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ABSTRACT

Recently, bidirectional recurrent network language medgdi-
RNNLMSs) have been shown to outperform standard, unidiveet
recurrent neural network language models (uni-RNNLMs) on
range of speech recognition tasks. This indicates thatdutword
context information beyond the word history can be usefubwH

ever, bi-RNNLMs pose a number of challenges as they makefuse o

the complete previous and future word context informatidihnis
impacts both training efficiency and their use within a tatiescor-
ing framework. In this paper these issues are addresseapygsing
a novel neural network structure, succeeding word RNNLMs (s
RNNLMs). Instead of using a recurrent unit to capture the piete
future word contexts, a feedforward unit is used to model iefin
number of succeeding, future, words. This model can beddin

a

The form of unidirectional language model in Equation 1 \nél
perfect only when two contitions are satisfied, i.e. infirtigining
and perfect training, correct history representation fordsw:—*.
However, neither of these is satisfied in practice. In thisgpawe
aim to explore the future information to improve the emgitiper-
formance of language model in speech recognition.

Most of previous work on language models has focused on util-
ising history information, the future word context infortive has

not been extensively investigated. There have been seatteabpts

to incorporate future context information into recurrerural net-
work language models. Individual forward and backward RINASL
can be built, and these two LMs combined with a log-linear in-
terpolation [4]. In [5], succeeding words were incorpodateto
RNNLM within a Maximum Entropy framework. [6] investigated

much more efficiently than bi-RNNLMs and can also be used forthe use of bidirectional RNNLMs (bi-RNNLMs) for speech rgeo

lattice rescoring. Experimental results on a meeting tndpton
task (AMI) show the proposed model consistently outperfsdm

nition. For a broadcast news task, sigmoid based RNNLMs gave
small gains, while no performance improvement was obtaivieeh

uni-RNNLMs and yield only a slight degradation compared tousing long short-term memory (LSTM) based RNNLMs. More re-

bi-RNNLMs in N-best rescoring. Additionally, performanaa-
provements can be obtained using lattice rescoring ancequbsat
confusion network decoding.

Index Terms— Bidirectional recurrent neural network, lan-
guage model, succeeding words, speech recognition

1. INTRODUCTION

Language models (LMs) are crucial components in many agplic
tions, such as speech recognition and machine translafios aim
of language models is to compute the probability of any gisen-
tenceW = (w1, w2, ..., wr), which can be calculated as

PW) = P(wi,ws, ..., wr) = | [ P(wi|wi™)

t=1

@

The task of LMs is to calculate the probability of wotel given
its previous historyw!™" = wy,wa, ..., w,—1. n-gram LMs [1]
and neural network based language mdoels (NNLMs) [2, 3]vaoe t
widely used language models. irgram LMs, the most recemt— 1
words are used as an approximation of the complete histarg, t

@)

This n-gram assumption can also be used to construatggam
feedforward NNLMs [2]. In contrast, recurrent neural netivoMs
(RNNLMs) model the complete history via a recurrent conioect

P(wiwy ™) & P(welw;"p 1)
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cently, bi-RNNLMs can produce consistent, and significpetfor-
mance improvements over unidirectional RNNLMs (uni-RNN&M
on a range of speech recognition tasks [7].

Though they can yield performance gain, bi-RNNLMs pose sev-
eral challenges for both model training and inference agtbguire
the complete previous and future word context informatiorbé
taken into account. It is difficult to parallelise traininffigently.
Lattice rescoring is also complicated for these LMs as &iwon-
text needs to be incorporated. This means that the form abapp
imation used for uni-RNNLMs [8] is not suitable to apply. Hen
N-best rescoring is normally used [5, 6, 7]. However, thditgtto
manipulate lattices is very important in many speech apptaos.
Lattices can be used for a wide range of downstream appulitsti
such as confidence score estimation [9], keyword searchdi@]
confusion network decoding [11]. In order to address thesess,
a novel model structure, succeeding word RNNLMs (su-RNN),Ms
is proposed in this paper. Instead of using a recurrent amiapture
the complete future word context as in bi-RNNLMs, a feedfmnv
unit is used to model a small, fixed-length number of sucecegdi
words. This allows existing efficient training [12] and ie# rescor-
ing [8] algorithms developed for uni-RNNLMs to be extendedte
proposed su-RNNLMs. Using these extended algorithms, esmp
lattices can be generated with su-RNNLMs supporting lathased
downstream processing.

The rest of this paper is organized as follows. Section 2sgive
a brief review of RNNLMs, including both unidirectional abéti-
rectional RNNLMs. The proposed model with succeeding words
(su-RNNLMs) is introduced in Section 3, followed by a degtidn
of the lattice rescoring algorithm in Section 4. Section &dsses
the interpolation of language models. The experimentalltesre
presented in Section 6 and conclusions are drawn in Section 7



2. UNI- AND BI-DIRECTIONAL RNNLMS Uni-RNNLMs can be trained efficiently on Graphics Process-
ing Units (GPUSs) by using spliced sentence bunch (i.e. raict)
2.1. Unidirectional RNNLMs mode [12]. Multiple sentences can be concatenated togettiem
a longer sequence and sets of these long sequences can then be
aligned in parallel from left to right. This data structuseniore effi-
cient for minibatch based training as they have comparauaence
length [12]. When using these forms of language models f&ksta
like speech recognition, N-best rescoring is the mostgtitéorward
way to apply uni-RNNLMs. Lattice rescoring is also possitjein-
troducing approximations [8] to control merging and expamsf
different paths in lattice. This will be described in mordailein
Section 4.

In contrast to feedforward NNLMs, where only modeling the-pr
viousn — 1 words, recurrent NNLMs [13] represent the full non-
truncated historyui*1 = w1, Wwa, ..., ws—1 for word w; using the
1-of-K encoding of the previous word;_; and a continuous vector
h:—2 as a compact representation of the remaining contéxt’.
Figure 1 shows an example of this unidirectional RNNLM (uni-
RNNLM). The most recent wordv:—; is used as input and pro-
jected into a low-dimensional, continuous, space via aalim@o-
jection layer. A recurrent hidden layer is used after thigjgution
layer. The form of the recurrent layer can be based on a standa o
sigmoid based recurrent unit, with sigmoid activations {8]more ~ 2.2. Bidirectional RNNLMs

complicated forms such as gated recurrent unit (GRU) [1d]lang  Figyre 2 jllustrates an example of bidirectional RNNLMS - (bi
short-term memory (LSTM) units [15]. A continuous vectar 1 RNNLMs). Unlike uni-RNNLMSs, both the history word context
representing the complete history informatiofi ' can be obtained w!~! and future word contexiv’, ; are used to estimate the proba-
usingh:_» and previous wordv;—1. This vector is used as input of bility of current word P(w;|w! =", wk ). Two recurrent units are
recurrent layer for the estimation of next word. An outpyelawith ,se to capture the previous and future information resgt In
softmax function is used to calculate the probabilyw,|w!™). the same fashion as uni-RNNLM&,_, is a compact continuous
An additional node is often added at the output layer to métel  yecior of the history information ~*. While .1 is another con-
probability mass of out-of-shortlist (OOS) words to speedsoft-  in,0us vector to encode the future informatiatt, ,. This future
max computation by limiting vocabulary size _[16]. _Slmlyirhn context vector is computed from the next ward, 1 and the pre-
out-of-vocabulary (OOV) node can be added in the input Llalyer vious future context vectoh,» containing information ofwf, .
model OOV words. The probability of word sequendé = wy' is The concatenation ofi;,_1 and k41 is then fed into the output

calculated as, . layer, with softmax function, to calculate the output proitigy. In
Pu(wlL) _ H P(wtlwt 1) ©) order to reduce the number of parameter, the projectiomn faye¢he

=1 previous and future words are often shared.

m W41 i
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Fig. 1. An example unidirectional RNNLM.

Perplexity (PPL) is a metric used widely to evaluate the ityal
of language models. According to the definition in [17], tleepex-
ity can be computed based on sentence probability with, Projection layer Hidden layer Output layer

‘OOV’ input node

PPL = exp (- 1 ilogP W) Fig. 2. An example bidirectional RNNLM.
= ~ (W
The probability of word sequendd’ = wi can be computed
using bi-RNNLMs as,

L
i Pi(w) = - BoW) = o [ Plwrlul ™ wbin)  ©)
= exp(— I Z Zlog P(wilwi™)) (4) =t

j=11t=1 Pb(W) is the unnormalized sentence probability computed from the
individual word probabilities of the bi-RNNLMZ, is a sentence-
level normalization term to ensure the sentence probglsliappro-
priately normalized. This is defined as,

WhereN is the total number of words andlis the number of sen-
tence in the evaluation corpusl; is the number of word injth

sentence. From the above equation, the PPL is calculated loss
the average log probability of each word, which for unidiieeal Zy = Z Pb(W) (6)

LMs, yields the average sentence log probability. Weo



where® is the set of all possible sentences. Unfortunately, this no sentences to ensure that the aligned sentences had theesaytie |

malization term is impractical to calculate for most tasks. TheseNULL tokens were not used for parameter update. In this pa-
In a similar form to Equation 4, the PPL of bi-RNNLMs can be per, this approach is adopted to train bi-RNNLMs as it gawtebe
calculated based on sentence probability as, performance.
J
PPL = exp(-— % > log Py (w;”)) 3. RNNLMS WITH SUCCEEDING WORDS
j=1

J As discussed above, bi-RNNLMs are slow to train and diffitulise
exp (— £ Zlog Lpb(wfj)) (7)  inlattice rescoring. In order to address these issues, el istnuc-
N Zy ture, the su-RNNLM, is proposed in this paper to incorpofatere
p ;oL conrt]ext inforr?atir?n. Thebmodel structt;]re is iIIustratﬁd:(i%J,r{a 3.
1 -1 L In the same fashion as bi-RNNLMs, the previous histety ~ is
exp (N log(Zy) — N Z Zlog P(wiwi™, w,}y)) modeled with recurrent units (e.g. LSTM, GRU). Howevertéasl
J=re=t of modeling the complete future context informatiang, ;, using
However, 7, is often infeasible to obtain. As a result, it is not pos- recurrent units, feedforward units are used to capture tfimim-
sible to compute a valid perplexity from bi-RNNLMs. Nevesth ber of succeeding wordsy; ;. The softmax function is again ap-
less, the average log probability of each word can be useétta g plied at the output layer to obtain the probability of therent word
“pseudo” perplexity (PPL). P(w¢w;™', witl). The word embedding in the projection layer are
shared for all input words. When the succeeding words arerizkby
1 i1 L. the sentence boundary, a vector of O is used as the word einedd
PPLpseuds = €xp ( — N Z Z log P(w:|wi™ ", w,;{1))  (8)  vector. Thisis similar to the zero padding of the feedforhfarward
j=1t=1 NNLMs at the beginning of each sentence [13].
This is the second term of the valid PPL of bi-RNNLMs shown in  AS the number of succeeding words s finite and fixed for each
Equation 7. It is a “pseudo” PPL because the normalized seate WOrd, its succeeding words can be organized-agyeam future con-
probability P,(VV) is impossible to obtain and the unnormalized {€xtand used for minibatch mode training as in feedforwarkiMs
sentence probability, (W) is used instead. Hence, the “pseudo” [13]. $u-RNNLMs can then be trained efficiently in a similasfiion
PPL of bi-RNNLMs is not comparable with the valid PPL of uni- © Uni-RNNLMs in a spliced sentence bunch mode [12].
RNNLMs. However, the value of “pseudo” PPL provides informa
tion on the average word probability from bi-RNNLMs sincdsit
obtained using the word probability.
In order to achieve good performance for speech recogniffopn
proposed an additional smoothing of the bi-RNNLM probaypiéit
test time. The probability of bi-RNNLMs is smoothed as,

Jj=1

J Ly

tee0e)

Wt+2

(eee)

ee o) (0)(e
(oo

_ exp(ay;
P(wi|w§ 17th+1) = # 9)
Zj exp(ay;) W1

(eee)

wherey; is the activation before softmax function for nodan the
output layer.cv is an empirical smoothing factor, which is chosen as
0.7 in this paper.

The use of both preceding and following context informatfion

bi-RNNLMs presents challenges to both model training arddrin  w;_1 /h(@% ‘O0S’ output node
ence. First, N-best rescoring is normally used for speentgrtion : _ =1
’ N
\

—>P(wtw§1, Wig1, Wig2)

eee) (@)(e -

[7]. Lattice rescoring is impractical for bi-RNNLMs as therapu- J i
tation of word probabilities requires information from tbemplete C) ht—Q\\ !
sentence. 4 -
Another drawback of bi-RNNLMs is the difficulty in training. ‘OOV’ input node
The complete previous and future context information isinegl to Projection layer Hidden layer Output layer

predict the probability of each word. It is expensive to diletrain-
ing bi-RNNLMs sentence by sentence, and difficult to paliake
the training for efficiency. In [6], all sentences in the tiag corpus
were concatenated together to form a single sequence tadfteci
minibatch based training. This sequence was then “chopped”
sub-sequences with the average sentence length. Bi-RNNuavis
then trained on GPU by processing multiple sequences aathe s L
time. This allows bi-RNNLMs to be efficiently trained. Hovesy Ps(wf) _ 1 H P(wt|w§’1 wfﬂ“) (10)
issues can arise from the random cutting of sentences niatal ) Zs Pl s

future context vectors may be reset in the middle of a septeht

Fig. 3. An example su-RNNLM with 2 succeeding words.

Compared with equations 3 and 5, the probability of word se-
quencew! can be computed as

[7], the bi-RNNLMs were trained in a more consistent fashigtul- Again, the sentence level normalization teffnis difficult to com-
tiple sentences were aligned from left to right to form matdhes pute and only “pseudo” PPL can be obtained. The probalsilitie
during bi-RNNLM training. In order to handle issues causgddri- of su-RNNLMs are also very sharp, which can be seen from the

able sentence lengtiNULL tokens were appended to the ends of “pseudo” PPLs in Table 2 in Section 6. Hence, the bi-RNNLM



probability smoothing given in Equation 9 is also required $u- Figure 4 shows part of an example lattice generated by ar2-gra
RNNLMs to achieve good performance at evaluation time. LM. In order to apply uni-RNNLM lattice rescoring using a 8agn
approximation, the grey shaded node in Figure 4 needs to be du
plicated as wordws has two distinct 3-gram histories, which are
(wo,w2) and(w1, w2) respectively. Figure 5 shows the lattice after
rescoring using a uni-RNNLM with 3-gram approximation. In o
der to apply su-RNNLMs for lattice rescoring, the succegaiords
also need to be taken into account. Figure 6 is the expantiézkla
using a su-RNNLM with 1 succeeding word. The grey shadedsiode
in Figure 5 need to be expanded further as they have distirst s
ceeding words. The blue shaded nodes in Figure 6 are the dagan
node in the resulting lattice.

4. LATTICE RESCORING

Lattice rescoring with feedforward NNLMs is straightfomag13]
whereas approximations are required for uni-RNNLMs lattic
rescoring [8, 18]. As mentioned in Section 2.2, N-best réago
has previously been used for bi-RNNLMs. It is not practical f
bi-RNNLMs to be used for lattice rescoring and generatiobath
the complete previous and future context information agelired.
However, lattices are very useful in many applicationshsag con-
fidence score estimation [9], keyword search [10] and cdofus

network decoding [11]. In contrast, su-RNNLMs require a dixe wy
number of succeeding words, instead of the complete futmeegt ws W
information. From Figure 3, su-RNNLMs can be viewed as a com- wWo wWa
bination of uni-RNNLMs for history information and feedfuard w ws w3 O W4 We O Wo O
NNLMs for future context information. Hence, lattice regog is Ws w1
feasible for su-RNNLMs by extending the lattice rescoririgoa
rithm of uni-RNNLMs by considering additional fixed lengthtfire
contexts. Fig. 4. Lattice generated by 2-gram LM.
4.1. Lattice rescoring of uni-RNNLMs
In this paper, thex-gram approximation [8] based approach is used o
for uni-RNNLMs lattice rescoring. When considering megyiof Ws Ws

. . . . . Wo w2 w3
two paths, if their previous, — 1 words are identical, the two paths Wy We /N Wy O
are viewed as “equivalent” and can be merged. This is ibsttin Wi Wa ws ws > wio

Figure 5 for the start node of words. The history information from

the best path is kept for the following RNNLM probability cpm

tation and the historigs of all other paths are discardedef@nple, Fig. 5. Lattice generated by uni-RNNLMSs with 3-gram approxima-
the path(wo, w2, ws) is kept and the other patiw:, w2, ws) is dis- o

carded given ara,.

There are two types of approximation involved for uni-RNNLM
lattice rescoring, which are the merge and cache approiingat
The merge approximation controls the merging of two path$8],
the first path reaching the node was kept and all other pattis wi
the samen-gram history were discarded irrespective of the associ-
ated scores. This introduces inaccuracies in the RNNLMatoidity
calculation. The merge approximation can be improved byikee
the path with the highest accumulated score. This is theoagpr
adopted in this work. For fast probability lookup in latticescor-
ing, n-gram probabilities can be cached using- 1 words as a
key. A similar approach can be used with RNNLM probabilities
[8], RNNLM probabilities were cached based on the previous 1 ) ] o )
words, which is referred as cache approximation. Thus awmhb- ~ Using then-gram history approximation and givénsucceed-
ability obtained from the cache may be derived from anotietoty ~ ing words, the lattice expansion process is effectively-a k-gram
sharing the same — 1 previous words. This introduces another lattice expansion for uni-RNNLMs. For larger valuerotindk, the
inaccuracy. In order to avoid this inaccuracy yet maintaim ¢ffi-  resulting lattices can be very large. This can be addressprlining
ciency, the cache approximation used in [8] is improved yptidg the lattice and doing initial lattice expansion with a uiHRLM.
the complete history as key for caching RNNLM probabilitiBeth
modifications yielt small but consistent improvements déon a 5. LANGUAGE MODEL INTERPOLATION
range of tasks.

Fig. 6. Lattice generated by su-RNNLMswith 3-gram approximation
for history context and 1 succeeding word.

For unidirectional language models, suchhagram model and uni-

4.2. Lattice rescoring of su-RNNLMs RNNLMs, the word probabilities are normally combined usiimg
ear interpolation,

For lattice rescoring with su-RNNLMs, the-gram approximation
can be adopted and extended to support the future word domtex Pu(wilwi™") = (11)
order to handle succeeding words correctly, paths will beget: (1- )\I)Pn(wt|w§_1) 4 >\1P7-(wt|w§_1)
only if the following succeeding words are identical. Irstivay, the
path expansion is carried out in both directions. Any twdpatith ~ where P,, and P, are the probabilities from-gram and uni-RNN
the same succeeding words and- 1 previous words are merged. LMs respectively)\; is the interpolation weight of uni-RNNLMs.



However, it is not valid to directly combine uni-LMs (e.g uni
directionaln-gram LMs or RNNLMs) and bi-LMs (or su-LMs) us-
ing linear interpolation due to the sentence level norratiis term
required for bi-LMs (or su-LMs) in Equation 5. As described i
[7], uni-LMs can be log-linearly interpolated with bi-LMeff speech
recognition using,

the history merging of uni-RNNLMs and su-RNNLMs during le¢t
rescoring and generation [8].

Table 1 shows the word error rates of the baseline system with
4-gram and uni-RNN LMs. Lattice rescoring ah@h-best rescoring
are applied to lattices generated by the 4-gram LM. As exgkcini-
RNNLMs yield a significant performance improvement overédrg
LMs. Lattice rescoring gives a comparable performance Wa0-
best rescoring. Confusion network (CN) decoding can beiegpl
to lattices generated by uni-RNNLM lattice rescoring anditonal
performance improvements can be achieved.

P(wt|w§_17th+1) = (12)

1 _ _ _
— Py (we|wi ™)) Py (wewt 7wy )2

Z
where Z is the appropriate normalisation term. The normalisation dev eval
term can be discarded for speech recognition as it does featt af LM escore |\ —7—T1 N | Vit T CN
the hypothgsis rankingP,, ande are .the probapilities.from uni- ng4d . 2381 235 | 242 | 23.9
LMs and bi-RNNLMs respectively.\, is the log-linear interpola- _ 100-best|l 21.7 - 52 1 .
tion weight of bi-RNNLMs. The issue of normalisation termsia- +uni-rnn lattice 2171 215 219 21.7

RNLMs is similar to that of bi-RNNLMs, as shown in Equation. 10
Hence, log-linear interpolation can also be applied forahmbina-
tion of su-RNNLMs and uni-LMs and is the approach used in this
paper.

By default, linear interpolation is used to combine uni-RMNi&
andn-gram LMs. A two-stage interpolation is used when including
bi-RNNLMs and su-RNNLMs. The uni-RNNLMs and-gram LMs
are first interpolated using linear interpolation. Thegedirly inter-
polated probabilities are then log-linearly interpolatgth those of
bi-RNNLMs (or su-RNNLMSs).

Table 1. Baseline WER results on AMI corpus

Table 2 gives the training speed measured with word per sec-
ond (w/s) and (“pseudo”) PPLs of various RNNLMs with diffece
amounts of future word context. When the number of succeedin
words is 0, this is the baseline uni-RNNLMs. When the numifer o
succeeding words is set ta, a bi-RNNLM with complete future
context information is used. It can be seen that su-RNNLMs gi
comparable training speed as uni-RNNLMs. The additionaimo-
tational load of the su-RNNLMs mainly come from the feedfard
unit for succeeding words as shown in Figure 3. The comprtati
in this part is much less than that of other parts such as olaper
Experiments were conducted using the AMI IHM meeting cor-and GRU layers. However, the training of su-RNNLMs is much
pus [19] to evaluated the speech recognition performanearafus  faster than bi-RNNLMs as it is difficult to parallelise thaitring
language models. The Kaldi training data configuration vezsluA  of bi-RNNLMs efficiently [7]. It is worth mentioning again &t
total of 78 hours of speech was used in acoustic model tigifiihis  the PPLs of uni-RNNLMs can not be compared directly with the
consists of about 1M words of acoustic transcription. Eighetings  “pseudo” PPLs of bi-RNNLMs and su-RNNLMs. But both PPLs
were excluded from the training set and used as the develipmeand “pseudo” PPLs reflect the average log probability of ereatul.
and test sets. From Table 2, with increasing number of succeeding words, th

The Kaldi acoustic model training recipe [20] featuring se- “pseudo” PPLs of the su-RNNLMs keeps decreasing, yieldomg<c
quence training [21] was applied for deep neural network \(DN parable value as bi-RNNLMs.
training. CMLLR transformed MFCC features [22] were used as

6. EXPERIMENTS

the input and 4000 clustered context dependent states \8etkas #succ words 0 1 3 7 00
targets. The DNN was trained with 6 hidden layers, and eagr la train speed(w/s)| 4.5K | 4.5K | 3.9K | 3.8K | 0.8K
has 2048 hidden nodes. (pseudo) PPL || 66.8 | 25.5 | 21.5 | 21.3 | 22.4

The first part of the Fisher corpus, 13M words, was used for
additional language modeling training data. A 49k word digtg  Table 2. Train speed and (Pseudo) Perplexity of uni-, bi-, and su-
vocabulary was used for all experiments. All LMs were trdine RNNLMs. 0 succeeding word is for uni-RNNLMs ang for bi-
on the combined (AMI+Fisher), 14M word in total. A 4-gram KN RNNLMSs.
smoothed back-off LM without pruning was trained and used fo
lattices generation. GRU based recurrent units were ugel fani- Table 3 gives the WER results of 100-best rescoring with-vari
directional and bidirectional RNNLMS$. 512 hidden nodes were ous language models. For bi-RNNLMs (or su-RNNLMs), it is not
used in the hidden layer. An extended version of CUED-RNNLMpossible to use linear interpolation. Thus a two stage aubrds
[23] was developed for the training of uni-RNNLMs, bi-RNNISM  adopted as described in Section 5. This results in slighérdifices,
and su-RNNLMs. The related code and recipe will be available  second decimal place, between the uni-RNNLM case and the 0 fu
line 2. The linear interpolation weight; between 4-gram LMs and  ture context su-RNNLM. The increasing number of the suciceed
uni-RNNLMs was set to be 0.75 as it gave the best performanceords consistently reduces the WER. With 1 succeeding vibe,

on the development data. The log-linear interpolation Wwei
for bi-RNNLMs (or su-RNNLMs) was 0.3. The probabilities af b

WERSs were reduced by 0.2% absolutely. Su-RNNLMs with more
than 2 succeeding words gave about 0.5% absolute WER reducti

RNNLMs and su-RNNLMs were smoothed with a smoothing factorBi-RNNLMs (shown in the bottom line of Table 3) outperform-su

0.7 as suggested in [7]. The 3-gram approximation was apfdie

1GRU and LSTM gave similar performance for this task, whilelGRMs
are faster for training and evaluation
2http://mi.eng.cam.ac.uk/projects/cued-rnnim/

RNNLMs by 0.1% to 0.2%, as it is able to incorporate the coteple
future context information with recurrent connection.

3N-best list can be converted to lattice and CN decoding tlaenbe ap-
plied, but it requires a much larger N-best list, such as 18&dun [8].



LM #succ words|| dev | eval
ng4 23.8 | 24.2
+uni-rnn - 21.7| 22.1

0 21.7 | 22.1

1 21.5| 21.8

2 21.3 | 21.7

3 21.3| 21.6

+su-rnn 4 21.4| 21.6

5 21.3| 21.6

6 21.3| 21.6

7 21.4| 21.6

0o 21.2 | 214

Table 3. WERSs of uni-, bi, and su-RNNLMs with 100-best rescor-
ing. 0 succeeding word is for uni-RNNLMs and for bi-RNNLMs.

(1]

(2]

(3]

[4]

(5]

Table 4 shows the WERSs of lattice rescoring using su-RNNLMs.

The lattice rescoring algorithm described in Section 4 wadiad.

Su-RNNLMs with 1 and 3 succeeding words were used for lattice

rescoring. From Table 4, su-RNNLMs with 1 succeeding words

give 0.2% WER reduction and using 3 succeeding words givestab
0.5% WER reduction. These results are consistent with tBeb&dt
rescoring result in Table 3. Confusion network decoding loaap-
plied on the rescored lattices and additional 0.3-0.4% WEiRop-

mance improvements are obtained on dev and eval test sets.

LM #succ dev eval
words || Vit CN Vit CN
ng4 - 23.8| 23.5| 24.2 | 23.9
+uni-rnn - 21.7| 215|219 | 21.7
+su-rnn 1 216 | 21.3| 216 | 215
3 21.3|1 21.0| 214 | 211

Table 4. WERs of uni-RNNLMs and su-RNNLMs with lattice
rescoring

7. CONCLUSIONS

In this paper, the use of future context information on neoed-
work language models has been explored. A novel model steict
is proposed to address the issues associated with bi-RNIN&hd
as slow train speed and difficulties in lattice rescoringstéad of
using a recurrent unit to capture the complete future inédrom,

[6]

[7]

(8]

9]

(10]

(11]

a feedforward unit was used to model a finite number of sueceed

ing words. The existing training and lattice rescoring alfons for

uni-RNNLMs are extended for the proposed su-RNNLMs. Experi [12]

mental results show that su-RNNLMs achieved a slightly waqsr-

formances than bi-RNNLMs, but with much faster training espe
Furthermore, additional performance improvements carbbeeed

from lattice rescoring and subsequent confusion netwododiag.

Future work will examine improved pruning scheme to addteses
lattice expansion issues associated with larger futuréegtn

(13]

(14]

(15]
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