Abstract for gee_tr704

Cambridge University Engineering Department Technical Report CUED/F-INFENG/TR704


A.H. Gee, G.M. Treece and K.E.S. Poole

15 June 2017

In humans, there is clear evidence of an association between hip fracture risk and femoral neck bone mineral density, and some evidence of an association between fracture risk and the shape of the proximal femur. Here, we investigate whether the femoral cortex plays a role in these associations: do particular morphologies predispose to weaker cortices? To answer this question, we used cortical bone mapping to measure the distribution of cortical mass surface density (CMSD, mg/cm2) in a cohort of 125 females. Principal component analysis of the femoral surfaces identified three modes of shape variation accounting for 65% of the population variance. We then used statistical parametric mapping (SPM) to locate regions of the cortex where CMSD depends on shape, allowing for age. Our principal findings were increased CMSD with increased gracility over much of the proximal femur; and decreased CMSD at the superior femoral neck, coupled with increased CMSD at the calcar femorale, with increasing neck-shaft angle.

In obtaining these results, we studied the role of spatial normalization in SPM, identifying systematic misregistration as a major impediment to the joint analysis of CMSD and shape. Through a series of experiments on synthetic data, we evaluated a number of registration methods for spatial normalization, concluding that only those predicated on an explicit set of homologous landmarks are suitable for this kind of analysis. The emergent methodology amounts to an extension of Geometric Morphometric Image Analysis to the domain of textured surfaces, alongside a protocol for labelling homologous landmarks in clinical CT scans of the human proximal femur.

[10.5 MBytes PDF, 21 pages]

(ftp:) gee_tr704.pdf (http:) gee_tr704.pdf

If you have difficulty viewing files that end '.gz', which are gzip compressed, then you may be able to find tools to uncompress them at the gzip web site.

If you have difficulty viewing files that are in PostScript, (ending '.ps' or '.ps.gz'), then you may be able to find tools to view them at the gsview web site.

We have attempted to provide automatically generated PDF copies of documents for which only PostScript versions have previously been available. These are clearly marked in the database - due to the nature of the automatic conversion process, they are likely to be badly aliased when viewed at default resolution on screen by acroread.