Chapter 5

Uncalibrated Stereo Facet

Reconstruction

In this chapter, existing stereo matching techniques are reviewed, and the
interaction between matching, reconstruction, and the epipolar geometry
15 discussed. An algorithm is presented for matching line segments in
weakly calibrated stereo and organising them into planar facets for grasp

planning.

5.1 Introduction

Our goal in this chapter is to reconstruct, in an image-based frame, the shapes
of objects in the robot’s workspace. Many robot grippers consist of two parallel
jaws, and such a mechanism is well suited to grasping objects with parallel planar
surfaces. Thus a useful representation of the object for grasp planning would be
a description of the visible planar facets. We shall assume that these facets are
bounded by straight edges: thus the problem becomes one of matching edges in
stereo views and recovering a description of the position and extent of each facet.

Our stereo vision system is weakly calibrated, meaning that the epipolar geome-
try and camera parameters are known only to a low level of accuracy, because only a
simple self-calibration process has been performed, and the cameras may be subject
to disturbances.

A large number of algorithms exist for stereo correspondence: they are sum-
marised in section 5.2. None of these was entirely suitable for our purposes. Corre-

lation and corner-based systems can be used to recover both structure and epipolar
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CHAPTER 5. UNCALIBRATED STEREO FACET RECONSTRUCTION

geometry, but are unable to match some indoor scenes in which corners are sparse,
similar in appearance to one another, or confined to a few planes. Edgel-based
systems give excellent results with rectified images, but are sensitive to errors in
epipolar geometry because they match along epipolar lines. Line segment matching
is more robust in weakly calibrated stereo, but the 3-D reconstruction of lines can
be inaccurate unless extra constraints (such as junctions and coplanarity) are taken
into account.

A novel system was therefore developed, extending existing algorithms for line
segment matching and incorporating image-based coplanarity grouping, to recon-

struct scenes composed mainly of straight edges and planar facets.

5.2 Review of stereo matching techniques

To reconstruct a scene from a stereo pair, it is necessary to find which points in the
two views correspond to the same point in space. This is known as the stereo corre-
spondence problem. For object reconstruction or recognition, the matched features

must then be grouped to form surfaces and objects.

5.2.1 Feature extraction

Correspondence algorithms (reviewed in [98]) operate either on individual pixels
or general patches of the images, or more commonly on a smaller set of features

extracted independently in each image (see figure 5.1):

Intensity-based matching. In some cases, pixels on corresponding epipolar lines
in the two images can be matched by their intensities [104], but this is easily
defeated by noise, reflectance characteristics or differences in the photometric
response of the cameras. To overcome noise and camera response differences,
the outputs of local filters are considered, such as the smoothed derivative
of intensity along the epipolar lines, or the ratio of intensity derivative to
intensity [126].

Cross-correlation. Patches between images can be matched by looking for max-
ima of normalised cross-correlation or some other measure of similarity be-
tween the views [91]. This assumes that the apparent motion of each patch

between views is a translation, i.e. depth variations are small.
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5.2. REVIEW OF STEREO MATCHING TECHNIQUES

Figure 5.1: Features extracted from an image: (a) original image; (b) corners detec-
ted using INRIA corner finder [138]; (c) edges detected using Canny’s algorithm [14];
(d) straight line segments fitted to edges.
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Edgels. These are points of maximal intensity gradient after smoothing with a filter
designed to reject noise [14, 30], or ‘zero crossings’ after convolving with V2G
at a given scale [81, 45]. This provides a reasonable distribution of matchable
features across the images which are well localised and also geometrically very

significant, often coinciding with depth or orientation discontinuities [100, 32].

Corners. These are points around which intensity variation occurs in more than
one direction, making them good candidates for matching by cross-correlation
as well as points of likely geometrical significance. They can be detected using
ratios of first and second-order differential operators to find edge-like points
having maximal curvature [94, 132], or points of maximal auto-correlation
after Gaussian smoothing [57]. By matching only the corners, the complexity
of the correspondence problem is greatly reduced; the rest of the scene can be

reconstructed by interpolating between corners using triangulation [55].

Line and curve segments. Edgels generally exhibit continuity and are grouped
into chains in each image. These chains can then be segmented into straight
line segments [6] or parametric curves such as B-splines [47, 17], and entire
segments matched between images, reducing the computational complexity.
In the presence of noise and quantisation errors, lines and parametric curves
can be localised to higher precision than individual pixels. However, the seg-
mentation of chains is not always stable with respect to viewpoint changes, so

the matches between images are not always 1-to-1 [84].

Higher-level features and groupings. In some environments in which the forms
of objects are modelled it is possible to apply ‘perceptual grouping’ to features,
organising them into higher-level structures by the detection of symmetry,
parallelism, clustering or similarity within the image [80, 74]. By matching
entire groupings, the search space for correspondence is reduced. Systems
have been proposed which match a hierarchy of features, using both bottom-

up monocular grouping and top-down stereo matching [87, 20].

5.2.2 Matching constraints

Most stereo systems exploit the epipolar constraint which restricts the search for

matching features to a one-dimensional one. Often they require the images to be
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rectified. Limits may be imposed on the magnitude of the horizontal disparity
between views, effectively bounding the depth range of reconstructed features.

A pair of features lying within the allowed window of disparity are considered a
candidate match if they are sufficiently similar in appearance (e.g. for edgels, if their
orientation difference is within a certain range). However, ambiguities often arise,
which can be resolved only after considering the interactions between candidate

matches. Constraints used to disambiguate matches include:

Uniqueness. A point in the world has only one 3-D position at a time. Therefore
a feature in one image can match at most one feature in the other [82]. This
constraint can be broken when matching group features such as curve segments

which may be organised differently in each image [84, 6].

Ordering. The order of matching features along the epipolar lines will usually be
the same in both images [7]. This constraint is occasionally broken at the
occluding edges of slender objects, or where there is transparency [98, 60], but

is obeyed by most images of opaque solid objects.

Surface shape. Constraints can be imposed on the shape of reconstructed or in-
terpolated surfaces, to aid matching. The simplest of these are smoothness
constraints, which assume local planar structure [60, 83]; and limits on the
disparity gradient, to favour a continuous variation of depth [100]. These con-

straints cannot be applied at occlusion boundaries in the images.

Continuity. When matching edgels, it can be assumed that edgels that are con-
tinuous in the image also connect in space, and that the disparity of an edge
will change smoothly along its length as it crosses the epipolar lines [98, 95].
Similarly line or curve segments which meet at a point in one image are likely

to correspond to segments which meet in the other [101].

5.2.3 Matching algorithms

Many algorithms have been proposed for binary matching for computer vision and
other applications. The problem in general is to find the subset of the candidate
matches (of which there are up to n? where n is the number of features) which give
an optimal correspondence between images, subject to given matching constraints.
To a large extent, it is the form of those constraints which determine the algorithm

used and its complexity.
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CHAPTER 5. UNCALIBRATED STEREO FACET RECONSTRUCTION

With only the uniqueness constraint, a procedure such as the ‘stable marriage’
algorithm of Knuth et al. [66] can recover the optimal set of matches. This iterates
through the features of one image, enumerating the candidate matches for that
feature and choosing the one with greatest strength, whose feature in the other
image is not already associated with a stronger match. A record is kept of the best
match found so far for each feature. Complexity is O(n?) in the number of features.
Where additional mutual exclusivities must be imposed, a further depth of iteration
is required to find all the matches, and complexity rises to O(n?).

For edgel matching, correspondence can be formulated as a dynamic program-
ming problem in which a ‘path’ must be found across each epipolar plane obeying
the ordering and uniqueness constraints whilst seeking to minimise the disparity gra-
dient, visiting each accepted match in left-to-right order [7]. Complexity is O(n?)
in the number of edgels on each epipolar line. Results can be enhanced by using
connectivity information from the neighbouring epipolar planes [95], but this greatly
increases computational complexity.

Correlation-based region matching can be made more efficient by imposing sur-
face shape smoothness constraints and by the use of multi-scale algorithms that
estimate disparities at successively finer resolutions [93]. Such an approach has also
been applied to edge matching using a bank of V2G filters of different sizes [44].

In general, stereo matching of discrete features can be posed as a cooperative
problem, with matching constraints taking the form of mutual positive or negative
support, and/or mutual exclusivities between sets of two or more matches. Such a
problem can be solved by a relazation algorithm [82, 100, 84, 20]. Essentially, this
iteratively updates the support given to each candidate match so as to minimise an
objective function encoding the matching constraints, until all matches have been
selected or rejected. An algorithm of this class will be used in section 5.4 in the
design of our weakly-calibrated matching system.

The general form of a stereo vision system is summarised in figure 5.2.
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Figure 5.2: Overview of the steps and data representations of a typical feature-based

stereo matching algorithm.
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CHAPTER 5. UNCALIBRATED STEREO FACET RECONSTRUCTION

5.3 Uncalibrated stereo considerations

The behaviour of stereo matching systems with uncalibrated cameras is now dis-
cussed. Corner-based matching can be used to recover both scene structure and
epipolar geometry, provided there is a sufficient density of correct matches. Edge-
based matching is denser and more robust, but cannot be used to update the epipolar
geometry directly. Hence reconstruction is sensitive to rectification errors, and un-
calibrated reconstruction is not generally possible. Coplanarity constraints are one
way to resolve this problem, and groups of coplanar features can be identified in

uncalibrated stereo and reconstructed up to an affinity.

5.3.1 Point features

Much recent work on reconstruction without a prior epipolar constraint has relied on
point features such as corners. These can be matched in stereo [138] and successfully
tracked over long sequences of images in structure-from-motion [10], especially in
natural scenes which tend to be rich in non-repeating texture. Robust statistical
methods such as RANSAC [38] enable the fundamental matrix to be estimated even
when there is a proportion of false matches [138, 127, 70]. The epipolar constraint
enables most of the erroneous matches to be rejected, and the scene reconstructed
up to a projectivity or affinity (as in chapter 2).

Figure 5.3 shows the results of the uncalibrated corner matching algorithm of
Zhang et al. [138] on some indoor test scenes. The system uses cross-correlation
between views to match corners, and a relaxation algorithm to enforce the uniqueness
constraint; a fundamental matrix is then fitted to the correspondences using a robust
estimator (Least Median of Squares [110]), and the matching process repeated using
the recovered epipolar constraint.

This algorithm works well on highly textured or heterogeneous scenes (such as
the 1ab images in figure 5.3c) where many corners can be localised and matched by
cross-correlation, correctly recovering both the epipolar geometry and a dense set of
correspondences. However, with simpler images (such as figure 5.3d), the density of
correctly matched points is lower. The ‘corners’ detected in the images do not always
coincide with polyhedral corners. Thus in the absence of texture, corners alone may
not give a sufficiently detailed reconstruction for surface modelling, e.g. for robot

grasp planning.
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Figure 5.3: Results of corner matching [138] and estimated epipolar lines: (a) cube
scene; (b) test scene; (c) lab scene; (d) blocks scene. Sparsity of corners and high

incidence of coplanarity leads to incorrect solutions in (a) and (b).
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On some images, such as the test and cube pairs, uncalibrated corner matching
fails entirely: the corners look too similar to be distinguished by correlation, and
the predominance of planar facets proves to be a hindrance rather than a help: large
coplanar subsets of points can defeat the robust estimator and lead to a degenerate

solution for the fundamental matrix (figure 5.3a,b).!

5.3.2 Edge-based features

We shall now consider the feature type most prominent in many indoor scenes, edges.
Because they are localised in only one dimension, matching of edge elements depends
upon prior estimation of the epipolar constraint, and edgels tangent to the epipolar
lines cannot be matched uniquely [100]. This is the aperture problem in stereo [131].
But by grouping the edgels into line or curve segments, complexity is reduced and
the epipolar constraint can be relaxed to require that matching segments overlap
when projected into the rectified vertical axis (that is, their ranges of y and 3’ values
intersect ), the degree of overlap indicating how well aligned the segments are in the
two views [6, 137]. This allows some segments to be matched with only approximate
epipolar calibration.

Ayache [6] presents an algorithm for matching line segments in rectified stereo
pairs, in which matches give support to each other if they are nearby (according
to a coordinate bucketing scheme) in both views. Hypothetical matches are formed
between line segments if the y coordinate of the midpoint in one image falls within
the range of y' values of the other (and wvice versa), and if their lengths and ori-
entations are similar within limits inferred from the camera geometry [4]. Matches
are accepted if they give rise to maximal cliques of supporting matches under the
uniqueness constraint. Reconstruction is performed under the assumption that the
cameras are accurately calibrated.

Zhang [137] has used a numerical search method to solve for the camera motion
(hence the epipolar constraint), given two intrinsically-calibrated images of matched
line segments, by seeking to maximise the total epipolar overlap, thus permitting
uncalibrated reconstruction. However, the system is not well constrained, and a very

large number of segments is required for a satisfactory solution.

1One way to avoid this problem would be to search for sets of points consistent with a degenerate
model (e.g. planes), then solve for the epipolar constraint using whatever features (if any) remain.

This is essentially the approach taken by the PLUNDER motion segmentation algorithm [127].
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5.3.3 The problem with vertical disparity

Consider the case when the epipolar constraint is inaccurately modelled. Corre-
sponding features will exhibit misalignment or wertical disparity.? This vertical
disparity will affect the 3-D reconstruction of any one-dimensional features such as
edgel chains, lines and curves, which depend on the epipolar geometry to establish
matching points and recover depth. What is more, the error varies with orientation:
each unit of offset induces a horizontal disparity error of tan #, where 6 is the angle
to the vertical (horizontal lines cannot be reconstructed at all). Figure 5.4 shows
the results of this error, and its disruptive effect on plane reconstruction.

The vertical disparity problem can be overcome if line or curve segments are
known to have matching endpoints: one can simply solve for the 3-D coordinates of
the endpoints in some approximate (affine) world frame, or use them to re-estimate
the fundamental matrix. This is not always the case in real images, due to the
fragility of line fitting and segmentation (in the case of curve segments, it may be
possible to match other distinguished points such as bitangencies for plane curves,
or tangencies to the epipolar lines [102, 5]). However, where line segments meet at
a junction in space — and more generally where they are coplanar but not parallel
— their intersections in two images can be used as accurate point correspondences;

this is exploited in section 5.5.

5.3.4 Coplanarity grouping of line segments

For the reconstruction of planar surfaces, it is necessary to group matching line
segments into planar facets. Plane grouping could take place between matching and
reconstruction; it could also be performed concurrently with the matching process,
to favour candidate matches which belong to well-supported planar facets.
Coplanarity of line segments cannot be detected unambiguously in a single image,
but requires stereo. Lines that are parallel in two weak perspective images are
necessarily coplanar in space, though they might not be physically connected. Line
segments which meet at a junction in both images are generally coplanar, unless the

junction has been caused by occlusion (a ‘broken T-junction’).

2The terms horizontal, vertical and disparity are used here to mean the x, y and (2’ — )
quantities in a rectified coordinate system. This does not imply that both images must be rectified,
merely that some estimate of the epipolar constraint is available by which rectified coordinates

could be calculated.

81



CHAPTER 5. UNCALIBRATED STEREO FACET RECONSTRUCTION

(a) A pair of synthetic images of 20 line segments,

and side view reconstructed from horizontal disparities

(¢) One of the images has been rotated by 3°,

causing non-uniform vertical disparity

Figure 5.4: The effect of vertical disparity on edgel-chain, line or curve segment
reconstruction in rectified stereo. Because the error induces a horizontal disparity

that varies with orientation, the planar structure of the scene is destroyed.
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With known epipolar constraint

Coplanarity can be tested using the following theorem: Two non-parallel lines
are coplanar if and only if their intersections in two images lie on cor-
responding epipolar lines.®> Whereas if they are not coplanar, there will be a
vertical offset between their apparent intersections in the two images (in fact, this
offset or pseudo-disparity is a cue to the depth difference of the segments [78]). This
test is sensitive to errors in the epipolar geometry, though appropriate limits can
be placed on the amount of vertical disparity allowed. Its resolution is therefore

degraded as epipolar constraint uncertainty increases.

With unknown epipolar constraint

Even without camera calibration or an epipolar constraint, a pair of images can be
segmented into planar regions by the following theorem: Two views of a planar
surface are related by a two-dimensional projective transformation; fea-
tures are consistent with this transformation if and only if they lie on the
plane. In weak perspective, the transformation will be affine (see chapter 2).

Faugeras and Lustman [34] use this theorem to recover correspondence of line seg-
ments on a single plane, by hypothesising a set of matches that define a collineation
between views, and testing for consensus with other segments. A Kalman filter is
used to refine the estimate of the transformation. They show that two views of the
plane allow structure and motion to be computed up to scale and a two-fold ambi-
guity (for intrinsically calibrated cameras). The ambiguity can be resolved using a
second plane or a third view. The principle is not tested on more complex scenes.

Sinclair and Blake [118] use 2-D projective invariants to detect sets of 5 or
more coplanar points (given corner correspondences) and construct an approximate
piecewise-planar model of terrain with application to mobile robot navigation.

A drawback of this method is that it requires a minimum of four (or three) lines
or points to define the projective (or affine) transformation, and at least one other
feature to verify it. Hamid et al. [52] show that, for a typical stereo camera geometry,
feature localisation must be to sub-pixel accuracy to segment nearby planes reliably

using such an algorithm alone.

3Qutline proof: For the lines to intersect in both views at corresponding epipolar lines, each
line must exhibit the same disparity where it crosses this epipolar plane, therefore they must be

at the same depth. This is degenerate if one or both lines are horizontal.

83



CHAPTER 5. UNCALIBRATED STEREO FACET RECONSTRUCTION

5.4 An algorithm for uncalibrated matching

This section describes a stereo matching algorithm which operates on line segments.
It is based upon existing techniques, but has been designed to deal explicitly with
the bounded uncertainty in epipolar line correspondence found in weakly calibrated

stereo. Figural relations between segments are analysed to add robustness.

5.4.1 Feature extraction

It was found that corners and correlation-based algorithms do not always give the
required density and resolution of reconstruction for the recovery of facets. Edgel-
based matching along epipolar lines was also rejected because of the problem of
epipolar misalignment, which could disrupt planar surfaces. Edge segment matching
was therefore chosen. For simplicity only straight edges are considered here; though
much of our approach could be extended to curve segments.

Line segments were extracted from Canny edgel data [14] using a recursive algo-
rithm that searches for straight segments of edgel chains (figure 5.1(d), p73). Each
segment is represented by its endpoint coordinates; and associated with it are un-
certainty measures for its orientation and normal offset, obtained from the residual

errors after fitting it to the edgels by orthogonal least squares [122].

5.4.2 Monocular relations

Consider figural relations between just two line segments in a single image (figure
5.5). It is assumed that the edges are extracted in such a way that segments do not

cross. Notable binary relations include:

Parallelism. Parallelism between segments (within some given margin of error)
can be determined very quickly using an orientation bucketing scheme. It is

obviously not meaningful to look for the intersection of parallel lines.

Collinearity. This is a special case of parallelism. Collinearity is used to extend
the uniqueness constraint to line segments: because of the fragility of line
segmentation, one or more collinear segments in the first image may match

one or more collinear segments in the second.
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Junction. This occurs when an endpoint of one segment in an image lies within
some maximum distance of an endpoint of another segment, suggesting that

the edges are coincident in space.

Collinear junction. This occurs when segments are collinear and meet at a junc-
tion. Such junctions are not generally stable between views; they could also
be a component of a ‘broken T-junction’ between occluding and occluded seg-

ments.

T-junction. This occurs when the endpoint of one segment lies close to another

segment. It suggests an occlusion boundary.

The system identifies these relations between segment pairs in each of the two images.
The threshold angle for parallelism was set to 3° greater than the given orientation
uncertainty, to detect parallel lines in the presence of optical distortion or mild
perspective effects. For junction detection, endpoints were required to be within
6 pel (or up to 12 pel for longer or more uncertain segments) of a point extended
3 pel out from the other segment’s endpoint. These limits were chosen to defeat
the observed ‘corner-rounding’ behaviour of the edge detection and line fitting code,

caused by the isotropic smoothing stage of Canny’s algorithm.

IR

@ (b) (©

.\o

(d) (€ ()

Figure 5.5: Binary figural relations between line segments in a single image: (a) gen-

eral case (b) parallel (c) collinear (d) T-junction (e) junction (f) collinear junction.
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The search for related segments could be accelerated considerably by sorting
them into ‘buckets’ [65] of segments whose orientations or endpoint coordinates lie
within particular intervals: for a typical image of 200 segments with 2000 related

pairs, execution time is approximately 0.25 seconds.

5.4.3 Candidate matches

The next stage in the algorithm is the enumeration of ‘candidate matches,” or seg-
ment pairings between images that could possibly be images of the same edge in
the world. To generate these, an approximate epipolar constraint is required —
this can be a linear estimate, provided by just four reference points*. The matching
criteria are based on those of Medioni and Nevatia [84] and Ayache [6], with some

adaptations for weakly calibrated stereo:
e Epipolar overlap as a fraction of total vertical extent (min. 25%),
e Length ratio in a ‘vertically stretched’ rectified frame (max. 3),
e Orientation difference in the rectified frame (max. 60°),
e Disparity limits extrapolated from the disparities of the reference points.

The constant values specified in the criteria were chosen by hand to optimise per-
formance, though the system is not critically sensitive to any of them.
Notes:

1. The epipolar overlap criterion is broadened somewhat by allowing up to 16 pel
of vertical offset, to overcome rectification errors. This allows many nearly-
aligned segments to be matched (including horizontal ones) even when they

show no overlap at all.

2. Length and orientation comparisons are performed in a ‘vertically stretched’
rectified coordinate system. This gives more weight to the direction normal to
the estimated epipolar lines which should be invariant to viewpoint changes;
but also takes into account the component along the epipolar lines, to allow
near-horizontal features to be compared and matched. For typical stereo cam-
era configurations, length and orientation differences will be within the above

bounds for all except the most foreshortened of matching segments.

4If no reference points are available, it is assumed that the epipolar lines are approximately

horizontal and the range of permitted disparities is £100 pel.
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Angle threshold and orientation-based support:

2(cos0;; — 0.5) if cos6,; > 0.5,
;5 =
! 0 otherwise.

Length-ratio threshold and support:

1.5(L;/L; —0.33) if L; < L) < 3L;,
bij =4 1.5(L;/L; —0.33) if L) < L; < 3L,

0 otherwise.

Epipolar overlap constraint and support:

B OVERLAP (Yifo]--Yi{1]; Yo} Yjpy) + 16.0
MAX (Yifo], Yif1]s y;'[()]a y;'[1]) — MIN(Yi[o], Yi[1] y;'[()]a y;'p])

3(Ai; —0.25) if 0.25 < \j; < 1,
Cij = 1 if Aij > 1,
0 otherwise.

Midpoint disparity limits:
0ij = 5 (20 + @y — Tago) — wiy)

. 1 if 6MIN < 5ij < 5MAX
N 0 otherwise.

Overall intrinsic support of the candidate match:

0ij = Qi bij cij dij
Table 5.1: Algebraic summary of the constraints for a candidate match between
segments. ¢ and j are segment numbers in the first and second image respectively.

Angles and lengths are in a ‘stretched’ rectified frame in which the vertical compo-

nent has double weight. The pair is considered a candidate match if o;; > 0.
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3. Matches are only permitted on segments having the same sense in each image,
i.e. originating from edges having the same sign of gradient. Practically all
correct matches will meet this criterion (except occasionally at an occlusion
boundary where there is background intensity variation), whilst a further 50%

of false matches are rejected [6].

Again, bucketing is used to speed up the search, indexing the segments which in-
tersect a number of epipolar bands. Each test assigns a number to the candidate
match, indicating by what margin the criterion is met; these are multiplied to yield
the intrinsic support of the match (see table 5.1).

In tests with 8 stereo pairs of blocks and laboratory scenes, between 5%-20% of
the line segments in each image could not be matched according to these criteria, and
about 50% had more than one candidate match. The average number of candidate

matches per line segment varied between 1.5 and 3.0.

5.4.4 Inter-match constraints

In our scheme, matching constraints are expressed by two types of relations be-
tween candidate matches: mutual exclusivities between pairs of matches (hereinafter
dubbed RIVALS), and mutual positive support between matches (FRIENDS). The
ordering constraint is extended for weakly calibrated stereo, and a novel connectivity

constraint is introduced, based on junction relations common to both images.

Uniqueness constraint. Matches that share a segment in either image are RIVALS,
unless they are collinear and connected in the other image (as this could be

due to fragmentation of the edgel data).

Ordering constraint. For approximately rectified stereo views, we extend the or-
dering constraint to matches that ‘cross over’ in a vertical as well as a hori-
zontal sense (figure 5.6). ‘Epipolar ordering’ is tested for segments that inter-
sect one another’s projection onto the (rectified) vertical axis in both views;
‘General ordering’ is violated by segments that cross one another during a lin-
ear warp between views (assuming matching endpoints), which was found by
human inspection to be an important cue for spotting inconsistent matches.

Out-of-order matches are RIVALS.

Collinearity. Matches that are collinear in both images are FRIENDS (since this
does not generally happen by accident, it suggests they are correct matches

and derive from collinear features in the world).
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@ (b)

Figure 5.6: Ordering constraint violation by segments with vertical disparity: mat-
ches 1 and 2 are out of order — they ‘cross over’ between views (a) and (b), even

though they are ordered in the direction of the estimated epipolar lines.

Connectivity. Matches are FRIENDS if they have common junction or T-junction
relations in both images; but RIVALS if they have incompatible junction rela-
tions (i.e. they meet at different endpoints, implying a large relative motion

between views).

5.4.5 Constraint propagation

Our goal is to try to find a set of matches with maximal total support, consistent
with all the matching constraints. The solution should favour pairs matches which
are FRIENDS of other chosen matches, but not include any pairs of RIVALS.

This is achieved by an iterative algorithm that propagates FRIEND and RIVAL
constraints between matches. To start with, a proportion of each candidate match’s
intrinsic support is added to the support of each of its FRIENDS.

At each iteration, we enumerate the ‘winning’ matches having greater support
than any of their RIVALS®. A proportion of the least ambiguous winners is then
selected — these are the winners with the greatest support difference over their
nearest rival. These matches are considered correct: their FRIENDS receive extra
support, and their RIVALS are eliminated. As matches are eliminated, they withdraw
the support that they earlier gave to their FRIENDS. The process repeats until all

matches have been either promoted or eliminated.

5The search is made efficient by use of the uniqueness constraint which partitions the matches
into small sets of RIVALS (where there are multiple collinear matches, for simplicity only one is

promoted at each iteration).
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This is a ‘some-winners-take-all’ algorithm (similar to that described by Zhang
et al. [138] in the context of corner matching; cf. [100] for a related strategy for edgel
matching). In our implementation, only i of the winning matches are promoted on

the first iteration, as this helps to prevent early convergence to a local minimum;
2
g.
is not guaranteed, though the final set of matches must be consistent and locally

thereafter this rises to . As with other relaxation algorithms, an optimal solution
optimal. Convergence is assured so long as at least one winner is promoted each
time, and generally occurs after 4-10 iterations. With the use of suitable data
structures, already-matched segments can be skipped, making each iteration faster

than the previous one.

5.4.6 Epipolar constraint re-estimation

If the initial estimate of the epipolar geometry was inaccurate (or missing, and
assumed horizontal), it is useful to recompute the epipolar constraint and repeat the
matching process. We use the junction relation between segments to find intersection
points that correspond between views. There are very few outliers amongst such
points, but some of the junctions may be false intersections generated by occlusion
(‘broken T-junctions’); therefore, an iterative re-weighting scheme is used to reject
those furthest from their supposed epipolar lines.® The parameters of the epipolar
constraint (in the form of equation 2.9) are estimated using linear least squares.
Often the number and accuracy of correspondences is improved by repeating the
matching process using the newly recovered epipolar constraint and disparity limits.
It should be noted that the above matching algorithm can function even with some
epipolar mismatch, and there is never any benefit to repeating the process more

than twice.

5.4.7 Results

Figure 5.7 shows how the algorithm matches line segments on a pair of simple ‘cube’
images by propagating qualified uniqueness, epipolar ordering, general ordering and
connectivity constraints. The cameras were arranged by hand to be roughly rectified,
but no calibration was performed. 39 and 40 line segments were detected in each

image. Correspondence was solved for 35 segments in four iterations.

6The weight for each point match is proportional to 16 — |y’ —y| and falls to zero for junctions

with vertical offsets above 16. Just 4 junctions within this range are required for the method to
be successful.
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(d)

Figure 5.7: Matching by constraint propagation: (a) line segments from the cube
images; (b) ‘least ambiguous’ segments matched on the first iteration; (c) segments
matched after 2 iterations; (d) final result reached after 4 iterations.

Uncalibrated views — epipolar lines roughly horizontal.
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Figure 5.8: Matched (black) and unmatched (grey) segments from 4 stereo pairs:
(a) test scene (no calibration); (b) roof scene (given 4 point correspondences);
(c) lab scene (rectified using corner matching); (d) blocks scene (no calibration).
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