

[9] Hai-Son Le, Ilya Oparin, Alexandre Allauzen, J Gauvain, and François
Yvon, “Structured output layer neural network language models for speech
recognition,” Audio, Speech, and Language Processing, IEEE Transactions

on, vol. 21, no. 1, pp. 197–206, 2013.

[10] Xunying Liu, Yongqiang Wang, Xie Chen, Mark Gales, and Phil Wood-
land, “Efficient lattice rescoring using recurrent neural network language
models,” in Proc. ICASSP. IEEE, 2014.

18

[11] Frederic Morin and Yoshua Bengio, “Hierarchical probabilistic neural net-
work language model,” in Proceedings of the international workshop on

artificial intelligence and statistics, 2005, pp. 246–252.

[12] Xie Chen, Yongqiang Wang, Xunying Liu, Mark Gales, and P. C. Wood-
land, “Efficient training of recurrent neural network language models using
spliced sentence bunch,” in Proc. ISCA Interspeech, 2014.

[13] Xie Chen, Xunying Liu, Mark Gales, and Phil Woodland, “Improving
the training and evaluation efficiency of recurrent neural network language
models,” in Proc. ICASSP, 2015.

[14] Xie Chen, Xunying Liu, Mark Gales, and Phil Woodland, “Recurrent
neural network language model training with noise contrastive estimation
for speech recognition,” in Proc. ICASSP, 2015.

[15] Anoop Deoras, Tomas Mikolov, Stefan Kombrink, and Kenneth Church,
“Approximate inference: A sampling based modeling technique to capture
complex dependencies in a language model,” Speech Communication, vol.
55, no. 1, pp. 162–177, 2013.

[16] Xie Chen, Tian Tan, Xunying Liu, Pierre Lanchantin, Moquan Wan, Gales
Mark, and Phil Woodland, “Recurrent neural network language model
adaptation for multigenre broadcast speech recognition.,” in Proc. ISCA

Interspeech, 2015.

[17] Tomas Mikolov, Stefan Kombrink, Anoop Deoras, Lukas Burget, and Jan
Cernocky, “Recurrent neural network language modeling toolkit,” in
ASRU, IEEE Workshop, 2011.

[18] Jean Carletta et al., “The AMI meeting corpus: A pre-announcement,” in
Machine learning for multimodal interaction, pp. 28–39. Springer, 2006.

[19] Karel Veselỳ, Arnab Ghoshal, Lukás Burget, and Daniel Povey, “Sequence-
discriminative training of deep neural networks.,” in Proc. INTER-

SPEECH, 2013.

19

