
Recurrent Neural Network Language Model Adaptation
for Multi-Genre Broadcast Speech Recognition

X. Chen1, T. Tan1
,

2, X. Liu1, P. Lanchantin1, M. Wan1, M. J. F. Gales1 and P. C. Woodland1

1 University of Cambridge Engineering Department, Cambridge, U.K.
2 Department of Computer Science & Engineering, Shanghai Jiao Tong University, China

{xc257,tt381,xl207, pkl27, mw545, mjfg,pcw}@eng.cam.ac.uk

Abstract

Recurrent neural network language models (RNNLMs) have re-
cently become increasingly popular for many applications in-
cluding speech recognition. In previous research RNNLMs
have normally been trained on well-matched in-domain data.
The adaptation of RNNLMs remains an open research area to
be explored. In this paper, genre and topic based RNNLM adap-
tation techniques are investigated for a multi-genre broadcast
transcription task. A number of techniques including Proba-
bilistic Latent Semantic Analysis, Latent Dirichlet Allocation
and Hierarchical Dirichlet Processes are used to extract show
level topic information. These were then used as additionalin-
put to the RNNLM during training, which can facilitate unsu-
pervised test time adaptation. Experiments using a state-of-the-
art LVCSR system trained on 1000 hours of speech and more
than 1 billion words of text showed adaptation could yield per-
plexity reductions of 8% relatively over the baseline RNNLM
and small but consistent word error rate reductions.
Index Terms: speech recognition, RNNLM, language model
adaptation, topic model, latent Dirichlet allocation

1. Introduction
Statistical language models (LMs) are an important part of
many speech and language processing systems for tasks includ-
ing speech recognition, spoken language understanding andma-
chine translation. Recently, recurrent neural network language
models (RNNLMs) have been shown to yield consistent perfor-
mance improvements across a range of tasks [1, 2, 3, 4, 5, 6, 7].

Contextual factors, such as speech style, genre and topic
heavily influence the surface realisation of spoken language. A
complex combination of these factors define a specific target
situation of interest. The variability introduced by thesehidden
factors are only implicitly learned in conventional RNNLMs.
Since it is problematic to draw upon related and similar events
occurring in the training data, direct adaptation of RNNLM pa-
rameters given limited data at test time to a target situation is
difficult. One solution to this problem is to explicitly model
these influencing factors during RNNLM training, for exam-
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ple, by adding auxiliary features into the input layer. Thisal-
low RNNLMs to better exploit commonalities and specialties
among diverse data. It also facilitates adaptation at test time to
any target situation defined by these factors.

A range of influencing features have been incorporated into
RNNLMs in earlier research. Among these, morphological and
lexical features were modelled in factored RNNLMs [8] on the
930k word WSJ portion of Penn Treebank data; topic informa-
tion derived from latent Dirichlet allocation (LDA) [14] models
was used in [9] on a corpus of 37 million words; personalized
user information such as demographic features were exploited
in [10] for RNNLMs on a social media corpus of approximately
25 million words; sentence length information and lexical fea-
tures were used in [11] on lecture transcripts of 9 million words;
and domain information was used in mutli-domain RNNLMs
[12] on a 10 million word medical report corpus.

There are two important issues that directly impact the aux-
iliary feature based RNNLM adaptation approach: the form of
input feature representation to use; and the scalability when
larger amounts of training data are used. In this paper, both
of these issues are explored. Genre and topic based RNNLM
adaptation techniques are investigated on a multi-genre BBC
broadcast transcription task. The BBC provided us with genre
information for each broadcast show and this is used for ex-
periments. A range of techniques including LDA, probabilistic
latent semantic analysis (PLSA) [13] and hierarchical Dirich-
let processes (HDP) [15] are used to extract a show-level topic
representation as continuous valued vectors. These additional
topic vectors are used for both RNNLM training and to facili-
tate adaptation at test time.

This paper is organised as follows. Section 2 introduces
the model structure and training of RNNLMs used in this work.
Section 3 describes the feature based RNNLM adaptation meth-
ods in detail. Section 4 presents various techniques for extract-
ing topic representations. Experimental results are presented in
Section 5. Section 6 draws conclusions.

2. Recurrent Neural Network LMs
Recurrent NNLMs [1] represent the full, non-truncated history
hi =< wi−1, . . ., w1 > for wordwi using a 1-of-k encoding
of the previous wordwi−1 and a continuous vectorvi−2 for
the remaining context. For an empty history, this is initialised,
for example, to a vector of all ones. An out-of-vocabulary
(OOV) input node can also be used to represent any input word
not in the chosen recognition vocabulary. The topology of
the recurrent neural network used to compute LM probabili-
tiesPRNN(wi|wi−1, vi−2) consists of three layers. The full his-
tory vector, obtained by concatenatingwi−1 andvi−2, is fed



into the input layer. The hidden layer compresses the infor-
mation from these two inputs and computes a new representa-
tion vi−1 using a sigmoid activation to achieve non-linearity.
This is then passed to the output layer to produce normalized
RNNLM probabilities using a softmax activation, as well as re-
cursively fed back into the input layer as the “future” remaining
history to compute the LM probability for the following word
PRNN(wi+1|wi, vi−1).

Input layer

...

...
...

OOV input node

sigmoid

...

OOS output node

softmax

Hidden layer Output layer

wi−1

vi−2

vi−1

vi−1

f

PRNN(wi|wi−1, vi−2)

Figure 1:An example RNNLM with an additional input feature
vector f .

An example RNNLM architecture with an unclustered, full
output layer is shown in Figure 1. Without the feature vec-
tor f in the input layer, a standard RNNLM is constructed.
RNNLMs can be trained using an extended form of the stan-
dard back propagation algorithm, back propagation through
time (BPTT) [16], where the error is propagated through re-
current connections back for a specific number of time steps,
for example, 4 or 5 [2]. This allows RNNLMs to keep infor-
mation for several time steps in the hidden layer. To reduce the
computational cost, a shortlist [17, 18] based output layervo-
cabulary limited to the most frequent words can be used. To re-
duce the bias to in-shortlist words during RNNLM training and
improve robustness, an additional node is added at the output
layer to model the probability mass of out-of-shortlist (OOS)
words [19, 20, 21]. RNNLMs can be trained efficiently on
GPUs using the spliced sentence bunch technique [22, 23, 24].

Informative features could be incorporated into the training
of RNNLMs for adaptation purpose. In Figure 1, feature vector
f is appended to the input layer. It will be fed into hidden layer
and output layer1 as in [25].

In state-of-the-art ASR systems, RNNLMs are often lin-
early interpolated withn-gram LMs to obtain both a good con-
text coverage and strong generalisation [1, 3, 17, 18, 19, 20].
The interpolated LM probability is given by

P (wi|hi) = λPNG(wi|hi) + (1− λ)PRNN(wi|hi) (1)

whereλ is the weight of then-gram LM PNG(·), and is kept
fixed at 0.5 in this paper. In the above interpolation, the proba-
bility mass of OOS words assigned by the RNNLM component
is re-distributed with equal probabilities among all OOS words.

1According to our experimental results, the direct connection be-
tween input (blockf ) and output layer is crucial when the hidden layer
size is small (e.g.< 50). When the size of hidden layer becomes large
(e.g. > 100), there is no difference between using and not using the
direct connection. In this paper, the direct connection is used.

3. Feature Based RNNLM Adaptation
In this paper, feature based RNNLM adaptation performed at
either the show or genre level is studied and compared.

As text data often contains a mix of different broad genres,
RNNLMs can be refined by making use of the genre informa-
tion. The first and most straightforward way is to further train or
fine-tune a well-trained genre-independent RNNLM on genre-
specific data to construct genre-dependent RNNLMs. At test
time, for each show, the genre-specific RNNLM is applied ac-
cording to the show’s genre label. The potential drawbacks of
this method are that multiple RNNLMs for each genre needs to
be stored and sufficient data for each genre must be obtained
for good genre-specific performance. An alternative approach
to constructing genre dependent RNNLMs is to incorporate the
genre label into the training of the RNNLM. The genre label
could simply be represented as a 1-of-k encoding feature vector
in the input layer as shown in Figure 1.

In many applications, the genre label is not known and
could be difficult to estimate. Furthermore, the genre labelis
normally a coarse representation of the types of topic that might
be used. Hence, a more refined representation is preferred to
automatically derive a topic representation for each show (i.e.
document). This show-level topic representationf , will be con-
catenated with the standard input layer for RNNLM training and
testing as shown in Figure 1.

4. Learning Topic Representations
Various topic models have been proposed for topic representa-
tion of documents, including probabilistic latent semantic anal-
ysis, latent Dirichlet allocation and hierarchical Dirichlet pro-
cesses. Both PLSA and LDA use a fixed number of latent top-
ics. In contrast, HDP is able to estimate the posterior of the
number of topics during training.

Let D = {d1, ..., dN} denote the training corpus,
W = {w1, ..., wM} is all words in the vocabulary,T =
{z1, ..., zK} is the set of latent topics, andn(di, wj) is the
word countwj appearing in documentdi. For each docu-
mentdi, a vector of posterior probabilities among topicsf =
{P (z1|di), ...P (zk|di), ...P (zK |di)} is derived from the spec-
ified topic modelM̂T , where each topic has a multinomial dis-
tribution over the given vocabulary.

When incorporating the featuref into RNNLM training as
shown in Figure 1, a Bayesian interpretation of the RNNLM
probability for wordwi in a documentd′ is given by

Prnn(wi|hi,D, d
′) =

∫∫

Prnn(wi|hi, f)P (f |MT , d
′)

P (MT |D)dfdMT (2)

whereP (f |MT , d
′) is the topic posterior ofd′ given a model

MT trained on corpusD. The exact computation of the above
integral is intractable in general. Hence, approximationsare
required to make it feasible. For topic modelMT , a MAP esti-
mate is instead used

M̂T = argmax
MT

P (MT |D) = argmax
MT

P (D|MT ) (3)

when a uniform priorP (MT ) is used. When a further approx-
imation is made,P (f |M̂T , d

′) ≈ δ(f − f̂
M̂T ,d′), the topic

posteriorf̂
M̂T ,d′ can be obtained by maximisingP (d′|M̂T ).

Hence, the process in Equation (2) is be simplified as,

• maximum likelihood estimation ofM̂T as in Eqn. (3);



• computing the topic posterior vector̂f
M̂T ,d′ for docu-

mentd′ by maximisingP (d′|M̂T );

• f̂
M̂T ,d′ is used in RNNLM training or adaptation.

4.1. Probabilistic Latent Semantic Analysis

PLSA [13, 26, 27] is a generative model defined over a given
set of documents. Each of them is generated from a mixture
of latent topics. The EM algorithm is applied to maximise the
following likelihood criterion,

lnP (D|MT ) =
N
∑

i=1

M
∑

j=1

n(di, wj) ln
K
∑

k=1

P (zk|di)P (wj |zk)

wheren(di, wj) is the count of wordwj occurring in document
di. For a test documentd′, the topic probabilityP (zk|d

′) is
obtained by fixingP (wj |zk) and maximising

lnP (d′|M̂T ) =
M
∑

j=1

n(d′, wj) ln
K
∑

k=1

P (zk|d
′)P (wj |zk),

whereP (zk|d
′) is found as

P (d′|zk)
∑K

m=1 P (d′|zm)
=

∏M

j=1 P (wj |zk)
n(d′,wj )

∑K

m=1

∏M

j=1 P (wj |zm)n(d′,wj )
.

4.2. Latent Dirichlet Allocation

LDA [14, 28] adds a prior distributionp(θ;α) to relax the con-
straint of using a fixed set of document level topic posteriors
{P (zk|di)} in PLSA. Given a hyper-parameterα, a multino-
mial parameter distributionp(θ;α) is sampled. The document
topic posteriors{P (zk|di)} are then sampled from this distri-
bution. The following likelihood is maximised during training

lnP (D|MT ) =
N
∑

i=1

ln

∫ M
∏

j=1

(

K
∑

k=1

P (wj |zk)P (zk|θ)

)n(di,wj )

p(θ;α)dθ

The exact posterior inference using LDA is intractable, and
a variational approximation or a sampling approach can be used
instead. The Gibbs Sampling based implementation in [29] is
used in this work. The posterior probability of each topiczk
given documentd′ is computed as

P (zk|d
′) =

n(d′, zk) + α
∑K

m=1 (n(d
′, zm) + α)

(4)

wheren(d′, zk) is the number of samples belonging tozk for
documentd′.

4.3. Hierarchical Dirichlet Process

HDP [15] is a nonparametric Bayesian model for clustering
problems with multiple groups of data. Its modelling hierar-
chy consists of two levels. The first level samples the number
of topics and topic-specific parameters. The bottom level sam-
ples the topic assignment for each word in each document based
on the samples drawn from the top level. In PLSA and LDA,
the number of topics is chosen empirically, while HDP can es-
timate the posterior probability over the number of topics.Eqn.
(2) can be rewritten by sampling the topic modelMk

T with k

topics fromMk
T ∼ P (MT |D) as

Prnn(wi|hi,D, d
′) =

1

NMT

NMT
∑

n=1

Prnn(wi|hi, f̂
Mk(n)

T
,d′

), (5)

where the topic posterior̂f
Mk

T
,d′ can be obtained by maximis-

ing P (d′|Mk
T ). However, directly computing Eqn. (5) is not

practical as it requires to train multiple RNNLMs for varying
numbers of topics. To address this issue, the MAP estimate
M̂T = argmaxP (D|Mk

T ) is used as an approximation. The
open-source toolkit2 for HDP based on MCMC sampling is
used in this work. The topic posterior probabilitiesP (zk|d

′)
on test documentd′ are computed as in Eqn. (4).

5. Experiments
5.1. Experimental Setup

An archive of multi-genre broadcast television shows were sup-
plied by the British Broadcasting Corporation (BBC) and were
used for experiments. A total of seven weeks of BBC broadcasts
with original subtitles were made available and this gave after
suitable processing and alignment about 1000 hours of acous-
tic training data. A carefully transcribed test set containing 16.8
hours of data from 40 shows broadcast from one week was used.

A baseline acoustic model used standard PLP cepstral and
differentials transformed with HLDA and modelled with deci-
sion tree clustered cross-word triphones and used MPE training.
An improved Tandem model used 26 additional features gen-
erated by a deep neural network (DNN) with a bottleneck[30]
layer. Both a speaker independent version of this system
(Tandem-MPE) and one with CMLLR-based adaptive training
(Tandem-SAT) were used. The hypotheses from the Tandem-
MPE model was used as adaptation supervision. Details of the
construction of Tandem acoustic models can be found in [32].

The baseline 4-gram (4g) language model was trained on
about 1 billion words of text collected for US English broadcast
news and the 11 million words (MW) of BBC acoustic model
transcription with slight prunning, which includes 145M 3gram
and 164M 4gram entries. A 64K word list was used for de-
coding and language model construction. The RNNLM was
trained on the 11MW data using a 46K word input shortlist and
35K output shortlist. The 2231 BBC shows are labelled with 8
different genres (advice, children, comedy, competition,docu-
mentary, drama, event and news).

Genre
Train Test

#token #show #token #show

advice 1.8M 269 24.4K 3
children 1.0M 418 20.8K 7
comedy 0.5M 154 27.2K 5

competition 1.6M 271 25.8K 6
documentary 1.6M 302 57.8K 6

drama 0.8M 149 20.3K 3
events 1.2M 180 28.7K 5
news 3.1M 488 22.2K 5
Sum 11.5M 2231 227.1K 40

Table 1: Statistics of the BBC training and test data

Table 1 gives the statistics of the 11MW BBC data. The
average sentence length (with sentence start and end) on the
subtitle training set and the test set with manual segmentation
are 19.3 and 9.7 respectively and the OOV rate is 1.39%. The
corpus is shuffled at the sentence level for RNNLM training.
Stop words are removed for training of topic representations.3.
For training of genre dependent RNNLMs, a genre independent

2http://www.cs.princeton.edu/ chongw/resource.html
3Using stop words doesn’t affect performance in our experiments



model is first trained on all 11M data, then followed by fine-
tuning on genre-specific data or the use of a genre input code.
To allow the use of show-level topic adaptation, RNNLMs were
trained from scratch with the topic representation as an addi-
tional input.

The RNNLMs had 512 node hidden layer and were trained
on a GPU with a 128 bunch size [33]. RNNLMs were used
in lattice rescoring with a 4-gram approximation as described
in [21]. All word error rate (WER) numbers are obtained us-
ing confusion network (CN) decoding [34]. For all results pre-
sented in this paper, matched pairs sentence-segment word error
(MAPSSWE) based statistical significance test was performed
at a significance level ofα = 0.05.

5.2. Results for RNNLMs trained on 11M words

Table 2 gives the PPL and WERs for genre dependent
RNNLMs. From the results, the use of genre independent
RNNLMs gives a significant WER reduction of 0.7% absolute.
Genre dependent RNNLMs trained using both fine-tuning and
genre-codes both gave small statistically significant WER re-
ductions. The use of a genre-code is preferred since only one
RNNLM needs to be trained.

LM
PPL

WER
RNN +4g

4g - 123.4 32.07
rnnlm 152.5 113.5 31.38

+genre.finetune 148.7 110.4 31.29
+genre.id 144.2 109.3 31.24

Table 2: PPL and WER of genre dependent RNNLMs

In the next experiment, RNNLMs trained with show-level
topic representations were evaluated. In [9], each sentence was
viewed as a document in the training of LDA, and a marginal
(0.1%) performance gain was reported on a system using an
MPE-trained acoustic model. In this work, each show is pro-
cessed as a document for robust topic representation. The test-
set topic representation is found from the recognition hypothe-
ses using the 4-gram LM after CN decoding. For comparison
purposes the reference transcription is also used. For PLSAand
LDA, the number of topics used is 30 unless otherwise stated.

An initial experiment used the non-Tandem MPE acous-
tic model. The RNNLM gave 0.7% absolute WER reduction
over the 4-gram LM, and the LDA based unsupervised adap-
tation gave a further 0.4% WER reduction. The experimental
results using Tandem-SAT acoustic models are shown in Ta-
ble 3. PLSA and LDA gives comparable PPL and WER re-
sults. A 0.2% to 0.3% WER improvement4 and 8% PPL re-
duction were achieved. This is consistently better than genre-
dependent RNNLMs. It is worth noting that the PLSA and LDA
derived from reference (supervised) and hypotheses (unsuper-
vised) gave comparable performance. This shows that the topic
representation inference is quite robust even when the WER is
higher than 30%. The number of topics chosen by HDP is 24,
giving a slightly poorer PPL and WER than LDA and PLSA. It
is maybe related to parameter tuning since the number of top-
ics chosen by HDP was found sensitive to initial parameters.
Table 4 gives the PPL and WER results with different numbers
of LDA topics derived from the reference. The results show that
the performance is fairly insensitive to the number of topics and
30 gives the best performance in terms of PPL and WER.

4WER improvements are statistically significant.

Topic M Sup
PPL

WER
RNN +4g

- - 152.5 113.5 31.38

PLSA
hyp 137.8 106.3 31.16
ref 137.3 105.1 31.08

LDA
hyp 133.7 105.0 31.14
ref 134.1 104.2 31.07

HDP
hyp 138.9 106.6 31.19
ref 138.0 105.2 31.10

Table 3: PPL and WER of RNNLMs with topic representation

Topic Dim
PPL

WER
RNN +4g

20 138.7 106.4 31.13
24 139.3 105.8 31.16
30 134.1 104.2 31.07
40 137.1 104.3 31.11

Table 4: PPL and WER of RNNLM adaptation with LDA using
different numbers of topics

5.3. Results for RNNLM trained on 630M words

An additional 620MW of BBC subtitle data were also available
for LM training. A 4-gram LM trained on the 620M BBC sub-
title data was interpolated with the baseline 4g LM trained on
1 billion words. RNNLMs were trained on all 630M of text,
consisting of the 620M BBC subtitles and the 11MW of acous-
tic model transcription. RNNLMs with 512 hidden nodes were
again used.

LM PPL WER

4-gram(1.0G) 123.4 32.07

4-gram(1.6G) 103.9 30.84
+rnnlm(630M) 94.4 30.18
+rnnlm(630M+LDA) 89.6 30.03

Table 5: PPL and WER of RNNLM trained on 630MW data

Table 5 presents the PPL and WER results with the ad-
ditional 620M words of BBC subtitles. This subtitle corpus
reduced the WER by 1.2% absolute using a 4-gram LM, and
the RNNLM trained on 630M gives a further 0.7% reduction
in WER. RNNLMs with LDA topic features provided an ad-
ditional 0.15% WER reduction5 and a 5% PPL reduction with
unsupervised topic adaptation.

6. Conclusions
In this paper, RNNLM adaptation at the genre and show level
were compared on a multi-genre broadcast transcription task.
Simple fine-tuning on genre specific training data and the use
of a genre code as an additional input give comparable per-
formance. A genre code is preferred since it only uses a sin-
gle model. Continuous vector topic representations such as
PLSA, LDA and HDP were incorporated into the training of
RNNLMs for show-level adaptation, and consistently outper-
formed genre level adaptation. Perplexity and moderate WER
reductions were achieved on a state-of-art ASR system. Fur-
thermore, the use of LDA based topic adaptation is also effec-
tive when RNNLMs are trained on a much larger corpus.

5WER reduction is statistically significant.
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