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Summary

The quest for cost-effective supercomputing performance has been hindered largely by the
complexity and lack of usability of the software involved.

Techniques have been devised to address these issues. On the one hand, compilers
have been constructed that attempt to parallelize serial programs. On the other hand,
languages have been devised that enable parallelism to be extracted easily. However, smart
compilers have proved relatively bad at generating efficient parallel programs and parallel
languages have proved difficult to use.

More recently, various software techniques have been proposed for reducing the imple-
mentation complexity of parallel software. Among these techniques are those of object-
oriented programming and the divide-and-conquer algorithm. However, both these tech-
niques fall short of the ideal. Parallel object-oriented languages are easy to use but do
not necessarily yield high performance. The divide-and-conquer algorithm yields ready
parallelism but is syntactically poor.

The objective of this thesis is to use object-oriented techniques to express parallelism
in a way that enables divide-and-conquer evaluation to be performed easily, but which is
also easy to program. The result is accessible, efficient parallelism.

To achieve this, a system is designed for implementing problems on parallel computer
hardware using these techniques. This system is composed of two parts. The first part is
a run-time system that evaluates divide-and-conquer problems which have been expressed
using an object-oriented framework. The second part is a library of simple divide-and-
conquer problems.

Object-oriented technology is a way of writing programs that reflect the structure of
the real world. This thesis demonstrates that the use of this technology enables divide-
and-conquer problems to be implemented easily, and enables complex problems to be
implemented through the combination of simpler divide-and-conquer expressions.

The experimental work of this thesis focuses on the implementation of real-world prob-
lems. This enables a more objective assessment of the success of the system to be made,
in terms of both parallel performance and ease of programming. The implementation of
many of these problems is both original from a parallel perspective as well as a divide-and-
conquer perspective. The problems addressed include: a neural network algorithm where
the limiting factor is the size of the model; a neural network algorithm where the limiting
factor is the amount of training data; and a speech recognition algorithm for making word
predictions based on their context.

As well as contributing a general parallel-programming system, this thesis contributes
novel object-oriented techniques and implementation enhancements for the divide-and-
conquer algorithm. One technique enables maximum computation to be achieved in a
divide-and-conquer evaluation. Another enables divide-and-conquer implementations to
be scaled effectively.

This thesis concludes that the techniques presented do enable problems to be imple-
mented efficiently, in parallel, with a minimum of programmer effort. The techniques
employed mean that each implementation benefits its successor, and this is reflected in
the implementations discussed in this thesis.

Keywords: Parallel processing, object-oriented programming, divide-and-conquer.
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Chapter 1

Introduction

There is only one basic way of dealing with complexity: Divide and conquer.
B. Stroustrup

Parallel processing has the potential to deliver cost-effective supercomputing power.
However, if the benefits of parallel processing are to be experienced by applications pro-
grammers of all abilities, then the difficulties in implementing parallel programs need to
be tackled. Two common approaches to the problems of achieving this accessible paral-
lelism have emerged. The first approach involves producing a custom language for which
language constructs can be easily implemented in parallel — for instance functional lan-
guages. The second approach involves taking a serial program and extracting parallelism
from it using a compiler. These two approaches both fail to some degree because of their
extremity. Custom languages that are easily parallelized are not generally suitable for
tackling complexity. The compiler benefits, the programmer does not. Parallel feature ex-
traction is difficult and inefficient at best, and limited by the number of parallel features
present in a program. At worst it is impossible. The programmer benefits at the expense
of parallelism.

Divide-and-conquer (D&C) [3, 38] in conjunction with object-oriented programming
[102] may offer a middle ground which achieves the best of both worlds. D&C is a well-
studied computational paradigm that can be easily and efficiently parallelized. Object-
oriented programming allows the complexity of the parallelism provided by D&C to be
hidden from the programmer. At the same time the programmer can benefit from the
features of object-oriented programming in general. This thesis presents an object-oriented
framework for D&C, describes the benefits of the object-oriented approach and develops
a number of applications within this framework.

1.0.1 Thesis organization

In chapter 1 we give an overview of relevant parallel processing research, object-oriented
techniques and the D&C algorithm. In chapter 2 we describe the general ethos behind
D&C in an object-oriented environment, and demonstrate that the idea is practically vi-
able. In chapter 3 we describe a more sophisticated design for an object-oriented, D&C
system. We go on to introduce classes based on this system, and outline its practical
implementation. In chapter 4 we describe some further D&C classes, and analyse theoret-
ically the D&C algorithm. We also describe the implementation of a practical problem. In
chapter 5 we examine a D&C implementation of the Kanerva model and, using this model
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as a basis, develop some additional D&C classes. Finally in chapter 6 we summarize the
thesis and its contribution.

1.0.2 Background

Research into parallel processing has been motivated in the main by its potential to de-
liver cost-effective computational power. It allows, or should allow, complex problems to
be solved faster and more cheaply than ever before and creates the opportunity for solv-
ing problems of previously unmanageable size. However, parallel processing and parallel
programming have turned out to be hard problems; problems that have consumed much
in terms of man hours and computational resources. Solutions to this ‘hardness’ have
emerged which generally compromise usability whilst maintaining efficiency, or, compro-
mise efficiency whilst maintaining usability. This thesis argues that both these approaches
are not ideal in producing accessible parallelism and discusses some previous solutions
which represent ‘half-way houses’. It then argues that some of these solutions are them-
selves not ideal in solving real problems and presents an alternative solution. This solution
combines the D&C paradigm [3] to utilize parallelism, and object-oriented programming
[102] to express this parallelism and abstract it from the D&C internals. The characteris-
tics of D&C and object-oriented programming are discussed and the combination of the
two in this context outlined. Results are then presented to demonstrate the efficiency of
the system in terms of programmer productivity and processing speed.

1.0.3 Approaches to parallelism

Two general approaches to the general problems of parallelism have emerged. The first
approach involves taking an individual problem and trying to find the most efficient par-
allel solution for it; systolic [75] algorithms for instance. The second approach involves
taking any solution specification and transforming it in such a way as to achieve maximum
possible parallelism from it - the holy grail of parallel processing; vectorizing FORTRAN
compilers for example [69].

The first approach yields solutions that are fast and efficient but unapplicable, in any
but the most general sense, to most other problems. This approach generally requires a
high-level of expertise both in the theory of the problem concerned and in the problems
of parallel processing. Additionally, it exacts a high development cost for each problem
solved.

The second approach is, in general, not possible as it requires parallelizable features
to be present in a given solution - do loops, independent function calls, parallel data etc.
If these features are not present then the solution is not parallelizable. Solutions that
are in some way, parallelizable are generally realized with a high degree of inefficiency.
However, the solution gaining process can be applied to many different types of problem.
This approach initially requires an extremely high-level of expertise in parallel processing
and problem solving in general and exacts an extremely high development cost. However,
each problem subsequently solved with this system, requires little knowledge of parallel
processing and a relatively low development cost.

Neither solution can really be justified as cost-effective in a global sense. If cost-
effective means acceptable development time and acceptable performance then it can only
be achieved through accessible parallelism. The need for accessible parallelism has moti-
vated many efforts which fall into an area between the solutions referred to above. These
efforts involve placing constraints on the solution method which allow inherent parallelism
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to be extracted easily. This approach commonly involves constraints on the input speci-
fication, i.e. language, and thus requires some degree of expertise in using such an input
specification, but requires little intimacy with parallel processing / programming concepts.
Functional languages are a common example of this approach - problems solved using a
pure functional language may be easily parallelized using parallel graph-reduction.

1.0.4 Hybrid input specification

The problem with the constraints mentioned in section 1.0.3is that they are usually applied
across the board, and this leads to unnecessary inconvenience and effort in developing
aspects of a solution that do not require parallelism. It leads subsequently to difficulties
in designing non-trivial systems - witness the fact that there are few functional language
based, application oriented systems. There already exist many sophisticated tools and
languages which allow most computational problems to be solved effectively. These tools
and languages have a large installed user base, and it would therefore seem wasteful to
replace this sophistication with something that only favours parallelism. What is required
is a hybrid of the two representations - the freedom to use current serial programming tools
and techniques and, at the same time, easily incorporate and express inherent parallelism.

1.1 Literature survey

Parallel processing is not a new concept; while computing was still in its infancy, tackling
a computational task in a concurrent fashion had been postulated. The rapid evolution of
parallel processing, though, has happened relatively recently, as the realization of cheap
parallel machines has only taken place in the last 10 or so years. This evolution has been
largely dictated by advances in microprocessor technology, and the shortcomings of various
approaches to parallel processing, that these advances have highlighted.

The scope of parallel processing is enormous. Hwang & Briggs have defined parallel
processing as,

“ ... exploitation of concurrent events in the computing process.” [60, p6]
which leaves great scope for different approaches.

1.1.1 Classification

As with serial computing, parallel processing has many aspects, each at a different level
of abstraction. These areas can be broadly classified as hardware architecture, operating
system and language.

Hardware Architecture. Within this area the main types of architecture are SIMD and
MIMD machines, according to Flynn’s classification [37].

SIMD machines have a single instruction stream, but operate on multiple data
streams. In essence they are array processors, and as such present a rather inflexible,
but efficient, approach to parallel processing. Examples include Crays and the DAP.
Many new microprocessors, especially DSP chips, are SIMD machines themselves.

MIMD machines have concurrent threads of execution operating on distinct data
streams.
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Operating System. This performs a similar purpose to normal computer operating sys-
tems, but with features that express concurrency and process communication well,
for instance Helios and Trollius™ [79]. Many parallel operating systems have close
inter-dependency with a particular language, e.g. Emerald [27] and Concert [26].

Language. Ben-Ari’s book gives a good overview of parallel languages [10], see also

Gehani [39].

Languages take many forms:

e New languages designed to exploit parallelism. However, end-users tend to be
loath to learn new languages and, while a language may be good at expressing
parallelism, it may not be good at expressing functionality. e.g. Occam [57]
based on Hoare’s CSP [56].

e Old languages with concurrent extensions. These have the advantages of large
user-bases and small learning difficulties. However, they may be poor at ex-
pressing parallelism. e.g. Concurrent C.

e Old programs transformed into parallel programs. While this approach presents
no learning difficulties, it is extremely poor at utilizing parallelism. e.g. the

ASPAR system [61].

Somewhere in the middle of these areas, lies problem solving in a parallel fashion.
This is where the programmer has to work within some regime less demanding than fully
parallel program design. In return the system performs at least part of the exploitation
of the available parallelism automatically. It is this area that this Thesis addresses.

1.1.2 Message passing vs shared memory

MIMD machines perform two functions; those of computation and communication. Fre-
quently, it is communication that is the limiting factor on speed and scalability, and thus,
communication is an important topic for any treatment of MIMD parallel processing.

Broadly speaking, current research lies in two areas of communication; those of shared
memory and those of message passing. Hwang & Briggs’ treatment of parallel architectures
is rather biased towards shared memory and SIMD machines as message passing machines
have only become popular relatively recently. This popularity has been largely precipitated
by Hoare’s pioneering work on CSP [56], by the advent of the transputer by Inmos [57],
and by the realization that shared memory architectures which utilize the shared memory
for inter-process communication (IPC) with large numbers of processors, have fallen prey
to the bus contention problem!. More recently still, virtual shared memory machines that
rely on message passing for communication have become popular [50], although it is not
clear that this yields maximum efficiency [68].

Message passing architectures are those where TPC takes place through some sort of
serial pipe. This method greatly reduces the IPC allowed as a pipe is usually dedicated to
two processes (exceptions do exist [40]), but eliminates bus-contention. Hoare [56] used
message passing as a general computational paradigm and his work was both innovative
and brilliant. Languages, like OCCAM [57], based on this message passing paradigm do
exist. However, the implementation of OCCAM at least is insufficient for designing real

'This is where two or more processors must a share a hardware bus in order to share address spaces.
Accesses to the bus must be mutually exclusive, limiting overall performance.
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systems. Message passing is thus, more commonly used as an extension to normal, serial,
languages. Message passing forms the basis of many current MIMD machines. A very
readable survey of MIMD / message passing parallel processing and programming may be
found in Fox [38].

A lot of interest still lies in shared memory approaches as these have many advantages,
communication time is low for instance, and a lot of concurrent computational theory is
based on shared memory approaches e.g. the EREW PRAM model [32]. However, this
thesis is directed at message passing approaches as it is felt that only these can yield
machines that are scalable and thus potentially massively parallel.

1.1.3 Scalability and efficiency

It is difficult to define what represents an ideal parallel system, but two desirable attributes
are scalability and efficiency. The efficiency of an architecture is defined in terms of the
speedup gained with respect to the number of processors (or nodes) used. For example,
if a task takes m seconds to complete on a single node and 4% seconds to complete on
a parallel machine with k nodes, then the speedup would be n/(9*) = ka~! and the
efficiency would be ka~!/k = a~!. For ideal systems a = 1 and the speedup is said to
be linear, for good systems « > 1 and is constant?, for poor systems o = f(k) and the
speedup tails off rapidly®. In some circumstances, a < 1 and the speedup is said to be
superlinear®.

We should note that speedup is measured relative to the same algorithm on one pro-
cessor, and that this gives us a realistic idea of how good the processor utilization of an
approach is. It is also necessary, in terms of real performance, to assess speedup on a
particular problem relative to the corresponding serial algorithm.

Scalable architectures are those for which their computational principles hold, whatever
the dimensionality of the machine and for which their efficiency is close to ideal. For
instance a machine in which the nodes are hypercube connected is not scalable, as the
number of inter-node connections is infeasible for moderate to large numbers of nodes.
Scalability is desirable because it provides a gateway to powerful machines with very
large numbers of nodes which would otherwise be impossible to design. Much research is
directed at machine models that will lead to these massively parallel machines [8].

It is interesting to note that Fox et al. [38] are optimistic about scalability of MIMD
systems, whereas Hwang & Briggs [60, pp27—29] are much more pessimistic giving Am-
dahl’s law as a bound on speedup. However, the results of Fox et al [38]° justify their
optimism and show that different approaches have vastly different characteristics.

More recently Gustaffason [52] showed that speedup was dependent on the size of
problem being executed. If a problem is scaled in size then the impact of serial overhead

can be reduced, allowing programs that effectively break Amdahl’s law.

2This usually corresponds to some fixed overhead per node.
#See [38, 60] for a more detailed treatment.

*This can happen when the basic computational algorithm used for exploiting parallelism is actually
more efficient than the common serial solution.

5They obtained linear speedup for many problems.
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1.1.4 Drawbacks

Parallel processing has a few major drawbacks. Firstly, it is conceptually complex. Some
would disagree with this [62] and have argued that this complexity is because we have been
conditioned to think serially by existing, serial based, computer languages. Others argue
that because the brain is parallel in nature, parallel concepts should come easily to us.
Whatever the reason, parallel processing and programming are complex [49] and are thus
not readily accessible. Much research is currently directed at improving this accessibility
through advanced languages [44], abstract machine concepts and production tools [61].

Secondly, it is physically complex. This complexity arises from the enormous variety
of possible relationships between processors, memory and 1 /0, and the variety of possible
processor topologies. Much research is directed at parallel concepts which unify, to a
degree, the different possibilities [80].

Thirdly, current serial techniques do not lend themselves well to parallel processing and
there is no recognized, standard, parallel alternative. Parallel techniques are still emerging;
each with its advantages, disadvantages and proponents. Most of them have the drawback
that, unlike serial methods, they are only applicable to, or at least efficient for, a small
set of problem classes - no one technique can solve all problems. Because of this, much
research is directed at solving different classes of problems using one particular technique
and to improving the performance of a given technique for a more generic problem.

Lastly, parallel programs are often non-deterministic. In a sequential program, a task
cannot start until its predecessor has completed. In a parallel program, the concurrency
implies that a child could finish before its ancestor. It is situations like this that mean
poorly coded parallel programs can yield differing solutions, depending on the time partic-
ular tasks take. This makes parallel programs difficult to debug; simply the introduction
of debugging messages can cure or create a problem!

1.1.5 Solution classes

In order to discuss the many different classes of solution, we have to introduce a number
of parallel processing concepts.

In general, problem data has a source and a destination. Usually, with MIMD archi-
tectures, this data is sourced from a location outside of the parallel machine. The I /O
between the two locations, usually takes place through a single hardware route. Thus,
data needs to be broadcast, from this point source, to processors within the parallel ma-
chine. At the end of processing, the data has to be returned, or multi-reeled. It is obvious
that this point source represents a bottleneck to dataflow. Multi-I1 / O solutions have been
tried [38], but these are expensive and difficult to manage.

Problem data is usually not uniform, for instance sparse matrices. This means that an
even division of data between processors does not imply an even distribution of the load.
Thus load balancing is an important part of parallel processing solutions if these solutions
are to be efficient. It can be static [89], but is more generally dynamic [66, 51] as the
run-time progress of a task is difficult to predict before its execution.

A number of general solution classes have emerged:®

5These classes have gained popularity because of their applicability to MIMD architectures. It should
be noted that many other solution classes exist, but have lost prominence because their applicability is
tied to increasingly outdated parallel architectures.
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Data-parallel programming. Here, the problem classes do not have data dependencies
and, given a local piece of the data, a local piece of the result can be found. Thus
data can be distributed over a processor array, the local solutions found, and the
results returned. The advantage is that the solution does not depend on processor
communication apart from in the broadcast and reeling phases. This gives a rela-
tively straightforward processor topology and a linear speedup excluding the data
transmission. Unfortunately, many problems are not data-parallel in nature. Also,
data tends to be very localized and this often leads to poor processor utilization -
load balancing often has to be an integral part of this technique for it to be efficient.

Nevertheless data-parallel machines dominate the commercial parallel world because
of their cheapness and suitability to some important problems, e.g. seismography
and image processing. Data-parallelism is embodied by the connection machines
[55]. These machines are data-parallel in operation and are programmed using the
data-parallel language C* [105].

Graph reduction. This is an example of demand-driven data-flow. In this scheme re-
ducible expressions are replaced by their computed results. Computation is only
limited by the availability of data. Reductions in the same expression are indepen-
dent, and can therefore be performed concurrently. Graph reduction is best known
for its application to functional programming.

Functional languages in their purest form are languages where all primitives, data
structures etc. are represented as functions. This implies that there are no glob-
ally visible data structures and thus, any two functions are independent as long
as one is not an ancestor / descendent of the other. This makes programs written
in functional languages ideal for parallelism and much research is directed towards
functional approaches to parallelism, for example [59, 5, 88], and graph reduction
systems. Functional languages also have the nice property that they map well into
mathematics. Much research has been done into the mathematics of functional
languages and new mathematics has been designed to accommodate functional ap-
proaches e.g. the lambda calculus [9] and serial combinators [59].

Graph reduction has many advantages, not least the fact that parallelism is im-
plicit to the system, and easily extracted. There are no programmer-visible parallel
constructs.

Functional languages have the disadvantage that they are difficult, and constricting,
to program in sensibly. Indeed, there are very few examples of real applications
using functional languages.

Systolic arrays. Definitions vary but the general idea is that of dataflow with results
being obtained at a fixed frequency, hence the name systolic. Data passes through
an array of processors which can be trivially linked (e.g. pipelining) or linked in a
more complex fashion. The advantage of this approach is that once the array is full,
results can be obtained with high frequency. Also, the approach is readily scalable
as processor interconnections tend to be uniform across the array. The disadvantage
is that usually the processor interconnection is only applicable to a small set of tasks
and thus the problem is very “built-in” to the solution. See [75] for example.

Explicit parallelism. Here, each parallel program is hand-coded with program interac-
tions explicit, and the overall solution tied to the particular problem being solved.
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Applications programmed in this way tend to be very fast and efficient, but difficult
and costly to create and maintain.

Of these particular classes we concentrate on the area of graph-reduction, since this
appears to offer some degree of generality, whilst maintaining efficiency. In particular
we look at D&C, which is a higher-level graph-reduction paradigmm that has been used
successfully by a number of people. The next section describes various aspects of this
paradigm.

1.2 Divide-and-conquer

In this section we describe the D&C algorithm and its parallel implementation.

D&C is well known for its simple parallel evaluation properties and has been widely
used in a functional language evaluation context [88] as well as a programming paradigm
in its own right [5, 6, 76, 20].

1.2.1 D&C explored

Divide-and-conquer (D&C) is a computational paradigm [3] which is very similar to graph
reduction in a parallel context [58]. The dividing line between D&C and graph reduction
is very blurred, but essentially it involves solving the physical problem, rather than in
solving the parallel problem. Obviously this constrains the problem class, but at the same
time relaxes the constraints on implementation, from which functional programs suffer”.

A general D&C algorithm can be expressed as follows: First, test the data to see if it is
so small that a result can be obtained from it immediately, without needing to sub-divide
the data. This is done by a function we shall call simple(). If a result can be obtained
then the function which does this we shall call evaluate(). If the data is not simple, it
must be divided into parts using a function we shall call divide(). Each part may then be
further divided, and so on. This subdivision of the data ends when all the parts are so
simple that no further subdivision is needed. The results obtained from each simple part
are then combined together, using a function which we shall call combine() to give the
final result [7]. It should be noted that the bulk of computation can lie in any of divide(),
function() and combine() [4].

The D&C algorithm can be represented in pseudocode as follows:

FUNCTION divacon (data)

BEGIN

IF simple (data)

THEN RETURN evaluate (data)

ELSE combine (map(divacon,divide (data)))
END

It should be noted that the most common form of D&C is binary D&C where division
yields two sub-tasks.

"For example, we could solve matrix multiplication by a D&C method and the method, rather than
the program, would be parallelizable. Alternatively, we could write our program in Haskell, a functional
language, and the whole program would be parallelizable, rather than our particular matrix multiplication
paradigm.
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D&C forms the basis of many serial algorithms, algorithms which are often more
efficient than traditional approaches. For example, matrix multiplication can be performed
in O(n?®!) operations by a D&C method, rather than the normal O(n?) operations [100].
Indeed, normal integer multiplication by bit shifting and adding can be performed more
efficiently by a D&C method [3]. Additionally, techniques have been devised for specifying
problems in D&C terms [97].

1.2.2 D&C as a means to parallelism

Interest in D&C as a programming paradigm lies in the potential for parallelism in com-
puting partial results for divided data. Axford [5] describes it as follows:

Suppose there are P processors available for parallel computation, then y = divacon
(d) can be computed by:

1. Compute a set of data values dy, dy, ds, ..., dp by repeated application of divide() to
d until the data is subdivided into P parts.

2. For each of the data values d;, compute a partial result by sequential computation
on the i-th processor.

3. By repeated application of combine() to pairs of partial results, compute the final
result y from the set of partial results vy, vy, y3, .-, yp-

These three stages can each be implemented in parallel, although the greatest parallelism
is possible for stage 2.

This property of D&C makes the solution of general computational problems by a D&C
method desirable. Axford [5] gives some examples of these. In addition to simple com-
putational problems, more computationally demanding ones have now been solved using
D&C methods because of its potential for parallelism and thus decreased computational
time [42].

The ZAPP project [19, 72, 73] has shown that excellent parallel performance can be
achieved using the D&C paradigm. Clare extended this work to be more general [29].
Many others have investigated D&C architectures with varying degrees of success.

1.3 Parallel D&C

In order to address the implementation of a parallel D&C system, there are a number of
issues that need to be considered.

As discussed previously, partial results can be obtained, in parallel, from sub-divided
data. Thus, each data item potentially represents a parallel process and always represents
a task to be completed. The ensuing discussion will refer to each data item as a task, but
the two are essentially interchangeable.

A general strategy for implementation, used by others, has been that for each processor:

e Perform a depth-first, D&C, expansion of the task tree. This implies always com-
pletely expanding the left task first before expanding the right task (or vice versa).
Alternatively, get a task from a neighbour if none are held locally. This is referred
to as the single-steal rule.
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e Put each unexpanded right-hand task into a FIFO queue and mark as PENDING.
This implies that the largest tasks, representing the largest portions of data, are at
the head of the queue, the size usually decreasing towards the back.

e If requested to by adjacent, unloaded processors, pop tasks from the head of the
queue and pass them on to these processors. Mark the popped tasks as FIXED.

e When queued right-hand tasks need to be expanded, dequeue them. Note that
because of the order in which tasks are queued, and the depth-first nature of the
search, the task required for computation will always be at the back of the queue.

e If the task required is FIXFED, then wait until it becomes COMPLETE.

e If the task tree has completed, then pass the result back to the parent processor
from which the task was taken OR return the final result if there is no parent.

Note that the task tree is not expanded concurrently, only one task is ever being
processed on the same processor.

It can be seen that many of these operations can be performed concurrently, in par-
ticular the scheduling of work between processors with the actual computation.

1.3.1 Scheduling strategies and load balance

In the general approach given above, it can be seen that the way work is scheduled yields
an automatic load balance of the system. This is because if a processor is lightly loaded,
it will finish quickly and thus be ready for more work. If a processor is heavily loaded,
the workload should diffuse outwards from this processor, balancing the load. This is an
important property of D&C systems.

In discussing scheduling strategies, it is necessary to introduce the concepts of bidding
and drafting.

Bidding. In a bidding strategy, processors requiring work ask their neighbours for work.
Bidding has the advantage that once the workload has been distributed, the schedul-
ing network traffic is zero. It has the disadvantages that free processors do not
acquire work as soon as it is available, and the scheduling network traffic is heavy
while the workload is being distributed.

Drafting. In a drafting strategy, loaded processors tell surrounding processors of their
desire to offload. Drafting has the advantage that work is scheduled very quickly, but
has the disadvantage that it ties loaded processors up with even more processing.

Variations on the two do exist. Many approaches to load balancing in general attempt
to utilize the diffusive nature of a computational load. Approaches that consider this are
given in [51, 92].

In general, to be efficient, scheduling strategies need to be performed concurrently with
computation. The single-steal scheduling of section 1.3 is bidding based.
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1.3.2 Partition control

Within D&C, partition control is a means of changing the run-time characteristics of a
D&C system. Partition control is based on the simple() functionality of D&C; what de-
termines a simple task? In the case of matrix multiplication, the sub-problems involved
are thinner and thinner columns, multiplied by shorter and shorter rows to yield a smaller
and smaller result. At some stage it is more cost-effective to actually perform this multi-
plication, than to subdivide any further; ultimately, to a single row multiplied by a single
column. The point at which this cost-effectiveness is maximized is the optimal partition.

Rabhi [87, 88] showed that, for balanced computation, the optimal partition is that
which produces just enough sub-tasks to utilize available processors.

It should be noted that the optimal partition is only optimal with respect to potential
parallelism. For most normal, serial problems, it is always more cost effective to perform
the evaluate() immediately, with no sub-division at all.

1.3.2.1 Multi-processing

Another run-time change is multi-processing. In a system involving several dissimilar
sub-problems, each potentially solvable by a D&C method, there may well be some ad-
vantage in performing some or all of these concurrently, each on a subset of the available
processors [18].

1.3.2.2 Breadth-first vs depth-first search

A common variation on the implementation of D&C is breadth-first search. Burton [18]
has shown that, space-wise, this is a more optimal method of expansion. He suggests that
D&C systems should expand their task trees depth-first until space (memory) is short and
then continue the expansion breadth-first to avoid deadlock.

1.3.3 Drawbacks and benefits

The major problems with D&C systems are those of semantics and use. Like functional
languages, the syntax of D&C is fairly restrictive, and solving a real problem with this
paradigm would appear to be a matter of some complexity. Mou [77] has developed
a mathematical model for D&C and implemented his own language based on it [76].
However, this language is in essence a functional language and is also only applicable to
fine-grain parallelism. We surmise that although it provides some syntactic convenience,
it does not go far enough in yielding a system suitable for solving real-world problems.

The thrust of this thesis is to use proven software tools as the basis for implementing
a D&C system. We aim to implement real-world, large-grained problems using D&C,
and use object-oriented software technology to aid implementation. We describe object-
oriented technology in section 1.4.

1.3.3.1 Input / output

D&C has the property that at the beginning of the computational process, all data resides
on one node. This has the advantage that single-channel T/0, which is a “feature” of
many parallel machines, is built into the problem solution. Thus, the single-channel I /0
does not represent a bottle-neck to processing, as it does in other parallel techniques. The
drawback is that this limits the problem size to that which will fit on one processor. As
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large problem size is desirable, if a parallel machine is to be utilized effectively using a
D&C system, this drawback is one which must be worked around.

1.4 A tour of object-oriented programming

Object-oriented languages and techniques have a long and varied history, and have followed
many different threads. Object-oriented features can be defined in general terms, however
any meaningful survey must take into account the variety of approaches that exist. All
these approaches are valid, although the religiousness that abounds in the subject tends
to cause a bias concerning what object-oriented programming really is!

The term “object-oriented programming” tends to encompass a plethora of program-
ming techniques, most of which, in one way or another, will be provided in an object-
oriented language. However, to isolate which of these techniques lies at the heart of
object-orientation is to fall between the cracks in the pavement. Thus one can describe
object-orientation as an abstract concept, but to define it requires a close look at the
techniques that make it possible.

In essence, the object paradigm takes a view of the problem domain in which objects
are the basic abstraction. Object-oriented programming is an implementation technology
that allows the structure of these abstractions to be encapsulated in an implementation.
The beauty of this approach is that it shifts the design focus from the solution domain
to the application domain. Thus the structure of an implementation will mirror that of
the real world, the structure of which is, or should be, immutable. The manipulation of
these abstractions in a familiar framework yields the ability to manage complexity; their
immutability provides a basis for graceful system evolution.

The following sections describe the implementation techniques that are the enabling
technology for the object paradigm.

1.4.1 Objects, classes, methods and members

“An object models some entity of concern in an application by encapsulating its structure
and behaviour” [35]. A class is a description of what structure and behaviour its instances
(objects) exhibit. Some object-oriented languages use cloning to create new objects rather
than instantiation [106] from classes.

The structure of an object is composed of data members. The behaviour of an object
is composed of methods or member functions i.e. procedures to manipulate the members
of an object.

1.4.2 Message passing

A key element of object-oriented programming is the separation of procedure call from
procedure invocation. This gives rise to the notion of message passing. In order to invoke
an object method, a message is sent to the required object, whereupon that object has
to lookup the appropriate method for that message. The relationship between message
passing and method invocation can be determined at compile-time - static binding - or at
run-time - dynamic binding. Most object-oriented languages require some sort of dynamic
binding in order to implement polymorphism (see below), however, the relative use of the
two binding types generally depends on whether the language is strongly or weakly typed.
In a strongly typed language (e.g. C++ [102]), an instantiated object cannot change its
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type. The type is fixed at compile-time and thus a large amount of binding and type
checking can be performed at compile-time. In a weakly typed language (e.g. Smalltalk
[43]) an object can be defined as untyped, thus dynamic-binding must be used, as the
type of the object - and so the relationship between message and method - can only be
determined at run-time.

Static binding generally results in increased efficiency. Dynamic binding results in
increased flexibility. However, it is possible to use sophisticated compiler techniques to
improve efficiency in a weakly typed context [107]. It is also possible, as shall be described
later, to imitate weak typing in a strongly typed language to gain flexibility.

1.4.3 Class hierarchy

In class-based object-oriented languages, classes categorize entities. However, different
categories are not necessarily distinct. Different classes can be related just as different
objects can be related by their class. The class relationship of primary importance is
the “IS-A” relationship - a cow IS-A mammal - and is implemented through inheritance.
Inheritance is a corner-stone of object-oriented programming. Through inheritance a
subclass inherits the features of its superclass and then defines additional ones (eztension)
or refines existing ones (specialization). Inheritance mechanisms and sophistication vary,
but the general concept is the same, a subclass has an IS-A relationship with its superclass.

Inheritance need not be a single-path relationship, after all a cow IS-A herbivore and a
cow IS-A mammal but there is no natural inheritance relationship between herbivores and
mammals, instead a cow inherits from both categories. This is generally called multiple
inheritance.

Other class relationships exist; a class can be described as ‘having’ another class using
the HAS-A relationship. For instance a car HAS-A wheel. Now although this relationship
can be expressed through inheritance, it is not actually a sublype relationship. A subtype
relationship is defined as:

“If for each object o1 of type S there is an object 05 of type T such that for all programs
P defined in terms of T, the behaviour of P is unchanged when o is substituted for
02, then S is a subtype of 77 [71].

and inheritances mechanisms should be used to express this, but a HAS-A relationship
should be defined using a class member. If class A HAS-A class B then A can be defined
with a member of type B.

1.4.4 Polymorphism

The notion of subtyping leads on to the concept of polymorphism. A subtype relationship
between classes indicates a shared interface: all employees, say, could have a method for
updating their salaries. However, the shared interface does not imply a shared imple-
mentation: the C.E.O. would have a different salary update mechanism to the cleaner.
Polymorphism allows us to capture this relationship. It implies subtyping; the C.E.O.
IS-A employee; and also dynamic binding; in presenting a salary update message to an
employee interface, the actual type of the object must be determined at run-time and then
the appropriate method invoked.

The interface can be defined as absiract. We cannot instantiate a general employee
because the implementation of salary update is not defined for employees. Subclasses
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would then implement the salary update mechanism, or, if a superclass had already defined
it, it could be overridden through redefinition.

Polymorphism is crucial to object-oriented programming. Where inheritance allows
us to capture class relationships, polymorphism allows us to manipulate abstractions in a
general way.

1.4.5 Data hiding

Interface manipulation leads on to interface specification. An object may have features
that are to be used internally and need not be a part of the object’s interface. Object-
oriented languages formalize this idea with the concept of data hiding. Generally an object
will have: features that are part of its global or public interface; features that can be used
by it and any subclasses derived from it, its protected interface; and features that only
need be accessed internally, its private interface. Data hiding gives the programmer the
scope to force the use of an object in a particular way. A benefit of this is that the internal
implementation of an object can be changed without the changes affecting programs that
use the object in any way.

1.4.6 Delegation

Some object-oriented systems treat everything as an object. This means that messages
are as much objects as state entities [23, 13, pp63—66]. Some of these systems provide
delegation as a way of invoking methods. This means that when an object receives a
message it delegates it to all of its members (both methods and variables). The delegation
message holds the name of its originator as an argument. The value of the first object to
accept the message is then returned.

The power of this system is apparent when we consider extension objects. If an object
has as a member another first-class object, instead of a method or simple state variable,
then delegated messages can be passed on to the methods of this object. One of its methods
then accepts the message and returns a value. To the user of the original interface, it
appears as if a normal method invocation has occurred. By adding extension objects in
this way, it is possible to extend the functionality of an object dynamically, withoutl using
inheritance.

1.4.7 Overloading

Another feature of some object-oriented languages is that of function overloading. Over-
loading allows functions taking different arguments to have the same name. The compiler
arranges for the right function to be called according to its calling context. At first glance
this appears to have nothing to do with object-oriented programming. However, overload-
ing is essential in strongly-typed object-oriented languages, in order to allow new classes
of objects to fit homogeneously into the existing type system. This is especially true for
infix, prefix and postfix operators: an object which represents a complex number clearly
needs to understand the arithmetic operations which might naturally be used with it, even
though these operations are already defined for other types.

Dynamically-typed object-oriented languages have less need for function overloading
since functions can be defined for typeless objects and the appropriate invocation found
at run-time.
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1.4.8 Guarded methods

A feature of some object-oriented languages, Eiffel [74] for example, is that of guarded
methods. This allows a programmer to specify entry and exit conditions for the invocation
of a particular object method. This provides a sort of run-time equivalent to type-safety.
Method invocations not meeting the guard conditions can be flagged as errors and dealt
with by an error handler.

1.4.9 Parameterization

Often an IS-A relationship expressed through inheritance is not quite what is required.
We might want to define a type which has variants that depend only on what the types of
its features are. For instance an array might be of integers or floating point numbers. In
both cases the object is the same apart from its parameterization. Most object-oriented
languages have support for this feature and the classes created are termed generic or
parameterized types. C++ in particular calls these types templates [101]. C++ templates
accept parameters much the same as functions do. The parameters refer to the template
type and are termed the template formals.

1.5 C++ and object-oriented programming

The object-oriented language of choice for this thesis is C++. Although C++ has been
on the receiving end of jokes doubting its object-oriented heritage, we can assert that it
is an object-oriented language since it provides language support for class-based object
description, inheritance and polymorphism. C++ lacks some features of other object-
oriented languages; most notably dynamic typing and garbage collection of objects, such
as are present in Eiffel [74], Smalltalk [43] and others. However, C++ is our language of
choice because:

o CH+ is efficient, and since we are concerned with parallel performance, efficiency is
of great importance.

e The features that C++ lacks can be simulated through meta-features [31].
e C++ compilers are more widely available for parallel architectures.

The second item will be elaborated in subsequent sections.

C++ itself is an example of a strongly typed object-oriented language. Thus method
invocations are mainly statically bound, with type-checking being performed at compile-
time. Run-time bindings are made through the use of wvirtual functions, which involve
table look-up through a pointer contained within an object. The pointer is arranged to
point at the table which belongs to the object’s real class, regardless of interface. This
mechanism is relatively fast, only involving two extra memory references over a normal
function invocation.

1.5.1 Meta-features

In this section we look at techniques for simulating, in C++4, some of the desirable features
of other object-oriented languages.
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1.5.1.1 Reference counting

In C++4, object memory-management is explicit. A new object is allocated space from
free store, or the stack, and initialized through the use of its constructor method. An
object is deleted by invoking its destructor and then freeing its store allocation. Objects
are not garbage collected and therefore, by default, an object is copied by creating a new
object and copying it on a member-by-member basis.

class Letter {
friend class Envelope;
protected:
Objs data;
int reference_count;

void foo();
b

class Envelope {
protected:
Letterx rep; // the contained letter
void foo() { return rep—foo(); } // a forwarded function

Figure 1.1: The Letter and Envelope idiom

The figure shows a letler /envelope class pair. The envelope class
contains a pointer lo a letter class. Any letter type functions applied
to the envelope are passed on lo the letler through this pointer. The
letter also contains a reference count which is manipulated by the
envelope’s copy constructor and assignment operator (not shown).

Member-wise copying is compute intensive for large objects and not ideal from a per-
formance point-of-view. In order to get around this, we can arrange for objects to be
reference-counted [31, p58]. Thus, when an object is copied, all that is created is a new
reference, with some counter in the actual object being updated to reflect the additional
reference to it. When a reference is deleted, the reference count of the real object is
decremented and the object removed if the count is zero. Obviously, some care has to be
taken when an object really needs to be duplicated, but in the majority of cases this is
not necessary.

Perhaps the most aesthetic way of defining reference counted objects in C++ is by
using Coplien’s envelope and letter idiom [31]. With this scheme the object holding the
actual data, the letter, is referred to by the object that the user actually sees, the envelope.
See figure 1.1. The letter holds the reference count, and the envelope does all reference
manipulation. Class methods can be performed either by the envelope or by the letter
through delegation, albeit explicit. In this case the envelope forwards messages to the
letter.
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1.5.1.2 Weak typing

In pure object-oriented languages, variables are run-time bindings to objects that act like
labels [31, p134]. Assigning a variable to an object is analogous to putting a label on it.
Assignment simply changes the labels. Variables have little or no type information associ-
ated with them, and little is done by the compiler to ensure compatibility between types.
It is only at run-time that type incompatibilities show up through run-time checking.
Obviously this has error elimination disadvantages but has the big advantage of flexibility.

class Number {
protected:
union {
Number *rep; // the letter
int reference_count;
}; // forwarded functions are virtual
virtual int foo() { return rep—foo(); }

I3

class Complex : public Number { // an ezample subclass
double rpart, ipart;
int foo();

I3

Figure 1.2: An Envelope class with delegated polymorphism

The figure shows how a letter class can be its own envelope. This
allows delegated functions to be virtual, and thus the letter polymor-
phic.

To achieve this flexibility in C++ we need to add a level of indirection which simulates
this label and object separation. This can be achieved by using the envelope and letter
idiom given in section 1.5.1.1, but by making the letter the same class as the envelope.
The different classes that we require can be derived from this unified class, and letters can
be interchanged without breaking the C4++4 type system. Figure 1.2 shows the scheme in
outline but a fuller description can be found in Coplien [31, pp138—140].

The base class Number provides all the functionality that will be required by any
subclass of Number and method invocations on Number are forwarded to the actual object.
The scheme actually works because the forwarded functions are virtual and therefore
the right function is selected at run-time.

This system cannot be an exact replica of untyped variables in languages such as
Smalltalk. This is because objects defined in this way still have a generic type which
defines the union of all messages that the object can possibly accept. Messages outside
of this set will be rejected by the compiler as a type / method incompatibility: we cannot
define new methods for an object which are not declared in its envelope. Thus we can
only make a run-time type change to an object of the same generic type. This is actually
a desirable feature - we do not require an object of Number class to accept messages that
apply to Blancmange!

The flexibility we gain is run-time type changes not arbitrary run-time message bind-
ings.
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1.5.1.3 Virtual object construction

C++ provides virtual functions for dynamic binding of messages to methods. Calling a
virtual function is like saying “apply this function to the object that X really is”, where X
is the interface to which a message has been sent. Destructors too can be virtual - “delete
the object that X really is”. Virtual constructors, however, make no sense; when an object
is being constructed; it has no hidden type. However, type selection can be made on the
basis of the arguments that are passed to the constructor call. Although C++ doesn’t
provide direct language support to do this, it is again possible to emulate the feature using
the idioms outlined previously [31, ch. 8].

class Number {
public:
/*
x make a Double or Complex depending on context
*/
Number(double d) { rep = new Double(d); }
Number(double i, double j) { rep = new Complex(i,j); }

protected:
Number *rep; // the letter

¥

class Complex : public Number { // an ezample subclass
double rpart, ipart;
public:
Complex (double i, double j) : rpart(i), ipart(j) {}
b

class Double : public Number { // another subclass
double value;
public:
Double (double i) value(i) {}
};

Figure 1.3: Virtual object construction

The figure shows how the envelope /letter idiom can be used to con-
struct objects, the type of which is selected at run-time. In the ex-
ample there are lwo letter type objects, Complex and Double. The
class Number will make its letter be one of these depending on ils
construction arguments. Since envelope functions will be delegated
polymorphically to the letter, there will be no type conflict al run-
time.

Using the weak typing idiom we can arrange for an object under construction to make
some sort of type selection decision and then to change its type accordingly. The type
decision can be made through the use of overloaded constructors or through a type field.
See figure 1.3.

The main problem with this approach is that of extensibility. What happens when a
new type is required? Either the envelope interface has to be modified to accommodate a
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new constructor, or a new type must be added to the type field. In either case modifications
are required which affect the interface, and this is unacceptable from an architecture and
modularity point-of-view. The answer is to maintain a list of objects of the different types,
into which new types can register. An object is constructed by presenting each object in
the list with the constructor message and continuing in this way until the message has
been accepted. The accepting object returns a new object of the correct type. Since
it is impossible to determine beforehand the type of a new list object, the list is one of
interfaces. In fact this is why the scheme works; dynamic bindings are made, but on
existing objects. The immutability of the interface is preserved since registration merely
means updating the list, which is a run-time action.

C++ is a dual-hierarchy language meaning that the stuff from which objects are made
(classes) are distinct from the objects themselves. Creating objects from other objects, as
in the case above, is a single-hierarchy principle and the prototypical objects - in this case
the members of the list - are called exemplars.

1.5.2 Summary

Having examined both parallel programming and object-oriented languages we now look
at the synthesis of the two. Concurrency in object-oriented languages is a concept almost
as old as that of object-orientation. We examine some of the approaches to concurrency
in object-oriented languages and, more specifically, concurrency techniques in C4++.

1.6 Parallel object-oriented programming

Parallel object-oriented languages have been around for a long time. Their aim is not
necessarily performance related. As described previously, object-oriented languages deal
with entity relationships that exist in the application domain. One of the most common
features of entities in the real world® is their action independence. Modelling this indepen-
dence of actions naturally gives rise to multi-threaded, or concurrent, objects — objects
which can undergo state transitions without recourse to a sequential thread of control.
Concurrent objects are necessarily shared or distributed.

Using this approach to describe entity relationships is extremely powerful as it takes
the solution domain ever closer to the application domain. There is a drawback however.
Having multi-threaded objects amounts to object-based parallel processing, and thus suf-
fers from all the usual problems of parallel processing — deadlock, mutual exclusion, etc.

Concurrent object-oriented languages generally provide several language enhancements
to enable management of the complexity introduced by concurrent objects [15]. Some of
the most widespread features are:

Active and passive objects. If objects are distributed and communicating with each
other, there are two possible ways of managing the threads of control. Passive ob-
jects have an effectively sequential thread of control. Objects have separate threads
of control but there is only ever one active thread. All message transfers are syn-
chronous and base on remote procedure calls, so that a calling object will block until
a result is returned. This type of concurrency is simple to manage and is employed
by some object-oriented languages and operating systems [78].

8Note that not all application domains are in the real world
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Active objects have multiple, independent threads of control. This means that true
parallelism can occur in the system. The degree of sophistication varies greatly.

The next items generally only refer to active object systems. Chin gives a good
overview of the different possibilities with active and passive systems in [27].

Monitor locks. Semaphores [34] ensure that critical sections of code® are protected from
multiple accesses. In object-oriented programming, concurrent execution implies
concurrent access, and we generally want to prevent multiple accesses to objects
which involve state change. Thus we provide a special type of class - a monilor -
which ensures that only one object method is operating at any one time.

Synchronization. Most explicitly concurrent object-oriented languages provide synchro-
nization primitives. These primitives specify ways in which threads of control can
synchronize. Primitives usually exist for barrier synchronization where processes
block until all have rendezvoused with each other; acceptance which means a thread
conditionally executes depending on the accepted message; continuations which
means threads block until some condition is true; and futures which mean threads
conditionally start some time in the future. Many languages support these [15, 23]
but we note that parallelism is always explicit.

1.6.1 Implicit parallelism

In this thesis we are concerned with implicit parallelism. Thus the techniques above are of
interest as implementation technologies, but not as user presentable features. Implicitly
parallel object-oriented languages are generally extremely complex and are characterized
by compilation and run-time techniques such as:

Dependency analysis. In an object-oriented program all method invocations are candi-
dates for concurrent execution. However, a compiler must determine when methods
are required, so that it only schedules concurrently those tasks which it would be
advantageous to. It must also ensure that execution blocks when a result is required
but has not yet been returned by another thread.

Locality analysis. When possible concurrency has been determined, a compiler must
ensure that concurrent tasks which share data are scheduled on the same processor
if possible. If this is not possible then the run-time system must ensure that shared-
data is coherent between processors.

Type analysis. In order to determine whether objects share data it is necessary to per-
form detailed analysis of the object types in a program.

Scheduling. A run-time system must ensure that objects are distributed sensibly across
a processor network, and make decisions about relative tradeoffs in scheduling tasks.
All of the above points also have a run-time element which needs to be addressed by
the system. The scheduler needs to take all these factors into account when placing
objects.

These various techniques, and more, are addressed by the Mentat [44, 48, 47, 45, 46|
and Concert [25, 22, 26, 84, 65] systems. The Concert system is particularly interesting

°i.e. those which not more than one process must be evaluating at any one time.
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in that it attempts to optimize the concurrency grain size to improve performance. The
forerunner to Concert was Chien’s Concurrent Aggregates [23, 24]

1.6.2 C+H+ as a concurrent object-oriented language

C++ provides no language support for concurrency within its object paradigm. However,
as with other possible object-oriented features, creating concurrent object support within
the language is not an overwhelmingly complex task. Accept constructs are merely a
language formalism for daemon-style programs; monitor support can be provided on a
per-class basis, although entering and exiting the lock has to be done through explicit
function calls; active and passive objects are simple to provide if the underlying operating
system supports multi or parallel threading.

In fact some would argue that multi-threaded objects are purely a language formal-
ism for a concept that belongs, and should stay, in the operating system domain. If
an operating system does not provide support for these concepts then any concurrent
object-oriented system will have to provide the support itself, essentially augmenting the
operating system. If the operating system does provide support for threading then this can
be incorporated into an object-oriented language through the creation of suitable libraries.
The Presto system [11] amply demonstrates the viability of this approach.

1.6.2.1 Concurrent extensions to C++

Many concurrent extensions to C++ exist [15] and appear useful in the right context.
However, proposals to extend the emerging ANSI C++ standard to include concurrency
support have been dropped, and it is worth considering why.

Many people would like to see different extensions incorporated into the C++ language,
and for every feature that C+4+4 provides, there are many other variants of increasing
sophistication. However, the features that are added to the language are those which
will benefit a significant proportion of programmers on a significant range of applications
without affecting those who do not wish to take advantage of the new feature. Concurrency
mechanisms do not fulfil either of these goals since concurrency remains the domain of
specialized applications, and concurrency implies a run-time system which will burden
programmers who do not wish to take advantage of concurrency features. In addition
concurrency features do not contribute a great deal more, apart from syntactic sugar,
than library-based concurrent extensions, (excepting the Mentat approach).

If the language standard cannot justify an extension, then there can be little justifica-
tion for creating a dialect to support one. Creating a dialect has a whole host of problems
related to the need for writing a compiler to support the dialect; problems such as tracking
the original language definition as well as the dialect.

1.6.2.2 Library-based concurrency mechanisms

In any parallel system we have to address two issues: processes and communication.
Without different processes there is no parallel system. Without communication there is
little point in having one. Parallel processes need to communicate with each other at some
point in their lifetime. How can these issues be addressed in an object-oriented system
without language support?

Processes. Most problems associated with processes are to do with creation, starting
and stopping. As it is, the mechanics of this are very difficult without operating
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system support, although a co-routine style of programming can be used [104]. With
operating system support, starting and stopping a process is relatively easy and fits
neatly, conceptually, into the role of object constructors and destructors. These and
other functions can be incorporated into a process superclass from which all classes
needing process characteristics can be derived. In fact the concept of a process as an
object is a direct application of object-oriented methodology rather than a concept
needing specialized language attention.

Communication. Shared memory parallel processes usually communicate through shared
memory. Thus all that is required to support this type of communication is some
method of ensuring mutual-exclusion between critical sections of code. If an oper-
ating system provides support for parallel processes then it is most likely to provide
mutual-exclusion mechanisms. All that is then required is for process classes to en-
force use of these mechanisms for invocations of their methods. Unfortunately, C++
does not provide a method for generically enforcing guards (section 1.4.8) and thus
mutual-exclusion calls must be explicit. This is perhaps one area where language
support would be preferable, although not essential.

Processes in a message-passing parallel environment generally communicate in a
stream-based fashion. This is merely an input /output operation, and so a classic
candidate for using overloaded operators to ensure type-safety and give notational
convenience [95]. Thus we can write:

processA << abyte;

meaning “transmit a byte of data to process A”.

1.6.3 Object concurrency for performance

So far we have discussed concurrent object-oriented technology in general terms. We have
argued that perhaps support for concurrency within object-oriented languages is not as
essential as it first appears. Concurrency purports to bring object-oriented design closer
to the application domain, but introduces additional problems with system design. On
the rare occasions where concurrency is essential, library-based mechanisms can be used
to provide the desired functionality albeit at the cost of convenience.

However, do language mechanisms add anything for applications which are perfor-
mance directed, i.e. where concurrency is the object of the exercise? Certainly explicit
parallel constructs provide syntactic sugar for writing explicitly parallel programs, but this
does not make the hard problems of parallel programming go away. Sophisticated concur-
rent object-oriented systems such as Mentat and Concert take the view that all messages
are naturally parallel, however, true as this may be it takes an extremely fine-grained ap-
proach to parallel processing, an approach that is not suited to stock hardware. Although
much of the Concert project is concerned with increasing this granularity through sophis-
ticated compiler and run-time techniques, there is still no guarantee of usable parallelism.
Mentat takes a somewhat more coarse-grained approach but parallel objects are explicit.

Is there any other way that we can use object-oriented techniques, in a concurrent
context, to guarantee efficient, implicit parallel performance? This thesis looks at a way
of doing this, and the basis of the technique is outlined in the next chapter.



Chapter 2

Object-oriented
divide-and-conquer

Veni, vidi, vici. Julius Caesar

Practical parallel computing has been a reality for an appreciable number of years.
Research in this area has matured and significant advances have been made, especially
with regard to hardware organisation and architecture. For MIMD computers, however,
managing and programming for concurrent performance has proved, with the obvious
exception of data-parallel programming, to be a difficult and largely intractable problem
[70].

Object-oriented concurrent programming, in various forms and levels of sophistication,
has been proposed as an answer to this intractability. The debate continues - passive
objects, active objects, threaded message invocations, remote procedure calls [27] - though
there is some agreement that concurrency mechanisms make object-oriented languages
better at modelling real-world situations.

However, it has been pointed out that the heart of object-oriented programming is
orthogonal to concurrency [70]. Although the general object-oriented programming model
bears similarities to the concurrent programming model, programming with an object-
oriented discipline does not necessarily generate the speedup that marks the holy grail
of concurrent programming. If concurrency issues are addressed, most notably locality
of reference [68], then object-oriented programming can yield the performance that one
requires, but to constrain the programmer in this fashion is to contradict the supposed
benefits of coupling object-oriented programming with concurrent programming.

An object-oriented program can be rather like a tangled mess of threads from a con-
currency point-of-view. Although each thread exhibits significant concurrency with other
threads, the whole is not separable. If the whole is not separable then large-grain evalua-
tion cannot be performed in an efficient way, and even fine-grained evaluation has proven
tricky [25]. As we discussed in chapter 1, significant research has produced compiler tech-
niques for separating large grains. However, for good performance this still relies, to some
degree, on the extant structure of the program concerned.

Many concurrent programming systems realize the need for the programmer to play
a significant role in identifying concurrency and allowing their design decisions to be
influenced by concurrency issues [45]. Yet, all too often, object-oriented concurrent pro-
gramming is mooted as a panacea for the problems of concurrent programming, placing no
constraints on the programmer apart from the discipline of object-oriented programming.
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Experience shows us that taking advantage of the programmer’s skill in grasping the struc-
ture of a problem invariably reveals levels of concurrency that would have been missed
by an automatic system. However, allowing the programmer to make explicit parallelism
decisions is not the only way of capitalising on this skill. Instead, constraints can be
placed on the programmer which, if satisfied, are guaranteed to yield usable concurrency.
Parallel functional languages operate in this way. In a similar manner object-oriented
programming can be constrained through the use of the D&C algorithm [81].

2.0.4 Chapter organisation

In section 2.1 we discuss the basis of the object-oriented approach to D&C. In section 2.2
we discuss the advantages of this approach and how such a system would fit into an object-
oriented programming system. We also discuss techniques for facilitating this integration.
In section 2.3 we discuss the back-propagation algorithm and a naive implementation of
it under our D&C regime. Finally in section 2.4 we look at how well this implementation
performs on a parallel machine.

2.1 Object Oriented Design

In section 1.2 we examined the D&C algorithm and its parallel implementation. We saw
that problems cast in a D&C framework readily exhibit parallelism. So, from a parallel
point-of-view, D&C is a desirable method for solving problems.

However, the semantics of D&C are obviously not the last word in programming lan-
guages. Although Axford [5] and Mou [76] validly argue that D&C is a sufficiently powerful
programming construct in its own right, to assert such a view with finality, is to ignore
the primary purpose of programming systems. The role of programming systems is one of
servitude. Programming languages, CASE tools, debuggers, compilers - all were created
to bring the computer’s world, of detailed, ordered logic, closer to the programmer’s fuzzy
notions of real world problems. Thus, in using D&C as our implementing technology for
parallelism, we must not ignore the requirement of a programming system that meets
the needs of the programmer, rather than those of the computer, operating system or
whatever.

Mou’s Divacon language [76] was a functional programming language in its own right,
rather than purely a medium for writing D&C programs. However, D&C is, by defini-
tion, the source of parallelism. Thus, providing the programmer with additional facilities,
that have their origins in computational convenience for parallelism, seems rather counter-
intuitive. What is really needed are facilities that are directed towards programmer com-
fort.

Clare [29] attempted this by generalizing McBurney and Sleep’s [72] work. By setting
D&C in a C environment, Clare was, to a degree, addressing both the programmer’s
preferences, and the requirement for ready parallelism. However, using the C language
resulted in a system that appears somewhat onerous and inflexible from a programmer’s
point-of-view. The system required the definition of many functions, and had no means
of evaluating more than one D&C problem in any given program. Mou’s system was at
least not limited in the number of D&C problems it could evaluate. To implement this
genericness in Clare’s system, would probably involve a complicated system of pointers to
functions, and be a fairly arduous affair given the limits of C in this area. However, let
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us consider what is implicitly being accomplished through this system of C functions, and
what is required to extend it.

The C functions of Clare’s system, purely provided an interface, between the run-
time evaluator, and the programmer’s D&C specification of the problem in question. To
the run-time system these functions were an abstraction of the D&C problem. For each
different problem the abstraction that the run-time system saw was constant. In order to
evaluate different problems in a single program, this abstraction needs to be preserved for
each problem specification.

And what of the problem itself? Each problem is likely to consist of state as well as
function. Does the mere specification of functions yield a clear encapsulation of a problem?
In fact some of Clare’s functions represented state, since they were concerned with 1/0
of data related to the problem. Encapsulation is clearly a requirement, and so is the
genericness of abstractions. But, these two requirements are ezactly what object-oriented
programming languages provide. Thus it would seem advisable to use an object-oriented
language as the technology around which to base a D&C system. Also the design of
object-oriented languages is motivated by programmer needs, and therefore meets our
requirement for a system that is geared towards programmer comfort. Finally, object-
oriented languages generally enable the seamless addition of new features, without recourse
to compiler writing.

2.1.1 Basic D&C

In object-oriented languages, the object is the unit of abstraction and encapsulation. Thus,
in order to encapsulate problems in well-defined entities, we want to represent individual
D&C problems as objects. Additionally, we want to characterize each of these objects
with the same D&C functionality. This means that each object presents the same public
interface. Finally, we want the D&C functionality to be dynamically bound, so that D&C
objects are polymorphic with respect to the D&C functionality. This means that each
object can have a different internal structure, but that the manipulation of such objects
is constant.

Thus, in C++ each D&C object is characterized by the virtual functions simple(),
divide(), combine() and evaluate(), representing the D&C primary functions simple(),
divide(), combine() and evaluate() of section 1.2.

Such a definition outlines, in general terms, the basis of the approach. However, a
practical implementation requires a lot more detail, and many other issues need to be
discussed and resolved. In the remainder of this chapter we will discuss some of these
issues, and a naive implementation that addresses them. In chapter 3 we will describe a
more sophisticated and elegant implementation, that resolves these issues satisfactorily.

2.1.2 Data Representation

In the evaluation of any D&C problem, there will be an underlying data model that will
be the subject of the D&C primary functions. If we are to use more than one D&C
object in the evaluation of a problem, then we require these objects to have the same
characterization, so that, in our strongly typed environment, each may access the other’s
underlying data relatively easily. This is also true for the various individual D&C functions
which need to be able to access the underlying data.

For balanced D&C where the computational demand is determined by the problem
size, a vector characterization would appear most useful. With this structure, data sub-
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template <class T> class Divacon {
public:
virtual T divideUpper (const T&) =0;
virtual T divideLower (const T&) =0;
virtual T combine (const T&, const T&) =0;
virtual T evaluate (const T&) =0;
virtual const boolean simple (const T&) const =0;

Figure 2.1: A basic D&C class structure

The figure shows a basic C++ interface for implementing DEC ob-
jects. The class is parameterized over the argument T which repre-
sents the structure being manipulated.

Note in  these examples the wuse of divideUpper()
and divideLower(). These two functions perform a binary parti-
tioning of the problem. In later examples we drop these in favour of
a single divide() function which was found to be more flexible.

struct MatrixData_t {
unsigned int rows;
unsigned int columns;
unsigned int row_position;
unsigned int column_position;
doublex* data;

I3

class MatrixDivacon : public Divacon<MatrixData_t> {
public:
virtual MatrixData_t divideUpper (const MatrixData_t&);
virtual MatrixData_t divideLower (const MatrixData_t&);
virtual MatrixData_t combine (const MatrixData_t&, const MatrixData_t&);
virtual MatrixData_t evaluate (const MatrixData_t&);
virtual const boolean simple (const MatrixData_t&);

Figure 2.2: A D&C class representing matrices

The figure shows the use of the generic DEC interface presented ear-
lter. The example class uses MatrixData_t, representing matrices,
to hold the current state of data.
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units can be directly extracted rather than having to be traversed - which would be

necessary for a list based structure. Additionally, larger sub-units could be constrained

to be contiguous in memory so that 1 /O can be performed with a minimum of processor
1

cycles.

template <class T> class Divacon {
public:
virtual const boolean simple (const T&) const =0;
virtual T divideUpper (const T& ) =0 ;
virtual T divideLower (const T& ) =0 ;
virtual T combine (const T&, const T&) =0 ;
virtual T evaluate (const T& ) =0 ;

virtual void outputData (const T&, const Process&)=0;
virtual void outputResults (const Process&)=0;

virtual T inputData (const Process&) =0;

virtual T inputResults (const T&, const Process&)=0;

Figure 2.3: A D&C class with input / output functionality

The figure illustrates the additional functions needed to make a DEC
object usable by a parallel run-time system. There is no implicit
language support for object 1/ O so this must be provided explicitly.
Note that the DEC object is merely a functional provider for objects
with structure T.

Alternative characterizations are linked lists or binary trees. Linked lists would be
especially useful for complicated combine() or divide() functions, since the data sub-
units could be rearranged very easily. However, the overhead, in traversing the list to
extract sub-units and to perform I /O, is unnecessary for many problems.

McBurney and Sleep shared matrix structures between D&C operations. This meant
that data was not duplicated in the divide() stage, and so memory was conserved. This
is especially important for matrix multiplication and other algorithms which are not data-
parallel, as the splitting up of the data involves a certain amount of duplication. In cases
such as these, it would seem sensible to use, as much as possible, a description of the data,
rather than the data itself.

Thus, as a first approach, we parameterize D&C objects with a representation of the
underlying data structure. See figure 2.1.

This framework provides an interface to the problem through which the graph-reduction
routines can operate. As such the interface can provide no information about the under-
lying problem specification, derived classes will build up this information.

For a problem involving matrices the class derivation would be as shown in figure 2.2.
Whatever functionality is known at this stage can be added to the MatrixDivacon class,
and the complete functionality added in derived classes e.g MatrixMultDivacon.

In order to communicate D&C objects between processors, we require additional func-
tionality. The result is shown in figure 2.3.

'Recall that transputers can perform inter-processor data transfers via DMA, but only on contiguous
data.
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2.1.3 Run-time evaluation

We have outlined the structure of D&C problems in an object-oriented context. Such
structures are provided by the applications programmer. However, such structures are
only of any use when used with a run-time system for evaluation and scheduling.

For our naive first approach we structure the evaluation in the obvious fashion: as a
binary tree. Since the scheduling benefits of D&C are to be found in depth-first expansion
(section 1.3.1), we require a structure that is going to maintain the internal state of this
type of recursive evaluation. Since the evaluation is tree-like in nature, actually adopting a
tree structure will certainly provide the features we require. At each stage in the expansion
of the tree, the D&C object being evaluated is used to manipulate the data representation
of section 2.1.2. Each tree node will then contain a representation of the data and the
current state of that data. Nodes that are not currently being processed are put into a
queue, then nodes for parallel evaluation are taken from the front of this queue. This
particular scheduling strategy has been discussed already in section 1.3.

Each system component can also be constructed in an object-oriented fashion, yielding
a modular, easily maintainable system [98]. Where possible, predefined classes can be used
for system construction.

In chapter 3 we will give a full system description.

2.2 The Object Oriented Approach

We have described object-oriented D&C objects for parallel evaluation. We have as-
serted that object-oriented programming forms a viable framework for expressing the
D&C paradigm elegantly and flexibly, and for building a D&C system. However, object-
oriented programming also provides the means for achieving an integrated approach to
parallel processing.

2.2.1 Motivation

In most engineering disciplines, real problems are characterized by their complexity and
their non-uniformity. Given a problem, there are usually many steps involved in solving
that problem. Computationally, the requirements of a solution are usually diverse and
multi-faceted. For instance, to recognize human speech usually requires some combination
of acquisition, filtering, preprocessing, recognition, postprocessing and lexical-access. With
today’s problems, any computational system must be able to provide sufficient flexibility
to accommodate steps such as these, whilst maintaining efficiency as much as possible. It
is possible to be overly concerned with the efficient solution of very specific problems, and
give insufficient thought to the cost of integration of these solutions into a real system.
Efficiency must be measured in software life-cycle terms as well as actual algorithmic
efficiency.

D&C provides the flexibility necessary to accommodate a large problem solution set.
Object-oriented programming provides the means for integrating efficiently — in all senses
of the word — these various solutions to make up a complete solution.

2.2.2 Integration using object-oriented programming

It has already been described in section 1.6.2, how data abstraction and operator overload-
ing in object-oriented languages allow the complexity of parallel processing to be concealed
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Figure 2.4: The Design Process

The figure shows a possible scheme for implementing parallel pro-
grams using DEC. A combination of DEC solutions, DEC libraries,
standard C++ libraries and serial code is used. DEC only fulfils its
potential when used in this context.

behind the application programmer’s interface (API). Abstraction, together with generic-
ity and encapsulation of functionality, allows libraries of objects to be efficiently created
and easily used. However, as described above, the interaction between these various objects
and methods is as important as the objects and methods themselves. If this interaction is
poor then methods that are individually extremely efficient can be next to useless, leading
to poor overall system efficiency.

With the parallel evaluation of D&C methods, it is crucial that the number of D&C
passes? is reduced to a minimum so that the communication cost exacted by such a system
is minimized. Data dependencies may mean that computation cannot all be performed in

one pass, but the number of times this is necessary must be kept low.

2.2.3 Sequential-parallel and parallel-parallel integration

Parallelized object methods can be made transparent to the user using appropriate
functions and overloaded infix operators; for instance MatrixMultDivacon can be inte-
grated into the operator*. This allows the parallel and serial aspects of a problem to

2A D&C pass is D&C evaluation involving some form of data broadcast, with all the data being present
on the root processor at the beginning and end of the evaluation.
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Figure 2.5: Delayed evaluation

The figure compares standard evaluation with delayed evaluation.
The circles represent objects, and the letters data. In the exam-
ple three matrices are being added together. Delayed evaluation en-
sures that in a parallel context data is distributed only once. The three
shaded segments of the matrices will all be distributed to a single pro-
cessor, rather than distributed, evaluated and returned in pairs.

be integrated seamlessly without the parallel aspects interfering with the overall solution
strategy.

This also means that several parallel methods can be grouped together to yield a more
complex method. The problem with small sub-units being combined to yield a larger
solution is that this can lead to unnecessary inefficiencies. To take a trivial example:
it is inappropriate to compute, using D&C, many pairs of matrix operations separately.
constant x A+ B computed as constant ¥+ A and then result + B would involve a tremen-
dous amount of unnecessary communication. The data would be broadcast or retrieved
twice, when all that is needed is for all data to be broadcast, and each result element
to be calculated as constant x A; + B;. As communication is the overriding overhead in
MIMD parallel processing, we need to achieve the latter situation, but without explicit
programmer intervention. This can be achieved, whilst still maintaining the notational
convenience of operator overloading, by using delayed evaluation [33]:

This trivial example serves to illustrate the method of delayed evaluation.
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class Data;
class AddedData;
typedef float type;

class Base {
public:
virtual type evaluate()=0;
Base& operator+ (Base& bl);

};

class Data : public Base {
public:
Data(const type t=0.0) : data(t) {}
Base& operator= (Base& bl) {
data = bl.evaluate();
return bl;
}
type evaluate() { return data; };
private:
type data;
};

// generic compund
class Compound : public Base {
friend class Base;
public:
type evaluate() {

// base class - provides an evaluation interface

// foo is some arbitrary function

return foo( bpl—evaluate(), bp2—evaluate() );

}

protected:

Compound(Basex bl, Basex b2) : bpl(bl), bp2(b2) {}

Basex bpl;
Basex bp2;

b
// added data compund

class AddedData : public Compound {
friend class Base;

Base& Base::operator+ (Base& bl) { return xnew AddedData(this, &b1); }

public:
type evaluate() { return bpl—evaluate() + bp2—evaluate(); }
protected:
AddedData(Basex b1, Basex b2) : Compound(bl,b2) {}
b
main()
{

Data a(1.0), b(2.0), ¢(3.0), r;
r = a+b+c;

Figure 2.6: Example of delayed evaluation

The figure shows a working example of delayed evaluation. The
three Data objects a,b and c are added together by first forming a
compound, using AddedData, of AddedDatafAddedDatafa,b],c]. This
compound in then evaluated in Data’s operator=.
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2.2.4 Aggregate D&C objects

Delayed evaluation is characterized by aggregate objects. An aggregate is an object having
additional objects as part of its internal structure. In delayed evaluation each aggregate
usually represents an operation, the operands of which are contained within the aggregate.
Operands themselves can be aggregates as well. In a sequential context, every object is
characterized by its derivation from a single base object which specifies an interface to
basic functionality. Compound objects have the basic form given in figure 2.6.

The function foo() will vary depending on the type of compound object. For instance
if the object is an AddedData object then foo() will be the infix operator+. The infix
operator+ will then be overloaded for Base objects. Some appropriate garbage collection
is used to release the AddedData object when it has been used. Objects that actually
contain data are a special case and evaluate() simply returns the data itself.

This approach results in the construction of an evaluation tree. The tree can be pruned
to eliminate temporaries and unnecessary operations. For example AT B can be evaluated
without calculating AT. The tree is then evaluated by overloading the operator= so that
it calls the root object’s evaluate() function. This call recurses down the tree until
evaluate() returns plain Data. Then as the recursion unwinds, evaluation takes place.

This is essentially how Davies’ Newmat [33] package works.

2.2.4.1 D&C and delayed evaluation

For normal delayed evaluation, each object is characterized by the function evaluate().
Now, with our D&C objects, each is characterized by the D&C primary and auxiliary
functions. Thus to extend delayed evaluation to D&C objects, we merely create aggre-
gates with the same characterization. To evaluate the aggregates we recursively call the
D&C functionality, instead of just evaluate(). Thus, in the addition of two matrices
for example, divide() for operator+ calls divide() for its two operands. The operands
then divide as appropriate. A similar procedure applies for the other D&C functions.
Evaluation is triggered by operator=, just as for the serial case.

Of course, this integration will only work within the constraints of one D&C pass,
and it is essential that the maximum possible computation is performed within each pass.
Unlike the sequential example, data dependencies will mean that the evaluation tree can
rarely be evaluated in one pass. It is therefore possible to envisage an evaluation scheme in
which nodes of the evaluation tree are identified, at which no further single pass evaluation
can be performed. When these nodes are identified D&C processing takes place, rather
than just in the operator=.

2.2.5 Problem partitioning with D&C objects

Rabhi [88] identified problem partitioning as crucial to achieving optimal speedups for
balanced D&C systems. The compound object scheme as described above, means that
partitions can be specified for each D&C operation®. For the compound simple() func-
tion, the overall partition can be specified as a suitable combination?, of the individual
operation partitions.

3 . . R .
For instance matrix multiplication

*Possibly the minimum.
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2.2.6 Summary

The integration of parallel methods in this context can be achieved in an efficient and
flexible way for some problems. These ideas are denoted schematically by Figure 2.4.
We now look at a typical problem, and how it can be implemented using object-oriented

D&C.

2.3 The Back-Propagation Algorithm

Given a three-layer perceptron [90] with I input units, J hidden units and K output units,
the output o is related to the input o by:

OK — fK((WJK)TfJ((WIJ)TO_I)) (21)

Where f;() and fx () are discriminant functions and W17 and W' are weight matri-
ces. This is the feed forward equation. The back-propagation of the error gives weight
updates:

AW'E = po’((t" —o") @ [k (e"))" (2:2)
AW = el (WHR[(R — o) @ [ (e%)] @ f3(o))" (23)

where ® is elementwise multiply, f’() is the derivative of f() and 7 is the learning rate.

t% is the target output.

2.3.1 Approaches

It is now necessary to consider how this problem can be broken down modularly in a D&C
fashion. There are two options:

e If the network is very large then the algorithm itself can be broken down using D&C
and basic matrix operations. This is not necessarily highly efficient. This will be
denoted as a vertical implementation.

e If the network is small then the whole algorithm can be kept on each node and differ-
ent weight updates can be calculated on each node and the results combined. This
is a common way to implement parallel back-propagation - to run the entire training
set through the network and to sum the weight updates. This has the advantage of
eliminating random noise. This will be denoted as a horizontal implementation.

Let us consider the second possibility first as this is likely to be the easiest one to
implement.
2.3.2 Notation

Operations will be defined in terms of pseudo-mappings between sets. These pseudo-
mappings will then be qualified. Thus

divide(): S — {S1,S;} WHERFE
< define Sy and Sy in terms of S >

simple(): S — < boolean expression >
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evaluate(): S — S" WHERFE
< qualification of the mapping >
combine(): {S1,82} — S WHERFE
< define S in terms of Sy and S, >

Representations and their equivalents are as follows:

v
Vectors: v = = (vy,...,v,)7
v,
. M M M
Matrices: M = ( M: ) = ( Mi Mlz ) = (Viy...,Vp)
Scalars: «a
Data sets: Dg = {M,v,aq,...} (2.4)

2.3.3 Horizontal Back-Propagation

Given a training set of n frames Tg(n) = {fi,..., f,.}, this can be split recursively into
groups of frames. Thus

divide() : Tg(ns) — {Tg,(ns/2),Tg,(ns/2)} WHERE
Tsl (ns/Q) = {fla B '5fns/2}
Tsz(ns/Q) = {fn5/2+17"'7fns} (25)

If ns defines the number of frames in a given set then a straightforward simple()
function is when n; is equal to some suitable partition.

simple() : Tg(ns) = ns = partition (2.6)

The evaluate() function then becomes a cycle of the feed-forward / error back-propagation

equations.
The combination function is equally straightforward and involves an addition of the
returned weight updates. Thus the result set Rg for each node is defined by:

combine() : {Rg,,Rg,} — Rg WHERE
Rg = {AWY AWI/R) WHERE
AW = AW 4 AWl
AWTE = AWK 4 AWK (2.7)
In addition to these primary functions it is also necessary to define the sets for in-
put /output functions. These will be called Bg the Broadcast Set and Reg the Reel Set.
These are:
BS — {WJK, WIJ, 017 tK} (28)
Reg = {AW! AWK} (2.9)

Note that this approach runs into the problem of lack of memory. With a simplistic
implementation the entire training set would need to be initially held on the root node
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together with all the other associated data. A more sophisticated approach might use
some through routing technique so that data was not actually transmitted until needed.
Additionally the idea of using the host as the root and initially employing D&C as a
scheduling strategy would be helpful here. This would involve dividing the data until the
sub-divided parts are small enough to run on the first node, and the evaluation function
becomes that of scheduling this load onto the first node for computation.

2.3.4 Vertical Back-Propagation

The second approach is to break down the algorithm itself into D&C format, rather than
the data. Only the feed-forward equation will be considered to illustrate the method.
It is necessary at this stage to define some new terminology to specify the state of data
structures, principally whether the leaf result of a D&C operation is in a column-wise
segmented or row-wise segmented state. These will be denoted by the subscripts ¢ and r
respectively. Unsubscripted data structures are unsegmented.

By definition f(o) is a data parallel operation, and can thus be computed by D&C by
simply splitting the vector along its length. This gives:

divide(): v — {vy,,vq,} WHERFE
Vi = (’01, s 'avn/Z)T
Vi = (vn/2+17 SRR vn)T

simple() : v —  elems(v) < const

evaluate() : v, — v. WHERE

vi = J(vi)
combine() : {vq,,v2,} — v WHERFE
v= (i, vl (2.10)

Note that functions of this nature can be recursively applied so that only one D&C
pass is necessary.

Matrix-vector multiplications can be performed by segmenting the matrix row-wise
and keeping the vector intact. Thus:

divide() : {M,v} — {M;,,M; ,v} WHERE
_ [ My,
simple() : M — elems(M) < partition
evaluate() : {M,,v} — u, WHERE

u =M,v
combine() : {My,,M; ,v} — {M,v} WHERFE
_( My,
M = ( M ) (2.11)

The vector u generated by this function is in the row-wise segmented state when evaluate()
is applied. Thus, data-parallel vector operations can be applied to this result in the same
D&C pass. For example:

JS(M,v)
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Since the resultant vector is row-wise segmented it is cannot be re-used by equations 2.11.
Thus the calculation of o requires two D&C passes.

2.3.5 Implementation issues

We now come to actually implementing these expressions using D&C objects. For the
vertical implementation, we can, as desired, write simple algebraic expressions using ap-
propriately defined D&C objects. An example is given in figure 2.7. As discussed previ-
ously, operator= actually performs the D&C operations, with the other operators simply
building up the compound D&C object.

main()
{
const S7Z = 128;
VectorDac<float> A(SZ), B(SZ), C(SZ), R(SZ);
MatrixDac<float> M(SZ,SZ);
R = A + B * exp(MxC);
}

Figure 2.7: A simple algebraic expression using D&C classes

The figure shows the user’s view of the manipulation of matrices and
vectors using delayed evaluation. As can be seen all the techniques
described so far are completely hidden.

What is immediately apparent, however, is that the structure representation is not
constant. We can characterize many operations as vectors, but at some stage, as is the
case for back propagation, the representation can change; perhaps to a scalar, as is the
case for vector dot product. This means that the parameterization of section 2.1.2 is not
sufficiently flexible. Although we can implement much of the back-propagation algorithm
in this way, a complete solution is non-trivial. Similarly, it is not clear how multiple
evaluations can be integrated if their representations are different. Since the structure of
the evaluator is largely influenced by the interface of the D&C objects, different interfaces
will naturally yield different evaluators. This is clearly far from ideal as it leads to an
excess of template instantiations and means that the evaluation is still influenced by the
problem in question. What is really needed is a complete separation of evaluator from
problem, however, it is not clear how this can be achieved whilst still allowing problems to
access their underlying data structure. In chapter 3 we will see how this can be achieved.

Another problem is also apparent. If we implement as much of the algorithm as we
can, and run the whole, the execution time, for one frame on one processor, is so low
(< 1s) that parallel implementation yields very little performance improvement, and was,
in some cases, slower! This is due to the parallelizing overhead being comparable to the
actual computation being performed. Thus, if we are to promote delayed evaluation as a
viable technique, we must pursue problems with a great deal more algorithmic overhead.
We must also design a D&C framework that incorporates sufficient flexibility for variation
in the underlying data structure.
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2.3.5.1 Horizontal implementation

For the horizontal implementation, similar problems are encountered. Although the un-
derlying structure is of a vector of training frames, the result - two matrices - must be
combined through addition. To implement this, whilst still retaining the vector structure,

requires rather a convoluted approach involving a vector of pointers to matrices. Although
this is possible, and the results obtained bear witness to this, it is again obvious that a

more flexible structure is required.

void main()

{

// Setup data structures.

const TRAINING_FRAMES = 512;

const [ = 32; // nn parameters
const J = 136;
const K = 10;

VectorDac< Vector<float> > inputs(TRAINING_FRAMES),
outputs(TRAINING_FRAMES);

inputs = Vector<float>(I); // resize the data
outputs = Vector<float>(K);

Matrix<float> d_-Wij(L,J), Wij(I,J),
d-Wijk(J,K), Wjk(J,K);
CombVectorDac< Matrix<float> > delta_Wij(d_Wij, TRAINING_FRAMES),
delta_Wjk(d_Wjk, TRAINING_FRAMES);

// Initialization for root node.
if (getnodeid() == 1){

inputs = outputs = Wij = Wjk = Random; // randomize everything
} // in liew of actual data

// Divide-and-Conquer operations.

BackpropDac<float> bp(inputs, outputs, delta-Wij, delta_Wjk, Wij, Wjk);
bp.evaluateExpression();

// Post-processing for root node

if (getnodeid() == 1) {
Wij += d_Wij; // update weights
Wik += d_Wik;

Figure 2.8: Horizontal back propagation

The figure shows a DEC implementation of the back-propagation al-
gorithm. The essence of the algorithm is hidden in the BackpropDac
object. This structure is defined to use veclors of training frames
(inputs and outputs) and return results in a CombVectorDac. This
vector structure sums ils elements during combine().

The essence of the horizontal scheme is to define a D&C object, for which evaluate()
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performs the training algorithm on a vector of training frames. divide() merely splits
this vector up, and, as indicated previously, combine() sums the resultant weight update
matrices. The back-propagation object can be constructed relatively easily using standard
C++ classes. The actual program is shown in figure 2.8. Looking at this we can see an
additional problem; the threads of control on the root processor and on the farm processors
are different. These differences are coded into the program that runs on the origin node,
but actually need to be transparent to the user.

Having observed some of the problems inherent to our naive approach, we move on to
performance figures for the horizontal algorithm.

2.4 Results

Figure 2.9 shows the speedup gained for the horizontal scheme with 32 input units, 136
hidden units, 10 output units and 512 Frames. The experiments were conducted on a 4x4

Figure 2.9: Results for Horizontal Back-Propagation

mesh of T800 transputers the structure of which is described in appendix B. The mesh
was wrapped into a torus. The processor numbers used were increased rasterwise - left
to right then top to bottom - the root node being at the beginning of the raster. The
reference time was obtained by running the program on one processor with scheduling and
partitioning switched off. The minimum divided size (partition) was varied, as well as the
number of processors, to gain some perspective of how it affected speedup.

Examining the results, we see that the overall picture is fairly good with a speedup of
10 for 14 processors. A number of other features are worth noting.
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e For large partitions, the number of available tasks decreases until it is less than the
number of available processors. At this point performance tails off rapidly. In the
limit, the speedup tends to that of the single processor case.

e When more than one processor is available, but the partition size constrains the
system to use only one, the speedup gained is slightly less than the single node
case. This is probably because of the overhead introduced by the bidding scheduling
scheme - scheduling requests are still made to the root node, it just cannot satisfy
any of them.

e Rhabi’s [88] partitioning results - optimal speedups for partitions matching the sub-
task size to the number of processors - are not observable here. This may be because
of a difference in scheduling strategy between the two systems. The strategy em-
ployed here means that with more sub-tasks, a greater number of processors will
be utilized towards the end of a processing pass. With less sub-tasks, towards the
end of the computation the root processor will be the only processor left computing,
when the sub-task queue has been exhausted.

2.4.1 Limitations in performance

There are two main observations we can make as factors that will inhibit performance.
These two have been largely ignored in the literature, but are issues with considerable
impact on performance.

2.4.1.1 Scheduling

The first factor is concerned with scheduling. In order to obtain load balance across
the processor network, we employ depth-first expansion to produce sub-tasks for parallel
evaluation. These tasks are pushed onto the execution stack and evaluated in parallel in
FIFO order. Thus, for balanced evaluation, the first task evaluated in parallel will be 1/2
of the problem, the second 1/4. In fact the size of any task as a proportion of the whole
problem will be:

1
26 = — 2.12
size = o (2.12)

where ¢ is the index of the task scheduled, starting from 0. Now, because we employ
the single-steal rule for scheduling, initially each of these sub-tasks will be scheduled on
a different nearest neighbour. Once all the nearest neighbours have been exhausted, no
further scheduling can take place until a neighbour has finished its sub-task. In the worst
case, if we assume that no further scheduling will take place, then the execution time will
be limited to that of the remaining task on the origin processor. The size of this task will
be equal to the smallest scheduled task®. Since the number of scheduled tasks is equal to
the number of links on the processor, the actual size will be:

1

DNiinks

stze =

(2.13)

SRemember we employ binary division.
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and the maximum speedup will be:

1
S - 1/2nlinks

2nlinks (2_14)

For a transputer with 4 links, we expect the maximum speedup to be 16. For fewer
links, we expect maximum speedups of 8,4 and 2. Obviously this is a worst case scenario,
and the performance will be improved by the presence of non-nearest neighbours, and
by nearest neighbours completing sub-tasks before the origin processor. Even so, we can
observe discrepancies in our results at 4 and 8 processors. We will examine further evidence
for this, and solutions, in chapter 4.

2.4.1.2 Problem size

The second observation we make is that the size of problem we can run is limited by the
resources of the origin processor. Since the entire problem starts from a single source,
the origin processor must have sufficient storage to be able to accommodate the whole
problem. This is obviously important, firstly because we wish to be able to run problems
of a reasonable size, and secondly because larger problems will tend to exhibit better
performance characteristics [52].

When distributed evaluation takes place the data required for this evaluation is rel-
atively small in comparison with the total data. Thus, as mentioned previously, some
sort of virtual data transmission scheme would be necessary in order to implement larger
problems, and make efficient use of the available resources. This would mean that data
was only present on a node when it was actually needed and that a virtual representation
was transmitted at other times.

We will study these problems in more detail in subsequent chapters.

2.5 Conclusions

We have examined a simple implementation of object-oriented D&C. We have seen that
good performance can be obtained with such a system, and that we are able to manage
parallel complexity effectively. We therefore conclude that the basic idea is sound, but
the simplistic implementation has some fundamental flaws. If the system is to be really
effective, then these flaws must be eliminated. There are also some parallel implementation
issues that need to be addressed, if we are to increase the general applicability of the
system.

Having examined in broad terms the concepts involved we now take a more detailed
look at implementation. We have identified areas of concern and begin again with a
top-down design, trying to solve these problems in a structured fashion.
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Design of an object-oriented

D& C system

recursion 269 The C' Programming Language, p269

We have examined the basic concepts of object-oriented D&C. We now look in more
detail at the requirements for an object-oriented D&C system.

3.0.1 Chapter organisation

Section 3.1 describes the object-oriented D&C approach and its implementation together
with some additional features. We also examine the approach in the light of the actor
programming model. Section 3.2 describes a method of reducing a programmer’s burden
under object-oriented D&C. In section 3.3 we look at some enhancements to the basic
system and their possible uses. In section 3.4 we take a more detailed look at the actual
system implementation as well as its position in the overall software / hardware hierarchy.
In section 3.5 we look at the design and implementation of some core object-oriented D&C
classes, and finally in section 3.6 we look at their application to some simple problems.

3.1 Kernel Structure

In this section we describe desirable properties for an object-oriented D&C system. We also
describe, in general terms, the implementation of these features in a C++ environment.
Finally, we compare object-oriented D&C with the actor model of concurrent computation
and describe how various features fit into this model.

3.1.1 General approach

The basis for object-oriented D&C is to incorporate the primary D&C functions into an
object. This design consideration together with normal object-oriented features yields
quite a powerful programming paradigm [81].

In chapter 2 we described [81] an object-oriented D&C structure that incorporated
various features in a “bolted-on” fashion. In using this structure it became apparent that
a more uniform, cleaner approach was needed, so that these features would then be an
integral part of the design, and so that more advanced features could be incorporated.
The goals of this new design are:
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Full polymorphism. Our previous implementation consisted of two basic class struc-
tures. One represented the D&C functionality required, the other the data on which
that functionality would work. The reason for this separation of data and func-
tionality, which appears contrary to the goal of object-oriented programming, was
three-fold. Firstly, the data-holding structures needed to be kept simple and small
as the number of data objects produced during D&C evaluation was considerable.
Secondly, there was no immediately apparent way of representing actions and data
which were common to all D&C objects, if all actions and data were defined in
a single structure. Hence, this global data was folded into the functional half of
the design as this was in itself global to all D&C objects. Thirdly, parameterizing
D&C objects with the data-holding structures, enabled the various D&C functions
to access easily the underlying data-structure of the problem involved.

The problem with this approach is that the D&C functionality cannot be made fully
polymorphic as it has to be typed by the data structure it uses — in other words this
information has to be built into it. The D&C functionality requires a polymorphic
interface because this interface is used by the D&C evaluation code, and we do not
want to duplicate this code for every different type of D&C problem! In the end this
evaluation code was parameterized upon the D&C data structure as well, using a
class template facility, putting the onus on the compiler rather than the programmer.

However, this is not a particularly neat solution and runs into all sorts of problems
if we want to evaluate more than one type of D&C problem at the same time.
The obvious solution is to bundle the two halves into one type of object. A fully
polymorphic interface can then be written and all the original problems go away.

“Virtual” object-creation. Once D&C objects are fully polymorphic they can be eval-
uated without any knowledge of their true type. However, for this anonymity to be
transmitted coherently in a message passing environment we must have some way
of transparently reconstructing these objects into their actual type.

Multiple evaluations. Provision of the features described above paves the way for con-
currently evaluating multiple types of D&C objects. This would then allow programs
to be written more flexibly, incorporating a greater degree of parallelism.

Mix-in-based program development. Ideally, most useful D&C functionality should
be provided as a library if at all possible. This would ensure that a programmer
would be able to build his program from predefined building blocks. However, each
D&C object can vary in four possible ways, corresponding to variations in each of
the four D&C primitives. A library containing all of the possible variations would
tend to grow expomnentially as more objects were added, and would eventually be-
come unmanageable. What is needed is the ability to “mix in”, or combine, single
primitives together, as is allowed in Lisp Flavors, thus only requiring these single
primitives, rather than their combinations, in a library [13, p54].

Delayed evaluation. We previously described [82] the advantages of delayed evaluation
for creating efficient high-level algebraic operations. However, this feature was rather
difficult to use in its previous incarnation, again mainly due to the structure not being
totally polymorphic.

Having described desirable attributes for our object-oriented D&C system, we now
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discuss their implementation and an evaluation structure within which the overall scheme
fits neatly.

3.1.2 Stack-based evaluation

Previous MIMD D&C implementations have generally adopted a tree-like evaluation struc-
ture. This has the advantage of maintaining the node orderings as well as being an easy
structure to traverse. Another approach is to split the entire task completely and then
gradually evaluate the pending sub-tasks. However, this is to perform a breadth-first eval-
uation which results in high memory overheads. Additionally, if division involves some
computational overhead — and in many problems division represents the only computa-
tional overhead — then efficient parallelism is not possible. This approach can also suffer
from incorrect task ordering.

D&C lends itself naturally to recursive evaluation. However, parallel evaluation re-
quires that we have access to tasks that have not yet been evaluated, and recursive eval-
uation does not allow us to do this easily.

Sedgewick [96, p45], gives an algorithm for traversing a binary-tree using a stack rather
than by a recursive method. By modifying this algorithm it proves possible to evaluate a
D&C task, depth-first, using a stack. We can only do this by virtue of the fact that we
have objects representing D&C problems. Thus at any stage of evaluation a D&C object
holds allinformation necessary for further division. Once an object has been created it has
no interdependency with its parent, and can be manipulated totally freely as a complete
entity.

Two issues must be considered. Sedgewick’s algorithmm gives a way to traverse a tree
in place!, but of course the D&C algorithm necessitates building a tree and ascending it as
well. The former is important to consider since as the tree is not in-place, the ordering of
the nodes cannot be fixed rigidly. The latter is important because the original algorithm
discards the tree information after it has visited nodes — so the information we require for
division is present but that for combination is lost.

The combination problem can be solved by introducing a second stack onto which
nodes are placed after they have passed through the divide stage of evaluation. If we do
this correctly then we can pop successive pairs of nodes from this stack for combination
(figure 3.1). Unfortunately, this works fine except for a few pathological cases which cause
incorrect node ordering or evaluation. A trivial example is shown in 3.1.

If we have an unbalanced tree, where a node has less than two children, then the
problem is more serious. If we modify the algorithm to cope with the case where a node
only has a left child, then the right node only case fails, and vice versa.

The way we solve this problem is by introducing a key to the stack which we use to
encode the level at which a particular object is in the tree. The root object is at level
0, its two children are at level 1 and so on. By doing this we can make sure that only
pairs with the same level are combined. The modified algorithm is given in the program
in figure 3.2.

3.1.2.1 Advantages of a stack

Stack-based evaluation of D&C problems provides more than just a simple, elegant algo-
rithm. Most MIMD D&C implementations utilize a stack for holding pending tasks [72, 81]

'In other words a tree that already exists.
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P P q

N
p q

No way to tell that 8 & 2
should not be combined

D Virtual (non-existant) nodes
. Nodes pending evaluation
l:l Nodes pending combination

p.q Divide and combine stacks
Figure 3.1: Stack-based evaluation

The diagram shows the depth-first, DEC expansion of the task la-
belled 1. Frzeculion proceeds by evaluating first left-nodes and then
right-nodes. The evaluation is performed using a stack, and the di-
agram gives an example of where the evaluation is ambiguous. Nor-
mally, pairs of evaluated objects are combined from stack q, however,
in the example objects 8 and 2 are a pair but should not be combined.

because the tasks can be taken from the bottom of the stack for parallel evaluation. Since
our whole evaluation scheme is stack based, tasks eligible for parallel evaluation are readily
available. Further advantages we will consider in section 4.3.2.

3.1.3 Virtual object construction

Passing anonymous objects around a message-passing environment necessitates some means
of reconstructing objects based on a message. Coplien [31, p290ff] describes a scheme for
implementing exemplar-style programming in C++. The techniques he uses allow for
arbitrary classes to register in an exemplar list. When an object is to be created, its con-
struction parameters are presented to each registered exemplar in turn to see whether it
can consume the input and return an object. By modifying this operation slightly we can
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Dac Dac::run() const {

Dac 1,r)n;

int s; // current level
/*

x When the root node is simple then we simply evaluate it.

*/

if (simple()) return evaluate();

/*

* we now save the stack positions in case we recursively call this function.
*/

int ppos = *p, qpos = *q;
p—rpush(xthis, DacStack::limbo, 1); // musn’t spawn the first one

while (Ip—empty(ppos)) { // emptiness is relative to ppos
/*
x we’ll start to divide until we have something to combine.
*/

while (!q—pair(gpos)) {

s = p—key(); // get the level
n = p—pop(); // get the object
/*
* note that n might have suddenly become simple under our noses ...

*/
/*

*x If the two child nodes are simple then we evaluate them and push
* them onto the combine stack. Otherwise we push both nodes onto the
evaluation stack. Note that we are going down a level.

if (‘n.simple() && !(n = n.divide(L,r))) {

*

*
/
if (W.simple() || tr.simple()) {
p—rpush(r, DacStack::pending, s+1);
p—push(l, DacStack::limbo, s+1);
}
else {
q—push(Levaluate(), s+1);
q—push(r.evaluate(), s+1);

}
/*
* of we couldn’t divide then we evaluate the current node and push it
* for combining. This should cope with the case when the current node
x 18 simple.
*/
} else {
gq—push(n.evaluate(), s); // level is constant
}

}
/*
* combine objects if we have some.
*/
while (g—pair(gpos)) {

s = q—key(); // we are going up a level
r = g—pop();
1 = g—pop();

q—push(l.combine(r), s-1);

}
/*
*x The last object left is the one we want ...
*/

return q—pop();

Figure 3.2: The stack evaluation algorithm
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assign each D&C class a type code with which registered D&C exemplars can determine
whether an incoming object is of its type and act accordingly.

The advantage of Coplien’s approach is that the number of exemplars need not be
known by the management code and new classes can be added to the exemplar list, simply
by linking in the appropriate library, no code modification is necessary.

3.1.3.1 Nstreams

Coplien’s exemplar example consumed characters from a static buffer. Although it would
be possible to do this in a message-passing environment, this sort of input /output op-
eration is far more simply performed using C++ streams (see section 1.5.1.3). These
structures dynamically request input from a stream source in a manner transparent to
the user [95] and are designed in such a way that the stream source can be modified rela-
tively easily. Thus we have designed message-passing iostreams called nstreams based on
the Trollius™™ message passing calls nsend() /nrecv(). These structures transparently
send and receive network packets when sinking and sourcing information as per standard
iostreams. One of the advantages of using this scheme is that short messages are buffered
and transmitted as long messages. This reduces excessive numbers of communication
messages.

Unfortunately, iostreams are designed to transmit information in ascii format, which
is fine for writing data files to disk or scanning for user input, but leads to data expansion
during message-passing! In order to overcome this, we create binary iostreams which
are constructed from normal iostreams but which force binary reads and writes to be
performed, thus optimizing the volume of data transmitted.

In addition to this optimization we want to make sure that long messages are transmit-
ted directly rather than being intermediately buffered. This is not a problem except for
the fact that these unbuffered messages could potentially overtake the buffered messages.
For this reason we make sure that the unbuffered messages are only transmitted when the
stream is flushed (implicitly or explicitly) at which point we can ensure that the buffered
information is sent first.

3.1.4 Interface design

In this section we build up an object-oriented D&C interface, gradually incorporating
desirable features.

3.1.4.1 The basic interface

To start with we require the D&C primary functions. In order for the interface to be
fully polymorphic, all function arguments and return values must be expressed in terms
of a generic D&C object Dac, see figure 3.3.

3.1.4.2 Reference counting and labelling

A little thought shows that this immediately creates a problem. All polymorphic
behaviour in C+4++ is exhibited through operations on references or pointers to objects.
If we are to return from functions, objects which exhibit polymorphic behaviour, then it
is references or pointers that must be returned. Unfortunately, this creates a memory-
management nightmare as all objects referenced in this manner would have to have global
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class Dac {
public:
virtual const boolean simple() const;
virtual Dac divide(Dac& 1, Dac& r) const;
virtual Dac evaluate() const;
virtual Dac combine(const Dac& d) const;

Figure 3.3: Basic D&C interface

The figure shows the basic object interface for the new DEC design.
Note that there is now no parameterization of the interface. All argu-
ments and return values are expressed in terms of the generic object
Dac.

lifetime. Fortunately there is a way around this problem; by using Coplien’s [31, p133]
envelope and letter idiom we can make the interface simply a label for a real object that
can be changed readily without affecting the label. So in this instance our label is “D&C
object” but what the real object might be is not pre-determined by the interface. The
other advantage of this idiom is that we can incorporate reference counting for the actual
objects so that memory-management is no longer a problem and object assignment and
copying are cheap. Procedure calls made to the label can be forwarded to the actual
object. Additionally, if this forwarding is done in-line then it has no performance penalty.

Coplien’s original design had class member functions delegating their operation through
a pointer to an object of the same class. However, we require that all actual D&C objects
have some global information — like size — and we do not want to burden the “labels” with
this information any more than necessary. For this reason we delegate the D&C interface’s
functions through a pointer to an object of a class derived from the interface class. See
figure 3.4.

3.1.4.3 Mix-in support

We now wish to incorporate support for mix-ins. Mix-ins combine class functionality
through the use of multiple-inheritance and a common base class. For example a base
class X might declare the functions a() and b(), and two other classes A and B, derived
from X, might define one of these functions each. If we were then to require a class C
that required the functionality of a() or b() or both, we could then derive C' from X, to
make it have the interface of X, and additionally make C' “mix in”, through inheritance,
A or B depending on the functionality required.

In order for mix-ins to work, the base class defining the interface must be a virtual
ancestor of all its derived classes. This means that all descendants of the base class share
a single instance. The current D&C design makes this constraint easy to satisfy as we just
make the envelope (Dac) a virtual ancestor of the letter (DacRep). Any mix-in definitions
must then be virtually derived from Dac.

This raises one other issue. Using mix-ins can be made safe by making the base
class functions all pure virtual. This means that the base class does not define these
functions, and the compiler forces the programmer to define these functions in derived
classes. Unfortunately, our self-referential design means that the D&C base class functions
are already defined to delegate their operation to the derived letter. Thus if a programmer
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class Dac {
friend class DacRep;

public:
virtual const boolean simple() const {
return d_rep—simple();
}

virtual Dac divide(Dac& 1, Dac& r) const {
return d_rep—divide(l,r);
}

virtual Dac evaluate() const {
return d_rep—evaluate();
}

virtual Dac combine(const Dac& d) const {
return d_rep—combine(d);

}
// reference counting

Dac() {}

Dac(const Dac& d) : drep(d.d_rep) {
if (d_rep) d_rep—count++;
}

const Dac& operator= (const Dac& d) {
if (drep # d.drep) {
if (d.d_rep) d.d_rep—ycount++;
if (drep && --d_rep—count < 0) delete d_rep;
d_rep = d.d_rep;

3‘eturn *this;

}

~Dac() {
if (drep && --d_rep—count < 0) {

delete d_rep;

}
drep = d;

}

protected:

DacRep *d.rep;

};

class DacRep : public Dac {
friend class Dac;

public:
DacRep() : count(1) {}
unsigned char count;

};

Figure 3.4: Reference counting

The figure shows how the basic interface object, Dac, can be reference
counted to eliminate unnecessary copying. Nole that all data is actu-
ally held in DacRep and all primary functions in Dac are forwarded
to this object.



3.1 Kernel Structure

55

class Dac {
friend class DacRep;

public:
virtual const boolean simple() const {
return d_rep—rsimple();
}

virtual Dac divide(Dac& 1, Dac& r) const {
return d_rep—divide(l,r);

virtual Dac evaluate() const {
return d_rep—evaluate();
}

virtual Dac combine(const Dac& d) const {
return d_rep—combine(d);

// reference counting
Pac() {}
Dac(const Dac& d);
const Dac& operator= (const Dac& d);
~Dac();

protected:
DacRep *d_rep;

I3

class DacPure : public Dac {
public:
const boolean simple() const=0;
Dac divide(Dac& 1, Dac& r) const=0;
Dac evaluate() const=0;
Dac combine(const Dac& d) const=0;
DacPure() {}

I3

class DacRep : virtual public DacPure {
friend class Dac;

public:
DacRep() : count(1) {}
unsigned char count;

¥

Figure 3.5: Mix-in support

The figure shows an abstract interface inserted between the Dac and
DacRep classes. All miz-in classes inherit from this interface so thal
inheritance will yield a correctly constructed DEC class. The inter-
face is abstract (functions ending in =0) so that derived classes are

forced to define these functions.
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happens to forget to define one of these functions — and the compiler will allow this — any
call will default to the base class definition. This obviously gives rise to a never-ending
recursion that will only terminate when the process’ stack space is exhausted. We can
overcome this problem by introducing an intermediate “pure” interface that we place
between the envelope and letter in the inheritance hierarchy. All mix-in definitions can
then be derived from this pure interface and the compiler will then complain unless all
functions are properly defined. See figure 3.5.

3.1.4.4 Exemplar support

Finally we must add exemplar support so that objects can be transmitted around a message
passing environment. The functionality required by the interface is given in Coplien and
comprises three functions: one to find a type match between a list of registered exemplars
and an input stream which subsequently calls the relevant object constructor, another —
simply a virtual placeholder — to output a type identifier and associated object to a stream
and a third to register an exemplar in the exemplar list.

class ADacClass : public DacRep {
protected:
Obj anotherMember
int aMember;
// construction from an input stream

ADacClass(ibstream& i) : DacRep() , anotherMember(i) {

i > aMember;
}
// exemplar registration constructor
ADacClass(ExemplarConstructor €) : DacRep(e) {}
// Zvirtual” construction from in input stream
virtual DacRep# scan(ibstreamé& i) {
return new ADacClass(i);
}

// output to a stream
virtual void spawn(obstream& o) {
0o € anotherMember <« aMember;

// registered exemplar
static ADacClass* exemplar;

¥

ADacClass* ADacClass::exemplar = ::new ADacClass(exemplarConstructor);

Figure 3.6: Exemplar support

The figure shows a hypothetical DEC class with exemplar support.
Functions are defined to allow objects of this class be transmitted.
The key to the exemplar support is the exemplar member. This object
holds type information (mainly a type identifier) for the class. This
enables objects of the class can be recognized and constructed without
explicit reference to the class.

The exact mechanism of these three is not important here, however their effect upon
derived classes is. A D&C class with input / output ability is characterized by three asso-
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ciated functions. One, a virtual function which returns an object of its type constructed
from an input stream, another the associated input stream based constructor, and a third
an output function for the object. In addition to these each class must have a static
member of its own class which serves to register the class in the exemplar list. See figure
3.6.

Unfortunately, as can be seen, although flexible, this approach to object transmission
is rather tedious from a programmer’s point of view. We will examine the relief of this
problem in section 3.2.

3.1.4.5 Dynamic type narrowing using exemplar support

One of the advantages of our simplistic implementation was the fact that D&C functions
had direct access to the underlying data structure of the problem. This was made possible
by the fact that each D&C object was parameterized by a representation of this structure.
With D&C objects now being totally polymorphic we lose this type information. However,
D&C functions still need to be able to access the actual type of the object involved.
Fortunately, D&C functions will generally know the type of the object that they need.
They just need to be able to convert the object that they have to this typeZ.

Unfortunately, simple casting is not sufficient since objects may involve multiple in-
heritance lattices with virtual base classes. However, the exemplar structure we have
incorporated in section 3.1.4.4 allows us to implement a version of the dynamic casting
scheme given in Stroustrup [102]. This can be done by including a dynamically bound
function get_this ptr() in every class with an exemplar. Then a parameterized class
ptr_cast<Type> can be used to cast a D&C object to type Type. get_this ptr() com-
pares the type of its class with that required by ptr_cast<Type>. If the comparison
matches then a pointer is returned, otherwise the call is delegated to any parent classes.
If no match is found then 0 is returned. This is similar to the run-time type information
scheme adopted by the X3J16 ANSI committee [103]. See figure 3.7. This functionality
can be extended as we will examine in section 4.2.3.1.

3.1.5 Object oriented D&C and the actor model

This section relates object-oriented D&C to the actor model and shows how delayed eval-
uation becomes a natural extension to object-oriented D&C in this framework.

The actor object-oriented programming model [2] represents programs as an interacting
set of computational agents which map incoming communications to 3-tuples consisting

of:

1. a finite set of communications sent to other actors;
2. a new behaviour; and,
3. a finite set of new actors created.

Now that the D&C primary functions (figure 3.3) are part of a D&C object rather than
separate from it, we can see that they constrain D&C objects to a form of these rules.
The rules are limited by the requirements of the D&C algorithm?®, namely that incoming

20r signal an error if this is not possible.

3This is really what we would expect, the actor model being so powerful.
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class DacRep : virtual public DacPure {

I3

virtual void# get_this_ptr(int) const;

template <class T> class ptr_cast {

¥

const DacRepx p_d;
public:
ptr_cast(const Dac& d) : p_d(d.rep()) {}
ptr_cast(const DacRepx d) : p_d(d) {}
operator Tx()
{ return (Tx)(p-d—get_this_ptr(int(T::exemplar—type))); }
T+ operator— ()
{ return (Tx)(p_-d—get_this_ptr(int(T::exemplar—type))); }

class zClass : public zBase

{

¥

protected:
voidx get_this_ptr(int i) const {
void *xv=0;
if (i == int(exemplar—type)) {
v = (voidx)this;
else {
v = zBase::get_this_ptr(i);
}
return v;
}
private:
static DacRep* exemplar;

example_usage(const Dac& d)

{
}

zClass¥ = ptr_cast<zClass>(d);

Figure 3.7: Dynamic casting of D&C objects

The figure shows how generic DEC objects can be cast to their actual
lype using exemplar support. The class ptr_cast<T> accesses the
exemplar for its formal parameter T, and searches the desired object
for a type match using get_this ptr(). If a type maich is found
then a cast is performed, otherwise 0 is returned.
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communications are mapped to a finite set of new D&C objects created where the set is
one of:

e a fixed number N created through division for N-ary D&C;
e a single object created through evaluation;

e a single object created through amortization of other objects, where the incoming
communication contains one or more other objects.

Note that the second is a call-by-value form of (2) above. Although a D&C object
could conceivably change its type internally — since its interface is purely a “label” — it is
intentionally made difficult by the const-ness of the primary functions.

We will refer to the object that creates another, as the parent; and to the created
object as its child.

One might think that not changing type would lead to a proliferation of D&C objects;
and for the recursively evaluated and tree evaluated (section 2.1.3) cases this is so. How-
ever, with the stack based algorithm, the number of D&C objects is kept to a minimum
by virtue of the fact that there are no used D&C objects serving as placeholders. Thus
the rules above are all extended such that:

e no object changes its behaviour; and,

e an object’s existence is terminated upon acceptance of a communication

Of course an object could return a copy of itself before termination. If the parent
object is to be terminated then the copy could actually be the parent object itself. Since
our object scheme is reference counted, the “new” child object can have a new label but
the same interior. Thus the second item, above, can be adhered to conceptually and
physically, without unduly increasing computation time.

The only disadvantage that can be envisaged is that of not being able to easily reuse
object memory allocations. This problem can be overcome by using reference counting
for all classes to be used by D&C objects. The advantages are many, not least the simple
programming perspective that is realized.

In fact we could rewrite the rules so that changing an object’s behaviour became
integral to the operation; so that division, for example, would involve an object changing
its state and creating NV — 1 new objects. However, this removes the uniformity of the
approach by making a distinction between types of child object.

3.1.5.1 A homogeneous approach

In our previous implementation D&C objects had to be clumsily represented in terms of
evaluation objects and result objects. Now the types of object are homogeneous: all are
D&C objects but the type of D&C object can be transformed when a change of function-
ality is required. This eliminates the need for functional baggage that would clutter the
definition of D&C objects. It also means that changing form can be accommodated easily.

For example if we have some operation that involves a matrix changing into a scalar,
we can separate the two distinct types by defining a D&C object that deals with matrices,
a D&C object that deals with scalars and a mapping between the two. If we then want to
define an operation that involves only matrices we are not denied the possibility of using
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the matrix type object. Previously we would have had to define a single D&C object that
knew about matrices and scalars and defined operations on both — and the object would
be specific to that single operation. There are, however, some implementation difficulties
that complicate this. We will look at these in more detail in chapter 5.

3.1.5.2 Delayed evaluation

In viewing object-oriented D&C as a specialized actor system we have made no reference to
mapping (1) above for general actors. Allowing D&C objects to be replicated, amortized
or transformed purely fits within the confines of creating a finite set of new actors (3).
However, delayed D&C evaluation features, described in [81], operate by combining objects
of differing types prior to D&C evaluation, and subsequently performing this evaluation
upon the aggregate object using delegation [23]. This possibility fits neatly into mapping
(1), as an aggregate D&C object would first create a finite set of children and then pass
on the communication to its constituent members.

The application for this, discussed previously, is in evaluating arithmetic expressions
where, for example, we might wish to evaluate the matrix expression A+ B 4 C'. Delaying
the evaluation of this expression means producing an aggregate — in our case D&C — object,
and delegating calls to the aggregate’s interface to the individual object’s functions. See
figure 2.5.

3.1.5.3 Envelope / letter advantages for delayed evaluation

In using delayed evaluation we have two objectives:

e constructing the aggregate; and,
e evaluating the aggregate.

In the example given in section 2.2.3 the aggregate is constructed using overloaded
arithmetic operators. However, previously there was no clear way in which to organize
an object hierarchy that allowed the interactions of evaluation and construction to be
separated. For example in the expression A = B4+ C « D where A— D are general objects.
The evaluation sequence would have been:

A = B+CxD
A = B+ TimesObj[C, D]
A = AddObj[B,TimesObj[C, D]]

where O[Py, ..., P,] denotes an object O containing objects Py, ..., P,. Whereupon the
compound AddObj is evaluated and assigned to A. However, in order for this sequence of
events to operate correctly, AddObj and TevmesObj must be derived from some generic
ArithObj which defines the addition and multiplication operators; otherwise TimesObj
and AddObj would need to define every possible operator combination. During subsequent
D&C evaluation these functions are completely redundant. In addition, defining any new
operators would necessitate recompilation of all the arithmetic classes.

With the envelope /letter idiom all of these problems disappear. The aggregate con-
structors can be defined within a wrapper derived from the envelope class Dac, while the
aggregates themselves can be defined normally — derived from the letter class DacRep. The
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wrappers then serve purely to build an aggregate object, old wrappers being discarded
when they are redundant:

ArithWrap[A] = ArithWrap[B] + ArithWrap[C] * Arithwrap[D]
ArithWrap[A] = ArithWrap[B] 4+ ArithWrap[TimesObj[C, D]]
ArithWrap[A] = ArithWrap[AddObj[B, [TimesObj[C, D]]]]

This also means that the assignment operator can be completely generic and included in
the definition of the wrapper. In fact the advantages of keeping the wrapper for each object
are not insignificant. By keeping the wrappers we can take advantage of the reference
counted relationship between wrappers and their letters. We will examine the actual
definition of these types of object in subsequent chapters. We will also examine the
implementation of delayed evaluation, in far more detail, in chapter 5.

Of course these features are a subset of the possibilities under the actor regime, and
thus delayed evaluation represents a natural usage of object-oriented D&C rather than an
added feature.

3.2 Translation versus code insertion

In this section we briefly describe an approach to overcome some of the tediousness of
programming with D&C objects.

Many parallel object-oriented systems [44], with some exceptions [11], use a language
translator to parse their particular flavour of the target language. For C++ at least, this is
not particularly desirable, besides being difficult, as one has to have the translator as well
as the target language compiler and ensure that the two are compatible. In addition the
programmer has to learn the new constructs, and — as shown by the C4++ standardization
effort — these constructs may well just be unnecessary syntactic sugar.

Such is true of our object-oriented D&C additions to C++: we can incorporate these
constructs using existing language features, so that they become meta-features. We could
augment the C+4 language definition in order to make the programming of these con-
structs easier, but with the portability problems given above. In addition it is not always
clear what a programmer’s intentions for a D&C object are, and enforcing a translator-
based regime could yield an undesirable degree of inflexibility. Also, with C++4, new
language features are being accepted by the ANSI committee, features which will make
the implementation of our exemplar system, for example, far less tedious. We describe
some of these in appendix A.

However, making C++ objects into D&C objects is slightly cumbersome and some
sort of automation would be desirable. If we are not going to write a translator then the
obvious solution is to automatically insert the required code directly into the source — and
we can achieve this by using the GNU emacs editor.

3.2.1 Dac-mode

GNU emacs differs from most editors in that it is almost infinitely reconfigurable through
the use of its internal lisp interpreter. It also has a powerful regular expression library.
These two features, used in conjunction, mean that quite complicated language constructs
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can be parsed by emacs. It is even possible to execute lisp commands non-interactively so
that emacs can be used as a pseudo-translator if so desired.

Thus we have written an emacs “mode” — dac-mode — that allows a user to modify a
C++ file by inserting text relevant to D&C evaluation. The lisp code parses C++ class
definitions and determines what functionality is required to turn the class into a properly
behaved D&C class. Different types of modification are available, depending on whether
the resultant class is to be used as a mix-in, concrete class or in a library. Since the
inserted text is editable, any wrong assumptions made by the lisp code can be corrected
by the programmer. The lisp code will not attempt to update D&C-relevant constructs
that are already in existence.

By providing this mode, the programmer is freed to consider only those functions that
require actual design. All other programming is done automatically. Thus one might
define a class consisting only of base classes, a constructor and divide(). dac-mode then
provides the exemplar code, the type narrowing code, the object I/O code etc. One
of the advantages of this system is that dac-mode can be made to provide functionality
that needs to be visible, as well as functions related to behind-the-scenes working. For
instance it can be made to provide constructors that are directly useful to the programmer,
or prototypes for D&C primary functions. This sort of functionality is squarely in the
programmer’s domain, since it requires either additional information to be complete, or
needs to be visible to the programmer. As such it would be foolish to try and do this with
a translator, however, dac-mode, as a programmer’s tool, is ideal.

Additionally, dac-mode could be extended to supply novice users with interactive de-
sign functionality. For instance, pull down menus of available parent classes, interactive
prompts for relevant information. Emacs 19 and its derivatives (Lucid Emacs) provide the
means to create what is essentially an integrated design system, yet at a fraction of the
coding cost of designing such a system from scratch. Most D&C classes described in later
sections have been defined using dac-mode, and it has proved to be an invaluable tool.

3.2.2 Conclusions

This whole environment manages to maintain programming flexibility whilst removing
repetitious work. See appendix C for a description of dac-mode functionality.

3.3 Constructing D&C classes

In this section we describe the D&C interface in more detail and demonstrate additional
features that make this interface more flexible and powerful. We also describe how some
of these features fit into the ethos of designing D&C classes.

3.3.1 The D&C interface

We have described the design of the D&C interface and basic hierarchy. In actual use this
design has proved robust and flexible, however, experience has shown that some additional
refinements are desirable. We now look at some of these.

Conversion and ensuring type correctness. All concrete D&C objects are derived
from DacRep. However, these classes must be manipulated through Dac wrappers.
Since DacRep is derived from Dac it is currently possible for a concrete D&C object
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to be used where a wrapper is actually needed. If this is allowed to happen then anti-
social program degradation will result. To prevent this we can force D&C objects to
be automatically ‘wrapped up’ before being used. This is achieved by making the
relationship between Dac and DacRep a private one. This makes all of Dac’s functions
unavailable to derived classes. We then enable conversions from DacRep-type classes
to Dacs by providing a constructor in Dac. C++ conversion rules [36, p270] make
this conversion implicit.

class Dac {
friend class DacRep;
public:
Dac(const DacRep& d) : drep((DacRepx*)&r) {

}

if (drep) d_rep—count++;

Dac(DacRepx* r, BaseConstructor) : drep(r) {

if (drep) d_rep—count++;

Dac(DacRepx* 1) : drep(r) { }

protected:
struct BaseConstructor { BaseConstructor() {} };
DacRep *d.rep;

};

class DacPure : private Dac {
DacPure() {}
virtual Dac wrap() const=0;

¥

class DacRep : virtual public DacPure {
friend class Dac;
protected:
Dac wrap() const {

}

};

return Dac((DacRep«)this, BaseConstructor());

Figure 3.8: Implicit conversion of DacRep to Dac

The figure shows how DacRep objects can be forced to be Dac objects
when used. The private relationship between Dac and DacPure en-
sures that a DacRep object cannotl simply be cast to a Dac. Instead
the constructor in Dac must be invoked, correctly encapsulating the
DacRep object inside a Dac.

The same can be done for pointers to DacReps. Since most DacRep*s will be cre-
ated through the use of new, we make the constructor by default not increment the
reference count. However, we also provide a member function wrap() that returns
its parent object inside a wrapper. This also requires a DacRep#* constructor, but
this time the reference count must be incremented. We differentiate between the
two constructors by adding a dummy argument BaseConstructor to the construc-
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tor. This class is local to Dac and so does not pollute the global namespace. This
technique is described in Coplien [31]. See figure 3.8.

Comparison of D&C objects. We wish to be able to test D&C objects for equality,
and whether letters exist or not (for example in run()). To this end we define the
operators ‘=="and ‘!=’ to compare the letters of wrappers. Thus we can write
if (Foo == 0) where Foo is a D&C wrapper. Ideally we would define a conversion
to void*, but this prevents the possibility of defining other, more useful, operators

further down the inheritance hierarchy.

Cloning objects. Often we wish to define D&C classes that provide functionality for
producing additional objects of their own type. Unfortunately, if the object being
used is of a type derived from this functional class, then the functional class cannot
know what type of object to create.

What is really required is for the functional class to clone itself, leaving it to the
derived class to sort out what actual type of object to create. The created object
can then be cast, using ptr_cast<Type>, to the type of the functional class, so that
the functional class can make whatever modifications are necessary. Fortunately this
is quite easy with our polymorphic system. We simply define a dynamically bound
function make() that returns a D&C wrapper. Then all concrete classes can define
this function to create an object of their own type. This usage is so common as to
be a candidate for inclusion in dac-mode. In fact make() is crucial to the definition
of generic D&C operation classes, for example the compound classes of section 5.3.3.
See figure 3.9.

For example, say we wanted to create a class that defined divide() for zVector<T>s.
We would use make() to create the two resultant objects. We would then use
ptr_cast<zVector<T>> to allow us to initialize these objects with the correct vector
information. Simply creating a zVector<T> using the normal constructor method
is not sufficient, since this will lose the type information of the current, possibly
derived, object, and subsequent operations will fail.

Printing. As we shall see in chapter 4, one of the strengths of object-oriented D&C lies in
the creation of compound D&C objects. This has already been illustrated in the use
of delayed evaluation. Such D&C collections are rather difficult to debug in terms
of seeing the relationship between the different objects. Thus we provide printing
facilities for D&C objects. Additionally, we keep track of the position of the current
object within the compound. By displaying a proportional amount of whitespace
before each object, we can view a compound’s structure with ease. Printing also
enables the actual type of polymorphic objects to displayed. Thus, a debugger
might only reveal that we are operating on a D&C object, but printing will reveal
the actual structure of that object.

Node numbering. Often it is desirable to have a unique identifier for each object in the
D&C evaluation tree, for example the tree dumping of section 4.5.1.1. This can be
achieved by labelling nodes in level order. Since this requirement is necessary in
more than one situation, we provide it as a basic feature of D&C wrappers. See
figure 3.10.

Object counting. For debugging debugging purposes we wish to keep track of the D&C
objects currently in existence. This enables us to make sure that there are no
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class Dac {
public:
Dac(DacRepx);
Dac make() const {
return d_rep—make();

}

protected:
DacRep *d_rep;

¥

class DacPure : private Dac {
protected:
virtual Dac make() const {
rerror() € "make () not defined in most derived class" < fatal;
return Dac(0);

I3

class DacRep : virtual public DacPure {

I3

class AClass : public DacRep {
protected:
AClass();
Dac make() const {
return Dac( new AClass() );
}

Figure 3.9: Cloning support for D&C objects

The figure shows how an object of type AClass can be constructed
polymorphically using make (). The usage of make() does not require
any prior knowledge about the type of the object being constructed.
make () can simply be applied to a generic Dac object.

unreferenced objects at the end of execution. We do this by adding each letter to
a linked list when each is created. Upon deletion, an object is removed from the
list. At the end of execution, we can check the list to see if any objects remain in
it. Note that, due to the conversion enforcement described above, the presence of
unreferenced objects is extremely unlikely. Letter type objects are almost always
converted to their reference counted counterparts.

Global data. In certain situations we wish to have objects that are shared across all
objects of a particular class. Such objects are declared as class static. However,
if these objects are to have access to run-time information, such as command-line
arguments; or are to make use of D&C utilities, such as memory management; or are
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class Dac {
public:
Dac divide(Dac& 1, Dac& r) const {
Dac x = drep—divide(l,r);
l.d rep—~dmnode = (drep—~dmode < 1);
r.drep—d_node = (drep—dnode < 1) + 1;
return x;

int node() const {
return d_rep—d_node;

}
protected:
DacRep *d_rep;
};
class DacPure : private Dac {
protected:
virtual int node() const=0;
b

class DacRep : virtual public DacPure {
protected:
int node() const {
return d-node;
}

DacRep() : dnode(1) { }

int d_node;

Figure 3.10: Level-order numbering of D&C nodes

The figure shows how each DEC object in an evaluation can be given
a unique identifier. Level-order numbering means that the node iden-
tifiers are consistent no matter what type of evaluation is employed.

to be destructed gracefully, then they cannot be created at global scope®. Instead,
we again use the exemplar framework.

If we define dynamically bound functions sti(), for initialization, and std(), for
de-initialization, then these functions can be called for each exemplar, after main(),
but before the D&C program actually begins. See figure 3.11. This of course entails
using a different main-line name, mainCore(), for the actual D&C program, but the
flexibility gained outweighs this minor inconvenience.

Size determination. In evaluating D&C objects the actual size of these objects, real or
imagined is very important. Only by having a size metric can the evaluator know
when objects are simple. To this end we provide a data member for DacReps which
defines the size of the object. Originally, it was tried to make this member a reference

4This is because the initialization order of these features is undefined at global scope.
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class Dac {
protected:
static DacRep #*list;
union {
DacRep *d.rep;
DacRep *next;

};
};
class DacRep : virtual public DacPure {
public:
virtual void sti(); // global initialisation
virtual void std(); // global cleanup

static struct ExemplarManager {
ExemplarManager() {}

~ExemplarManager();
public:
static void sti(); // initialise all registered exemplars
} exemplarManager;
};
void DacRep::ExemplarManager::sti()
{
for (DacRep #n = DacRep::list; n; n = n—next) n—sti();
}

DacRep::ExemplarManager::~ExemplarManager() {
for (DacRep #n = DacRep::list; n; n = n—next) n—std();
}

Figure 3.11: Static initialization for D&C objects

The figure shows how globally scoped objects can be initialized and still
have access to command-line arguments. Any DEC object requiring
this facility must define a sti() / std() pair. sti() functions are
then called by main.

to some other parameter, however exceptions broke the rule. Instead a dynamically
bound function size() is provided which can be redefined by derived classes. By
default this function returns DacRep’s size parameter. To maintain encapsulation an
overloaded function size() is provided which accepts an argument for modifying
the size data member.

Each of these additions to the D&C interface is actually defined in DacPure. This
means that derived classes are not forced to define the functions. However, the definitions
in DacPure are such that an error is signalled if a function is actually called, but no derived
definition exists.

These additions make easier the implementation of various problems. However, it is
not an exhaustive list; we will describe further enhancements in later chapters.
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3.3.2 Other types of evaluation

Thus far we have described enhancements to the D&C interface, however, we can manip-
ulate this interface in other ways than simply depth-first expansion. We will now look at
some of these.

3.3.2.1 Recursion

Dac Dac::recurse() const {
Dac 1, r, n, ret;

if (!simple()) {
if ((n = divide(L,r)) # 0) {
ret = n.evaluate();
} else {
1 = lL.recurse();
r = r.recurse();
ret = l.combine(r);

}
} else {

ret = evaluate();
}

return ret;

Figure 3.12: Recursive D&C evaluation

The figure shows how DEC objects can be evaluated using standard
recursion. Objects evaluated in this way cannol be run in parallel.

Depth-first expansion using a stack is simply a way of defining an essentially recursive
algorithm in terms that can be parallelized. In some situations, for debugging purposes or
where parallel evaluation is not desirable, a simple recursive implementation of the algo-
rithm is preferable. To this end we provide recurse() as part of the D&C functionality.
See figure 3.12.

3.3.2.2 Breadth-first evaluation

Depth-first evaluation has many desirable characteristics for a parallel D&C system.
Consider the evaluation of a very large problem, one that is larger than will fit on a
compute node. In this instance it seems reasonable to allow the host computer, with its
large resources, to start dividing the problem until it is small enough to fit onto a compute
node. However, if the division is performed using depth-first evaluation then the smaller
sub-tasks will only be available to the compute nodes in sizes of decreasing magnitude.
Thus the first sub-task shipped to a compute node will be the maximum size that that
node can cope with, the next sub-task shipped will be half that size and so on. The first
sub-task shipped may well not be small enough to be scheduled. If this is the case then
the load-balancing properties of this type of evaluation do not hold, and the potential
for dividing in parallel is not realized either. This clearly does not make good use of
the available compute power. Ideally it would be best to ship successive sub-tasks of a
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maximum possible size to compute nodes in the parallel machine. This can be achieved
using breadth-first evaluation [18].

3.3.2.3 Queue / stack-based breadth-first evaluation

p
P

Breadth-first finished
Begin depth-first

Virtual (non-existant) nodes

[]
[ ]
. Nodes pending evaluation
p q
O

Nodes pending combination

p,q Divide and combine stacks
Figure 3.13: Queue /stack-based evaluation

The diagram shows how stack-based, breadth-first evaluation proceeds.
The execution stack p is inilially used as a FIFO queue until the tree
has been fully expanded. Operation is then swiltched to standard stack-
based depth-first evaluation. Notice that q is unused until depth-first
evaluation begins.

Having developed a stack-based algorithm for depth-first evaluation, we would like to
do the same for breadth-first evaluation. Sedgewick [96] describes such an algorithm for
traversing a tree by using a queue. However, as before, because the tree is not in-place
things are not quite so simple. Additionally, if we consider the operation of a queue it is
obvious that we cannot dynamically schedule nodes from one end, since the whole queue
is required for correct evaluation. See figure 3.13. Instead, we expand the tree until we
have the desired number of nodes. At this point the ordering of the nodes from the bottom
of the queue will be that of sequential left-to-right ordering of the tree. Thus, we can pop
nodes from the bottom of the queue, like a stack, and evaluate these as for depth-first
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Dac Dac::breadth(int depth) const
{
Dac n,l,r;
int s;
DacStack::State t;
static boolean nest=false;
/*
*x check that we are not already in a breadth evaluation
*/
if (nest) error() < "nested breadth-first evaluation" < fatal,
else nest=true;
/*
x triviality check
*/
if (simple()) {
nest = false;
return evaluate();

}
p—push(xthis, DacStack::limbo, 1);
/*
* we expand breadthwise while the level is less than the required depth
*/
while ( (s = p—key()) < depth ) {
n = p—pop();
if ((n = n.divide(l,r)) # 0) error() < "unbalanced tree" < fatal;
/*
* as soon as we come across something simple we stop expanding
*/
if (Lsimple() || r.simple()) depth = s+1;
/*
* nothing will get offloaded until told to.
*/
p—put(l, DacStack::limbo, s+1);
p—rput(r, DacStack::limbo, s+1);
}
/*
x breadth-first expansion finished - run and combine the rest
*/
p—ractivate();

while (!p—empty()) {
s = p—okey(); t = p—sstate(); n = p—pop();

if (t & (DacStack::evaluated|DacStack::fixed)) q—push(n, s);
else if (n.simple()) g—push(n.evaluate(), s);
else g—push(n.run(), s);

while (g—pair()) {
s = q—key(); r = q—=pop(); 1 = g—=pop();
1 = l.combine(r);
q—push(l, s-1);

}

nest=false; // we can run another evaluation now
return q—pop();

Figure 3.14: Queue / stack-based evaluation
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evaluation. The corollary to this is that we can pop nodes from the front of the queue for
parallel evaluation. The queue is now acting in the same way as a stack. For combination
we simply put evaluated nodes on a combine stack as we did for depth-first evaluation.
We also label nodes with their depth so that combination is guaranteed to be correct as
before. Thus, the only clever functionality we require is a queue that can be switched to
stack-based operation, and some way of activating queued nodes for parallel evaluation.
The algorithm is shown in figure 3.14.

3.4 System design

In this section we describe how D&C objects fit within an overall system. We describe
the processes involved and the scheduling characteristics of the system.

3.4.1 Separation of origin from child processors

We have already described how an alternative main-line routine mainCore() can be used
in place of main() so that system initialization can be performed in an ordered fashion.
This also means that the generic operation of child processors can be separated from
the specific operation of the root processor. Instead of requiring the programmer to mix
operations that are specific to the root or child processors, we can specify all child oriented
operations in main(), and only require the programmer to define mainCore().

The operation of child processors can now be completely generic since a D&C object
contains all information necessary to evaluate itself. Only D&C objects are evaluated by
child processors, standard sequential code is evaluated on the origin processor. However,
the program run on all processors is the same in content, even if not in operation. This is
because the sequential program defines which D&C objects will actually be used, and so
ensures that their definitions are linked in from libraries, or instantiated from templates.
Unless the sequential code is very large, and this is unlikely since most functionality is
encapsulated in D&C objects, the space overhead of having this information on child
processors is minimal.

Since the evaluation of D&C objects is fully polymorphic, we can start the scheduling
process at the beginning of a program and leave it running for the duration of the program.
This process simply attempts to pull active objects from the bottom of the evaluation stack,
and schedule them to other processors. If none are available then none are scheduled. Our
overall system operation is then as shown in figure 3.15.

3.4.2 The scheduler

The scheduling process is designed to be as stateless as possible. Where state is nec-
essary, communication messages are transmitted on different event identifiers. The sched-
uler simply answers requests, it initiates no communication exchanges. This is because all
transfers — getting and returning objects — are initiated by the main routine on child pro-
cessors. The scheduler answers three main requests: request for object to process, request
to return processed object, request to terminate process. Other requests are introduced
in section 5.5.1.2 for persistent objects. The object interactions are shown in figure 3.16.
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<process command line arguments>
<execule sti() for all exemplars>
<start scheduling process>

IF <I am the root processor>
THEN
mainCore()
<send lerminate message to other processors>
ELSE
WHILE ( object = get_object() ) # 0
object.run()
END
END

<stop scheduling process>
<ezxecule std() for all exemplars>

Figure 3.15: Outline of D&C program execution

The diagram outlines the overall operation of the DEC' run-time sys-
tem. main() is defined by the system, and it is up to the programmer
to define mainCore(). main() processes command-line arguments,
ensures that scheduling processes are started and stopped correctly
and that global objects are initialized. Child processes continually
process incoming DEC objects and return evaluated results.

3.4.3 Memory management

In order to share objects between processes we need some sort of shared memory facilities.
The main shared structure we have is the stack. To try and communicate data between
the two processes using this structure, using message passing, would result in needless
overhead and complexity.

The transputer, having a linear address space, has all of its memory accessible to
processes running on it. Thus sharing the physical memory is easily accomplished. Less
easily accomplished is shared management of this resource. Trollius™™ limits memory
management on a per process basis. Memory descriptors are local to processes. Thus
we need our own shared memory manager for D&C objects. We note that the blocks of
memory we require are for D&C objects and are thus limited in size. They will be no
smaller than the basic D&C class DacRep, and even the largest objects will be of the same
order of size. Thus we choose Knuth’s [67] buddy memory manager as a fast memory
manager meeting these requirements. This system manages a single, contiguous block,
allocating blocks in sizes of powers of two. We can tune the system so that the smallest
block allocated is the size of DacRep.

The memory requirements will be largely dependent on the number of D&C objects
created, rather than the individual sizes of these objects. This number is largely con-
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Processor 1
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returnObject

Evaluator

put_back
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Figure 3.16: Scheduler communication exchange

The diagram shows the inter-processor and inlra-processor interac-
tions involved in DEC evaluation. The diagram uses Booch’s no-
tation which is given in figure 3.23. Notice that il is only the root
processor that actually evaluates a user program. All other processors
simply evaluate DEC objects.

stant for a given problem, and so it is feasible to select a managed block size just big
enough to accommodate this number. However, between problems the requirements can
vary tremendously, although only within a factor of ten or so. Thus we modify Knuth’s
algorithm so that if no free blocks are available, then another managed block is allocated
of the same size as the first. This means that the total managed size will expand to meet
the requirements of the problem in question, rather than starting with a block which may
be far too big or too small.

Allocation and deallocation routines for the memory manager are semaphore locked,
so that different processes using the system do not cause memory corruption. The manger
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is integrated into the D&C system by providing operators new() and delete() in Dac
which call the manager’s allocation routines.
The system design is similar to that used by Coplien’s virtual constructor system [31].

3.4.4 System synopsis

User Program

D&C Kernel Shared D&C Scheduler
Memory
Trollius Manager | Operating System
Machine OS

Figure 3.17: System design

The diagram shows a schematic representation of the DEC system
in its hardware and software context. For transpuler-based operation
their is no shared-memory manager and no machine operating sys-
tem. Note thatl the user program does nol interact with the Trollius
operating system. All run-time facilities are provided by the D&EC
kernel, and possibly the machine operaling system.

The overall system involves two interacting processes layered on top of the Trollius”™

operating system, which in turn is in turn layered on top of either hardware or software
depending on the target architecture. The relationships are shown schematically in fig-
ure 3.17.

Some system parameters — like problem size and partition — can be modified through
command-line arguments. A full description of these is given in appendix C.

3.4.5 Summary

We have looked at the core definition of D&C classes. We have also looked at a system
design that allows us to evaluate, simply and easily, objects of these classes. However,
in any object-oriented system, design methodologies, interface definitions and evaluation
principles are only half of the picture. These elements give a structure within which to
work, but this structure is a tool, and we require basic building blocks in order to maximize
the power of the overall system.

Thus most object-oriented systems have a comprehensive class library to provide these
building blocks [74]. To this end we must provide such a library for our object-oriented
D&C system. We now turn to the definition of some of these classes.
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3.5 Core Beeblebrox classes

We look now at some members of the Beeblebrox library. The name Beeblebrox derives
from the fictional character’s first name Zaphod [1]. McBurney and Sleep’s [72] original
work was called the ZA PP project for Zero Assignment Parallel Processing. Thus we take
this acronym and add Object-oriented Divide-and-conquer, throw in a random ‘h’, and
take the surname just to be as obscure as possible.

Some of the classes we examine are concrete classes that can be used in their own right,
but many are base classes from which more specific D&C classes can be defined. All these
classes are documented more fully in appendix C.

3.5.1 Providing null functionality

The first classes we need are ones that fill in the blanks so to speak. The abstract
interface DacPure requires, through pure virtual function definitions, that derived classes
define most of the primary D&C functions. However, derived classes may not actually need
to define this functionality; for instance an object that is discarded during evaluate()
would not require combine(). In order to preserve the abstract interface, we provide
null functionality in mix-in classes. Thus we define the mix-in zCombine which defines
combine() to return itself. This and the other, equivalent classes are shown in figure 3.18.

3.5.2 Null D&C objects

There are certain instances when we want all of the D&C primary functions to be defined
as null. For instance we might wish to have a D&C object that will operate conformingly
in evaluation and transmission, yet does not actually do anything. We will see some more
concrete examples of this in later sections. To this end we can define an object that simply
mixes in all of the classes of section 3.5.1. However, experience shows us that this class is
extremely useful, and, since multiple inheritance of virtual bases involves some overhead,
we define a separate class, zNull having the appropriate functionality.

3.5.3 Container classes

The most common property of D&C classes is that of containership. Containership is
denoted by the HAS-A relationship of artificial intelligence [21]. Most D&C operations are
characterized by the manipulation of some sort of data structure. This structure is either
a standard class, or some combination of other D&C classes. We identify three different
D&C class groups:

e Classes, which we will call containers, that merely HAS-A standard object-oriented
data-types. These classes might or might not define how their contained data should
be manipulated.

e Classes, which we will call envelopes, which perform operations on a single, D&C
operand. These classes have a HAS-A relationship with the operand.

e Classes, which we will call compounds, which perform operations on two, or possibly

more, (HAS-A) D&C operands.
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class zCombine : virtual public DacPure

{

¥

public:
zCombine() {}

protected:
Dac combine(const Dac&) const { return wrap(); }

class zFEvaluate : virtual public DacPure

{

I3

public:
zEvaluate() {}

protected:
Dac evaluate() const { return wrap(); }

class zSimple : virtual public DacPure

{

¥

public:
zSimple() {}

protected:
const boolean simple() const { return true; }

class zUnit : virtual public DacPure

{

};

public:

zUnit() {}

protected:
const boolean simple() const {
return boolean(size()<1);
}

class zDivide : virtual public DacPure

{

¥

public:
zDivide() {}

protected:
Dac divide(Dac&, Dac&) const { return wrap(); }

Figure 3.18: Null mix-in classes

The figure shows miz-in classes that provide place-holders for the
primary DEC functions. These classes are used where a function
needs to be defined for a class, but its operation is not relevant to the
problem being evaluated.
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template <class T> class zContainer : public zNull {
public:
typedef zContainer<T> Container_t;

zContainer(const T& t) : zNull(), member(t) { }
virtual T data() const { return member; }

void init(const T& x){ member=x; }

protected:
T member;
b

template<class T> inline Dac Container(const T& t)

{
}

return Dac( new zContainer<T>(t) );

Figure 3.19: Beeblebrox container class

The figure shows a DEC class for holding a standard C++ class.
The containership relationship means that standard objects can be
manipulated as DEC objects.

For each of these groups we will define an appropriate D&C class. For containers we
define a class zCompound<T>, where the template formal is the data-type that the class
HAS-A object of. Experience shows us that we often want to use zContainer<T>s simply
for their transmission properties; the D&C functionality is largely irrelevant. To this end
we derive zContainer<T> from zNull so that all the D&C functionality is accounted for.

For envelopes we define a class zEnvelope, where the class HAS-A a single data-
member which is itself another D&C class. All primary functions of the zEnvelope will
be forwarded to the data-member (its letter).

For compounds we will define a class zCompound which is very similar to the zEnvelope
except that it HAS-A two D&C letters. As with the zEnvelope the D&C primary functions
are forwarded to the two letters. See figures 3.19, 3.20 and 3.21. See also appendix C
for more complete descriptions. The object relationships, using Booch’s notation ([14],
figure 3.23), are given in figure 3.22.

The primary reason for using these classes is that any, more specialized, classes we
define will only vary in minor ways from these superclasses. This means that many of the
D&C primary functions will not need to be redefined — especially those to do with object
transmission. In addition, functions that do require modification will need added func-
tionality rather than different functionality. We can therefore ensure that these functions
call their parent’s version before continuing with the specifics. This genericity reduces the
amount of redundant code.

3.5.4 Array manipulation

Having described some general D&C classes we now look at a specific container class.
This helps to illustrate the use of containers, as well as being a useful class in its own
right.

The most frequent D&C structure that we have encountered is the array. This structure
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class zEnvelope : public DacRep
{
public:
zEnvelope(const Dac& d) : eletter(d) { }

protected:
Dac e letter;

Dac divide(Dac& 1, Dac& r) const
{

1 = make();

r = make();

return eletter.divide(
ptr_cast<zEnvelope>(1)—e_letter,
ptr_cast<zEnvelope>(r)—e_letter

);
}
/*

x Other definitions removed for clarity
*/
Dac combine(const Dac& r) const;
const boolean simple() const;
Dac evaluate() const;
/*
* And so on ...
*/
¥

Figure 3.20: Beeblebrox envelope class

The figure shows a DEC class for holding other DEC objects. The
primary DEC functions for the class ensure that the contained object
is operated upon also. The level of indirection introduced is useful
for providing generic functionality withoutl reference to specific DEC

lypes.
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class zCompound : public DacRep
{
public:
zCompound(const Dac& 1, const Dac& r) : left(l), right(r) { }
void init(const Dac& 1, const Dac& r) { left=I; right=r; }

protected:
Dac left;
Dac right;

Dac divide(Dac& 1, Dac& r) const {
Dac 1lIr,rl,rr,ret;

left.divide(ll,Ir);
right.divide(rl,rr);

1 = make();

r = make();

ptr_cast<zCompound>(1)—init(1l,r1);
ptr_cast<zCompound > (r)—init(Ir,rr);

return Dac(0);
}
/*
x Other definitions removed for clarity
*/
Dac combine(const Dac& r) const;
const boolean simple() const;
Dac evaluate() const;
/*
* And so on ...
*/
b

Figure 3.21: Beeblebrox compound class

The figure shows a DE&C class for holding two DEC objects. The
class exhibils similar fealures to those of zEnvelope. Nolice that
divide() arranges for its left child to contain two left children from
its contained objects, and likewise for the right child.
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Figure 3.22: Container class relationships

The diagram shows the inheritance relationships between the DEC
container classes, described earlier, and the standard DEC base
classes. The diagram uses Booch’s notation.

is easily partitioned due to its regularity. It is also efficiently communicable due to its
contiguous nature. We define zArray<T> as its D&C counterpart. This class, virtually
derived from zContainer<BuiltinArray<T>> provides a BuiltinArray<T> as a member,
as well as the required D&C functions for I /O and dynamic casting. It also provides a
divide() function for partitioning the array into two equal pieces. Virtual inheritance is
used so that different types of primary function can be mixed in. A BuiltinArray<T>
is defined assuming its array data can be transmitted block-wise, rather than iterating
over each element. This vastly simplifies transmission. BuiltinArray<T> is derived from
Array<T> which simply iterates over its array elements for transmission.

The structure is almost identical to the zVector<T> of section 5.3.3. However, pro-
viding a D&C structure that makes no assumptions about the algebraic properties of the
array, is essential for arrays of complex data-types. Otherwise compilation is likely to fail
from nomnsensical operations being instantiated. A good example is that of an array of
training frames for back-propagation (section 4.4.1). See figure 3.24.

3.5.4.1 Non-contiguous arrays

Originally, the structure was defined using an Array<T> class. However, it was found that
this led to enormous problems in transmission. In C++4, objects in arrays are initialized
using default constructors. Thus to transmit an array of objects requires first the basic
array information to be transmitted and a default array created. Then, individual object
definitions are transmitted and assigned to the default place-holders. If the objects are
small and the array large, then this involves a tremendous amount of overhead. A scheme
was tried where heap allocation was constrained to allocate blocks of data contiguously, so
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Figure 3.23: Booch’s object notation

The diagram shows a subset of Booch’s notation for object and class
relationships used in this and subsequent chapters.

that the overall array could be transmitted in one go. However, this still led to a number
of shortcomings, most notably a messy definition of the global operator new(). A new
ANSI resolution now allows the definition of operator new[] (), which might possibly
solve some of the problems. However it is far simpler to constrain the objects to be only
data, i.e. no virtual functions and no pointers, and to treat them as simple types.

3.5.4.2 Reference counted arrays

BuiltinArray<T>s are reference counted to eliminate unnecessary data copying. How-
ever, we can provide some additional sophistication for the D&C system. In dividing an
array, we initially only want to create new representations, rather than whole new arrays.
To do this we can create new letters that hold new dimension information, but that point
to the relevant parts of the original array data. We can then update the reference count
of the original letter to reflect these additional references. Unfortunately, we may wish to
delete the original letter while the other letters are still in existence. Thus we make each
letter have a reference to its parent, so that only when all child letters are deleted will the
original letter be deleted. This can be hidden transparently behind the array envelope.
See figure 3.25.

This scheme is similar in operation to the structure representation of section 2.1.2,
however, the optimization onus is put on the data holding structure rather than the D&C
structure. This is a more strictly object-oriented approach, and results in greater code
modularity and robustness. The D&C methods do not need to know whether array division
is optimized or not, they will work regardless. Thus in defining standard data structures,
we are on the look out for this sort of optimization. Although these optimizations are
not D&C specific, it may be that only the D&C context will make the implementation
worthwhile. Thus it is, that structures defined in standard libraries may not be suitable,
efficiency-wise, for D&C. However, the converse is not true, structures defined in a suitable
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template <class T>
class zArray : virtual public zContainer<BuiltinArray<T> > {
protected:

zArray() {}
zArray(const BuiltinArray<T>& a) { init(a); }

Dac divide(Dac& 1, Dac& r) const {
1 = make();
r = make();

ptr_cast<zArray<T> >(1)—init(
BuiltinArray<T>(
member.elems() / 2,
member,

0

)
)i
ptr_cast<zArray<T> >(r)—init(
BuiltinArray<T>(
member.elems() - member.elems() / 2,
member,
member.elems() / 2

)
)i
return 0;

}

const int size() const { return member.elems(); }

Figure 3.24: D&C array class

The figure shows a DEC class for manipulating arrays. divide()
is the key element of the class, yielding two DEC objects containing
half each of the original array. Dynamic casting ts used to oblain
zArray objects from the generic Dac objecls passed to divide().
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The diagram shows the stages in dividing a reference counted array

object. The original array has a reference count of 1 since it is the
only referee. Then two more array objects are created with the orig-

inal as a parent. The original array then has a reference count of
3 since il is referred to 3 limes. Finally the original array object is
deleted but the actual array data is not since a reference count still
exists. Only when all references have been deleted will the data be
removed as well.

Figure 3.25: Reference counted arrays

way for D&C will be generally useful in other contexts.

3.5.5 Visualization

One of the last Beeblebrox classes we will consider here is one that allows us to visualize
D&C in action.
Visualization has been a key tool in many parallel programming systems [53]. The
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A ZAPP Window - Processor 0 [ ZAPP Window — Processor 1

The diagram shows the screen display for the two processor evaluation
of a DEC problem. FEach solid black square represents a DEC object.
Fach hollow square represents an offloaded object, in this case an
object has been offloaded to processor 1 and execution for that object
continues on that processor. The original DEC object is represented
by the topmost square on processor 0.

Figure 3.26: Screen display produced by a zGraphic

ability to see the run-time progress of a program can be the key to fault detection and
performance enhancements. For the D&C system, the obvious visual metaphor is that of
a tree. Unfortunately, since we now use stack-based evaluation, the way of displaying such
a tree is not so obvious. We have two concerns, one is that visualization should not affect
normal evaluation, i.e. the method used should be modular and separated from other
program elements. The second concern is that visualization should be easily enabled for
any standard D&C object. Activation should be through compilation, since we do not
wish every D&C program to be carrying visualization baggage.

At first sight it would appear that we must define a class derived from the enve-
lope Dac, and insert display code into versions of run() etc®. However, this denies our
object-oriented outlook involving code duplication. Another, more serious, problem is that
graphical information will be lost during parallel evaluation, since it is D&C wrappers that
hold this information and these are frequently discarded.

It becomes obvious that the graphical control needs to be in the hand of the letters.
Thus it is, that we define a D&C object zGraphic that is derived from a zEnvelope.
This immediately solves most of our problems. The actual object for evaluation is the
zGraphic’s letter, but the envelope handles display before delegating primary calls to the
letter. This method is independent of the type of evaluation and the object being evalu-
ated. Thus run(), recurse(), and breadth() should all be displayed equally correctly.
To switch on visualization we merely wrap a D&C object in a zGraphic. A schematic

5And this is what was originally tried. It is a tribute to the new design that visualization can actually
be accomplished far more simply.
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class zGraphic : public zEnvelope

{
private:
static graphicswindow* theWindow;

int depth;
int leaf;
int xpos;
int ypos;

public:

zGraphic(const Dac& d) : zEnvelope(d)

{
}

protected:
Dac divide(Dac& 1, Dac& r) const {
Dac x = zEnvelope::divide(l,r);

return x;

}

Dac combine(const Dac& d) const {
Dac x = zEnvelope::combine(d);

return x;
}
void sti() {

}
void std() {

}

// window for display

// depth in tree
// leaf number
// x coordinate
// y coordinate

// display an initial node

// display two child nodes

// undisplay two child nodes

// map a display window

// unmap a display window

Figure 3.27: D&C visualization class

The figure shows the basic layout of the DEC visualization class.
Fach primary function is forwarded to the contained object and the

screen is updated.
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structure is shown in figure 3.27. A screen dump of the resultant display is shown in
figure 3.26.

3.5.6 Manipulating partition size

In figure 3.18 we showed the class zUnit which arranges for simple() to compare size()
with unity. Experience shows us that this comparison is so common as to make it desirable
to be the default behaviour. Thus we define simple() in this way in DacRep. This makes
zUnit largely redundant, however, we have not dealt with the case where we want to
compare with some fixed value other than unity. To this end we define a class zPartition.
This class has a data member which represents the desired partition, which we can initialize
by default from a command-line argument. Alternatively, the class can be explicitly
initialized by the programmer. See figure 3.28.

class zPartition : virtual public DacPure {
public:
zPartition(int p=args::partition) : p_size(p) {};

protected:
int p_size;

const boolean simple() const {
return boolean ( size() < p_size );
}

I3

Figure 3.28: Partition manipulation class

The figure shows a DEC mix-in class for altering the problem size at
which DEC expansion stops. By default this size is 1.

3.6 Application to simple algorithms

We have described the ethos behind our object-oriented D&C system and described tools
to enable D&C classes to be created quickly and easily. We have also described some core
D&C classes. To illustrate their use, we now apply these ideas and techniques to a few
simple algorithms.

3.6.1 Mergesort and quicksort

Two of the most well known D&C algorithms are quicksort and mergesort [96]. The former
relies on the divide() phase of the algorithm to perform the sorting, the latter uses the
combine () phase. Thus these two algorithms complement each other from a D&C point-
of-view. In their purest form, no calculation is performed during evaluate(), however,
to yield efficiency, some evaluate() processing is necessary.

We look first at quicksort.
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3.6.2 Quicksort using D&C

Quicksort was invented in 1960 by C. A. Hoare. It is a good general purpose sorting
algorithm, that is efficient in a wide variety of situations. Quicksort works by partitioning
data into two parts, and then sorting the parts independently. The exact position of the
partition depends on the data involved.

The data is partitioned as follows. First the rightmost element of the data is chosen
to be in the correct position. This is then used as the partition. The data is then scanned
from both ends until an element on the left is found which is greater than the partition,
and an element on the right is found which is less than the partition. These elements are
then swapped, and the procedure continues until the two scans cross. At this point the
partitioning element is swapped with the leftmost element of the right sublist.

Once the data has been partitioned, the procedure is recursively applied to the two
sublists. However, because our implementation already has the recursion built in, we only
need to specify the partitioning operation.

3.6.2.1 D&C implementation

In order to sort something we need a structure to sort. The most common and useful
structure to sort is an array. Thus we select the zArray<T> of section 3.5.4 as a base class
for our quicksorting class.

template <class T>
class zCombineArray : virtual public zContainer<BuiltinArray<T> > {
protected:
zCombineArray() {}

Dac combine(const Dac& r) const

{
Dac d = make();
ptr_cast<zArray<T> >(d)—init(
member | ptr_cast<zArray<T> >(r)—data()
)i
return d;
}

Figure 3.29: D&C array concatenation

The figure shows a DEC miz-in class that can be used to concate-
nate array-type results together. combine() simply uses the array
operator| to do the concatenation, and it is assumed that this op-
erator has been defined.

Starting with this class as a base, we now need to consider the recombination of results.
For quicksort this is a simple matter of concatenating sorted sublists together. To imple-

ment this using the Beeblebrox library is a simple matter of mixing in a zCombineArray<T>.

This class provides a combine() function which performs the required concatenation for
zArray<T>s (see figure 3.29). For the moment, we will assume that the sort procedure
continues until sublists are of unit length. We therefore require an evaluate() func-
tion that simply returns its parent object. This can be easily defined or mixed-in from
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template <class T>
Dac zQuicksort<T>::divide(Dac& 1, Dac& r) const

{
T q.t;
int i,j;
BuiltinArray<T> a = member;
if (a.elems() > 1) {
i=-1; j=a.elems()-1; g=a[a.elems()-1];
for (;;) {
while (a[++i] < q);
while (a[--j] > q);
if (i>j) break;
t = a[i]; a[i] = a[j]; a[j] = ¢;
}
if (afi] # a[a.elems()-1]) {
t = a[i]; a[i] = a[ a.elems()-1 ]; a[ a.elems()-1 ] = t;
if (i==0) i++;
1 = make();
r = make();
ptr_cast<zContainer<BuiltinArray<T> > >(1)—init(
BuiltinArray<T>( i, a, 0)
);
ptr_cast<zContainer<BuiltinArray<T> > >(r)—init(
BuiltinArray<T>( a.elems() - i, a, 1)
);
return 0;
}
return wrap();
}

// find the partition

// swap elements

// swap partition

Figure 3.30: Quicksort partitioning

The figure shows the essence of the quicksort algorithm — array par-
titioning — implemented in divide(). The procedure partitions the
original array member into a new array object, a, and then this ob-
ject is used to create two new DEC objects, each containing half of
the partitioned array.
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template <class T>
class zQuicksort : public zArray<T>,
public zCombineArray<T>,
public zEvaluate
{
public:
zQuicksort(const BuiltinArray<T>& a) : zArray<T>(a), zCombineArray<T>() {}

protected:
Dac divide(Dac& 1, Dac& r) const;
};

Figure 3.31: A quicksort D&C class

The figure shows a DEC class that can be used for quicksorting
arrays. The class defines array partitioning in divide(). Other
Sfunctionality is provided through miz-ins. zCombineArray<T> pro-
vides combine since combination is simply a matter of concatenation.
zEvaluate provides evaluate() since evaluation is a null operation.

a zEvaluate. All that remains to be done is to define the nuts and bolts of quicksort
— divide() — and add the standard D&C auxiliary functions. The auxiliary functions
can be added automatically using dac-mode in emacs. The division function is shown in
figure 3.30 and the class in figure 3.31.

If we wish to gain a little more efficiency, then evaluate() can be defined to perform
a general sorting algorithm. This could even be provided in a general mix-in class.

3.6.3 Mergesort using D&C

The basis of mergesort is combining two sorted data sets to yield a single sorted data set.
If the initial data sets are of unit length, then the combine procedure can be used to sort
the entire set. This merge procedure is simple in operation. Successive elements from the
two data sets are compared and the smaller written to the resultant set. If an element was
not written then that element is used for the next comparison. The procedure continues
until all elements have been written.

To actually sort a data set, the set is first recursively split into smaller sets. These
smaller sets are sorted, and then recursively combined using the merge operation above.

3.6.3.1 D&C implementation

The D&C implementation for mergesort is very similar to that of quicksort, only this
time the core functionality is in combine(). We again start with a zArray<T> and this
provides the recursive splitting that we require. Again, evaluate can be defined using
zEvaluate or by mixing in a standard sort procedure. All that remains is to define an
appropriate combine(), which is shown in figure 3.32, auxiliary functionality is defined
using dac-mode. The actual class is shown in figure 3.33.
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template <class T>
Dac zMergesort<T>::combine(const Dac& d) const

BuiltinArray<T>
[ = ptr_cast<zContainer<BuiltinArray<T> > >(xthis)—data(),
J = ptr_cast<zContainer<BuiltinArray<T> > >(d)—data(),
r(Lelems() + J.elems());

int i=0, j=0;

for (int k=0; k<r.elems(); k++) {
if (i==IL.elems()) r[k] = J[j++];
else if (j==J.elems()) r[k] = I[i++];
else r{kd = (I6)<JG)) ? 1i++] : I4-+];

Dac x=make();
ptr_cast<zContainer<BuiltinArray <T> > >(x)—init(r);
return x;

Figure 3.32: Mergesort combining

The figure shows sorted array merging for a DEC mergesort class.
Once a sorted array has been generated, the returned DEC object is
initialized with it.

template <class T>

class zMergesort : public zArray<T>,
public zEvaluate<T>

{

public:
zMergesort(const BuiltinArray<T>& a) : zArray<T>(a) { }

protected:
Dac combine(const Dac& r) const;
};

Figure 3.33: A mergesort D&C class

The figure shows a complete DEC mergesort class. Binary division
s provided by the zArray<T> class by default, and evaluate() is
again a null operation.
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3.6.4 Other algorithms

These two examples give an indication as to the ease of programming using the Beeblebrox
library. The only functions that need be hand coded are the same as those for the serial
case. All other functionality is generated automatically, or has already been defined in a
library class.

There are many other simple algorithms that can be implemented easily using D&C.
Graph traversal, for instance, or finding the convex hull of a set of points [30, 96]. Dynamic
programming problems are essentially D&C in operation, although they might also need
some additional functionality to operate properly [72].

3.7 Summary

We have taken a detailed look at the design of a object-oriented D&C system. We have
related the design to the actor model and described the ethos behind defining D&C classes.
Finally we have looked at some core D&C classes and the implementation of some simple
D&C algorithms. In the following chapters we look at some more complex algorithms and
their implementation using our object-oriented D&C system. We also look at some addi-
tions to the Beeblebrox library, which allow greater flexibility in defining and evaluating
D&C objects.

Much of chapter 3 is taken from [83], submitted to Concurrency Practice and Experi-
ence.



Chapter 4

Extending the design and
applications

Vell, Zaphod’s just zis guy you know. Gag Halfrunt

We have looked at the basic design of an object-oriented D&C system. We now consider
some different applications to investigate what patterns emerge, and what improvements
could be made. We consider heuristically both the programming and run-time aspects of
the system, as well as performing a mathematical analysis of the run-time performance.

First of all, however, we consider some different D&C manipulation structures.

4.0.1 Chapter organization

In section 4.1 we look at some D&C structures other than the simple array. In sec-
tion 4.2 we look at some extensions to the mix-in strategy introduced in section 3.1.4.3.
In section 4.3 we look at some Beeblebrox classes for enhanced evaluation schemes. In
sections 4.4 and 4.5 we look at some further applications. In section 4.6 we look at the per-
formance results for these problems and then finally, in section 4.7, we look theoretically
at the performance we would expect.

4.1 List processing

So far we have only considered D&C objects based on arrays. However, there are many
instances in which it would be preferable to use a linked list. Linked lists have the desirable
property that they are very easy to concatenate. Their drawback is that there is significant
overhead involved in finding the middle of a list. This is because, unlike arrays, the
elements need to be iterated over from the beginning of the list.

In order to implement a D&C list class we require a fairly comprehensive list class,
preferably reference counted. The only such class, that is publicly available, is in the
JCOOL class library, a derivative of Texas Instruments’ COOL library. Unfortunately,
this class does not compile under the available software, and also needs major modification
to use in a message passing environment. Instead, we define our own list class that is
parameterized and reference counted. The structure is outlined in figure 4.1. Essentially,
each list node has a reference count associated with it, as well as a next pointer and a
data item. To split a list into two, two new list objects are created. The first’s head points
to the beginning of the original, its tail to the middle. The second list object is similarly
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Figure 4.1: A reference counted list

The diagram shows the stages in creating two sub-lists from a single
reference counted list. The two sub-list are simply pointers to posi-
tions within the original list. Only when the original list is deleted
do the sub-lists become the owners of the actual data. List elements
are deleted when their reference count goes to zero.

associated with the end of the original. No new list elements are created. The reference
counts of those elements referenced by the new list objects are simply incremented. When
the original list is deleted, its reference count is decremented. Only if this is zero, are the
actual elements deleted. This is ideal for D&C, where we wish division to be very cheap.
The scheme is quite similar to the enhanced array of section 3.5.4.

In order to create the D&C equivalent of a list we simply use a zContainer<List<T>>
as a base class and then add whatever functionality is necessary. In our case the main
requirement is division of lists; concatenation is trivial. Thus the essence of the class
is shown in figure 4.2. Auxiliary functions are automatically inserted using dac-mode.
Additional flexibility can be achieved by giving the structure a mix-in hierarchy, figure 4.3,
as we did for zArray<T>.

This all works cleanly. If we wished to sort a list, for example, then we could create a
version of the mergesort class given in section 3.6.3.
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template <class T>
class zList : virtual public zContainer<List<T> > {

public:
zList(const List<T>& x) { init(x); }

protected:
Dac divide(Dac& p, Dac& q) const

{

p = make();
q = make()

1

ptr_cast<zContainer<List<T> > >(p)—init(
List<T>(member.first(),member.nth(member.size()/2),member.size()/2)

)i
ptr_cast<zContainer<List<T> > >(q)—init(

List<T>(
member.nth(member.size()/2+1),member.last(),

member.size()-member.size() /2

)
);

return 0;

Figure 4.2: A D&C list class

The figure shows a DEC list class that splits its contained list in
divide(). The class relies on the List<T> class having the appro-
priate functions. Division is optimized by using reference counted

lists.
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template <class T>
class zList : virtual public zContainer<List<T> > {
public:
zList(const List<T>& x) { init(x); }

protected:
Dac divide(Dac& 1, Dac& r) const;

¥

template <class T>
class zCombineList : virtual public zContainer<List<T> > {
protected:
zCombineList(){}
Dac combine(const Dac& r) const
{
Dac d = make();
ptr_cast<zContainer<List<T> > >(d)—init(
member + ptr_cast<zContainer<List<T> > >(r)—data()

);

return d;

}
I3

template <class T>
class zEvaluateList : virtual public zContainer<List<T> > {
protected:
zEvaluateList() {}
Dac evaluate() const

{
Dac d=make();
ptr_cast<zContainer<List<T> > >(d)—init(member.clone());
return d;

}

Figure 4.3: D&C list class with mix-in support

The figure shows an extended class hierarchy for DEC lists. The class
zList<T> is the same as before. However, other miz-in based classes
have been added which can be used to generate classes which con-
catenate lists in combine(), or clone lists in evaluate(). Classes
wishing to use this functionality would simply inherit from the appro-
priate classes. Note that all the container relationships are virtual

so that there is only ever one data item per object.
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Ideally, we might think that unifying the list and array structures would simplify
definitions like this. However, in a parallel processing context, we are concerned with
performance, and not taking advantage of the implicit structure of an array would consid-
erably reduce performance . We are always making the assumption that, although D&C
introduces considerable overhead, the ‘inner loop’ of our code (generally evaluate()) is
nearly as fast as is possible. This assumption is only true if we have direct access to the
underlying structure of the problem.

4.1.1 D&C lists of D&C objects

We now consider a special form of D&C list. The list nodes in a D&C list, by virtue
of parameterization, can contain any sort of object. What would happen if we were to
make the type of these objects Dacs themselves? Dividing and combining the list would
be identical to that of a standard zList<T>, however, we could make evaluate() actually
run each D&C object. How might this be useful? It is possible to envisage a scenario
where problem execution involves a number of independent sub-problems. If each of these
problems were to be executed sequentially then the serialness introduced would impair
performance. What we really want to do is run each of these tasks concurrently. If we
were to assemble each sub-task into a D&C list. Then running the list would achieve the
desired effect [18].

class DacList : public zList<Dac>,
public zCombineList<Dac>

{
public:
DacList(const Dac& d) : zList<Dac>(List<Dac>(d)) {}
DacList(const Dac& a, const Dac& b) : zList<Dac>(List<Dac>(a,b)) {}
DacList(const DacList& d) : zList<Dac>(d) {}
const DacList& operator= (const DacList& d) { member=d.member; return d; }
DacList append(const Dac& d) { member.append(d); return xthis; }
DacList operator, (const Dac& d) const { return DacList(xthis).append(d); }
DacList operator+ (const Dac& d) const { return DacList(*this).append(d); }
protected:
Dac evaluate() const
{
return Dac(new DacList(member.item().run()));
}
};

Figure 4.4: A D&C list of D&C objects

The figure shows a DEC list of DEC objects. Fach DEC object can
be of any type and is run in evaluate(). The class inherits from
zCombineList<T> since the list elements need to be concatenated af-
ter evaluation.

In order to facilitate the assembly if D&C lists we can include overloaded versions of
the operators ‘4’ and ¢,”. The resultant class is shown in figure 4.4. Another approach to
this problem is given in section 4.3.1.
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4.1.2 D&C Lisp

In the preceding sections we have introduced different sorts of D&C lists. We have also
described some different ways of manipulating these lists. With the DacList, we would
especially like the manipulation and creation of this structure to be simple, and nota-
tionally convenient. Since list manipulation is at the core of a number of programming
languages, it would be desirable to use syntax that is already well-known. The obvious
choice of language is the LISt Processing language LISP [99].

Lisp in C4++ is already the subject of the class library Lilly. We will not attempt to
implement even a fraction of LISP functionality, we will simply use LISP syntax where
appropriate. Thus functions that might be useful are car(), cdr() and nth() for dissect-
ing lists. Implementing these functions is trivial if they are supported by the underlying
list class.

4.2 Generalizing mix-in support
Mix-ins provide us with an invaluable way of combining D&C functionality. We now

discuss some enhancements that we can make to aid in the definition, and use, of D&C
mix-ins.

4.2.1 Creating mix-ins using templates

template <class Type, class Divide, class Combine, class Evaluate>
class Mixin : public Divide, public Combine,
public Evaluate {
public:
Mixin(const Type& t) : Divide(t) {}
~Mixin();

protected:
Mixin(const Mixin& z) : Divide(z) {}
Mixin(ibstream&:);
Mixin(DacRep::Exemplar €) : Divide(e) { }
DacRep# scan(ibstreamé&) const;
obstream& spawn(obstream&, const boolean=true) const;
Dac make() const;

private:
static DacRep* exemplar;

};

Figure 4.5: Template mix-ins

The figure shows a parameterized class for combining miz-ins. The
class inherits from its formal parameters which are assumed to be
compatible miz-in classes. Note that the class would be considerably
more useful if default arguments were supported for parameterized
classes.

In section 3.1.4.3 we discussed mix-in support for D&C classes. In subsequent sections,
we have made use of mix-in classes to enable rapid and flexible assembly of D&C classes.
However, in creating a D&C class from mix-in classes, we often don’t define any new
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functionality. The problem is that we still have to use dac-mode to insert all the required
auxiliary functions. A better solution would be to provide a template class for which the
template formals are the mix-in classes to use. Thus we might have a structure such as
shown in figure 4.5. To use this we would simply declare an object using the types we
require. For example with the zList<T> class we defined in section 4.1, the declaration
might be:

zMixin<int, zList<int>, zCombinelList<int>, zEvaluatelList<int> > alist;

#define ZMIXIN3(Name, Type,Divide,Combine,Evaluate) \
class Name : public Divide, public Combine, \
public Evaluate { \
public: \
Name(const Type& t) : Divide(t) {} \
~Name(); \

protected: \
Name(const Name& z) : Divide(z) {} \
Name(ibstream&); \
Name(DacRep::Exemplar e) : Divide(e) { } \
DacRep# scan(ibstream&) const; \
obstream& spawn(obstream&, const boolean=true) const; \
Dac make() const; \
private: \
static DacRep* exemplar; \

B\

Figure 4.6: Macro mix-ins

The figure shows a class macro for combining miz-ins. This macro
can be used when a compiler does not support inheritance from tem-
plate formals. The macro can be used in a similar way to the param-
eterized miz-in combiner described earlier.

We would have to provide other classes if we wished to mix in less, or more, of the pri-
mary functionality. Unfortunately, not all compilers support this syntax as yet, although
it is legal ANSI C++. Thus we must revert to the macro processor to do the work for
us. See figure 4.6. Of course this gives us slightly less flexibility, since the class must be
declared at global scope; this is done automatically with template classes. However, the
macro version is perfectly usable, though perhaps not aesthetically pleasing. Some object-
oriented languages have direct support for adding functionality to a class [13]. C++ is
not among them, so we must look for techniques like this to help us.

4.2.2 Parameterizing mix-in hierarchies

In previous sections (4.1.1) we have described the creation of D&C structure classes from
standard classes. The creation of these classes has often involved defining mix-in versions
for each primary function. Thus we might have a list D&C class for which we define a
derived, mix-in class for division, combination and evaluation. Often, as is the case in
the examples we have examined, the base class of the hierarchy is simply a container, and
the only new functions that are defined are divide() etc. Since we can characterize the



4.2 Generalizing mix-in support

99

hierarchy in this way, we ought to be able to define a parameterization for this character-
ization. We can do this using template classes for which the formal parameter is the class
we are trying to contain. The functions that need to be defined individually can be done
so as specializations. See figure 4.7. Note that part of the beauty of this approach is that
D&C auxiliary functions are already defined. As always, for clarity, these are not shown
in the figure.

template <class T>
class zTemplate : virtual public zContainer<T> {
public:
zTemplate(const T& x) { init(x); }
T+ operator— () { return &member; }

protected:
Dac divide(Dac& 1, Dac& r) const;
};

template <class T>
class zCombineTemplate : virtual public zContainer<T> {
protected:
zCombineTemplate(){}
Dac combine(const Dac& r) const;

¥

template <class T>
class zEvaluateTemplate : virtual public zContainer<T> {
protected:
zEvaluateTemplate(){}
Dac evaluate() const;

¥

Figure 4.7: Parameterized mix-in hierarchy

The figure shows how parameterized classes can be used to create miz-
in hierarchies. For the classes shown the programmer would have to
only explicitly define the primary functions divide(), combine()
and evaluate().

One problem with this approach is that many compilers do not allow generic special-
izations. These can occur when defining a template of a template, e.g. Cat<X<T>>, and we
want to define a specialization, e.g. Cat<Mat<T>>::foo(), but not specify the innermost
template formal, for instance Cat<Mat<int>>::foo().

4.2.3 Dynamic inheritance in place of mix-ins

The mix-in techniques we have described enable a programmer to rapidly prototype D&C
classes. However, these techniques are based on static inheritance and depend heavily on
templates. These two factors mean that their use is hindered by the creation of numerous
different classes, resulting in global namespace pollution, large executable size, and very
long compilation times. These problems would be largely alleviated if we could use dy-
namic inheritance, as supported by some message-passing based object-oriented languages
[106]. However, because the range of functions we might want to define is quite limited
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(four at most), and because the interface for the classes we want to use is well defined
(they are all Dacs), we can implement our own form of dynamic inheritance.

Evaluate

Divide \ » ‘ Combine
R e S

Static mix-ins

N
=)
Evaluate
) > O _..
Divide Combine
al S
Dynamic mix-ins .
S ol
-» O
‘ Active object

Figure 4.8: Object metamorphoses

The diagram highlights the differences between standard, static, miz-
in based evaluation, and dynamic miz-in based evaluation. With
standard miz-ins primary functionality is selected alt compile lime,
and objects are subsequently invariant, each primary function being
used at different stages through the evaluation. With dynamic miz-
ins primary functionality is selected at run-time, and each object has
one of the primary functions. As functions are used the objects that
contain them are discarded.

Recall that object interactions in D&C are similar to those of actors [2]. We view our
D&C world as consisting of objects which are constantly mutating, dividing or combining,
much like animal cells. These state changes are normally effected by one part of the object
which is active for the particular operation in question. The active part can be defined
by a mix-in; in which case the object is really a combination of different objects, or by a
function definition. The scenario is still the same — a unitary object metamorphosed by
actions defined by its constituents. However, it is possible to view these object actions
differently. Instead of viewing actions as constituents of the whole, we provide a one-to-
one mapping between actions and objects. Thus each object is responsible for a particular
function. Then, instead of combining these objects together to achieve total functionality,
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class zManipulator : public zEnvelope {
public:
zManipulator(const Dac& d) : zEnvelope(d) { }

};
class zDivideManip : public zManipulator
{
typedef Dac (*PFD)(const Dac&, Dac&, Dac&);
public:
zDivideManip(const PFD dp) : zManipulator(), divide_p(dp) { }
zDivideManip(const PFD dp, const Dac& d)
: zManipulator(d), divide_p(dp) { }
Dac create(const Dac& d) const {
return Dac(new zDivideManip(divide_p,d));
}
protected:
PFD divide_p;
Dac divide(Dac& 1, Dac& r) const
1 = make();
r = make();
return (xdivide_p)(*this, 1, r);
}
};

#define DEFDIV(d_name) \
Dac name2(z,d_name)(const Dac&, Dac&, Dac&); \
zDivideManip dname(name2(z,d-name)); \
FUNCTOR(Dac,z##dname,(const Dac& self, Dac& left, Dac& right))

Figure 4.9: Dynamic divide() mix-in

The digram shows a dynamic miz-in class that performs divide()
type operations. Objects of this class are inilialized with a function
through the use of the macro DEFDIV(). This function is then called
by the class’ divide() member. Note that the class is a zEnvelope
since it will contain another DE&C object to which functions other
than divide() will be forwarded.
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class DacManip : public Dac {
public:
DacManip(const zManipulator& a, const zManipulator& b,
const zManipulator& c, const zManipulator& d,
const Dac& dd) : Dac()

{
Dac::operator=(create(dd,&a,&b,&c,&d));
}
/*
* and so on for the other constructors ...
*/

DacManip(const zManipulator&, const zManipulatoré,
const zManipulator&, const Dac&);
DacManip(const zManipulator&, const zManipulator&,

const Dac&);
DacManip(const zManipulator&, const Dac&);

private:
Dac create(const Dac& dd, const zManipulatorx a, const zManipulators b=0,
const zManipulatorx ¢=0, const zManipulator+ d=0) const
{

zDivideManip *dm=0;
zCombineManip *cm=0;
zEvaluateManip *em=0;
zSimpleManip *sm=0;

const zManipulator* dlist[4];

for (int x=0 ; x<4; x++) {
if (dlist[x]) {

if ( ptr_cast<zDivideManip>(dlist[x]) )
dm = ptr_cast<zDivideManip>(dlist[x]);

else if ( ptr_cast<zCombineManip>(dlist[x]) )
cm = ptr_cast<zCombineManip>(dlist[x]);

else if ( ptr_cast<zEvaluateManip>(dlist[x]) )

em = ptr_cast<zEvaluateManip>(dlist[x]);

else if ( ptr_cast<zSimpleManip>(dlist[x]) )

sm = ptr_cast<zSimpleManip > (dlist[x]);

1

}

Dac P;
if (cm) p=cm—create(dd);
if (em) p=em—create(p);
if (sm) p=sm—create(p);
if (dm) p=sm—create(p);

return p;

I3

Figure 4.10: Combination class for dynamic mix-ins

The figure shows a DEC wrapper class that can be used to combine
dynamic miz-in classes such as zDivideManip. Objecls of this class
can be evaluated identically to Dacs. The class constructor ensures
that the mix-in objects are ordered correctly.
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#include <Vector.h>
#include <zVector.h>
#include <zManip.h>

DEFDIV(zappo)
{

ptr_probe<zContainer<int> > (left)—init(
ptr_probe<zContainer<int> >(self)—data() /2

);

ptr_probe<zContainer<int> >(right)—init(
ptr_probe<zContainer<int> >(self)—>data() *2

);
return 0;
}
DEFCOMB;(zippo)
{
ptr_probe<zContainer<Vector<int> > >(result)—init(
ptr_probe<zContainer< Vector<int> > >(left)—data()
_I_
ptr_probe<zContainer<Vector<int> > >(right)—data()
);
}
DEFEVAL(zyppo)
{
ptr_probe<zContainer<Vector<int> > >(result)—init(
ptr_probe<zContainer<Vector<int> > >(self)—data() * 2
);
}
extern "C" void mainCore()
{
Vector<int> v(10);
v = Random(-5,5);
Dac x = DacManip( zippo, zyppo, new zVector<int>(v) );
cout € x.run() < endl;
}

Figure 4.11: Example usage of dynamic mix-ins

The figure shows how dynamic miz-ins can be used. Three miz-
in functions are defined using macros similar to DEFDIV(). Nole
that these functions use ptr_probe<T> to access DEC data. The
local variables result, left, right and self are defined by the
macros. The defined miz-in classes are then combined with a stan-
dard zVector<T> object using a DacManip, and evaluated.
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as in static inheritance, we encase each object inside one of the others. Evaluation then
involves objects forwarding operations that they do not know how to process. At each
stage of evaluation, one particular object is active, just as in the static inheritance case,
but compile time dependencies have been removed. See figure 4.8.

These classes need an actual function for processing, which we provide as a pointer. If
we were to parameterize upon a function, then we would be back to square one in terms of
code explosion. To simplify the overall use of these classes we define a macro which creates
an object from a function definition. This object can then be used, using create(), to
clone objects of the same type, i.e. using the same function. See figure 4.9. Similar
classes are provided for the other D&C functions. To actually combine these objects into
a cohesive whole, we define a class DacManip which arranges objects into the correct order,
and creates an aggregate D&C object from them. See figure 4.10. An example usage of
these classes is given in figure 4.11.

Of course, the space and compile-time overheads we have eliminated, have been traded
for a degree of performance. However, the scheme does allow extremely rapid and simple
prototyping of D&C objects. If it is found that better performance is required, then
standard mix-in classes can be defined. These techniques are similar to instance level
mix-ins [54].

4.2.3.1 Extensions to dynamic casting

In section 3.1.4.5 we described a dynamic casting scheme for D&C objects. In the dynamic
mix-in scheme that we have just described, the mix-in functions will not be able to tell how
many envelopes deep the object they wish to manipulate is. This is because the actual
D&C object that is operated upon may provide some of the D&C functionality. Thus
dynamic casting of a D&C wrapper is not sufficient. What we actually need to be able to
do is to follow, transparently, container relationships. We therefore provide an additional
casting class ptr_probe<T>.

In order to follow container relationships we provide an additional parameter to get_-
this_ptr() which says whether to do so or not. For an envelope, get_this ptr() will
initially try a dynamic cast before following container relationships. A similar scheme ap-
plies for compounds. get_this_ptr() for envelopes is shown in figure 4.12. ptr_probe<T>
is used in an identical manner to ptr_cast<T>.

4.3 Evaluation enhancements

In the next two sections we look at two ways we can improve performance by a greater
and more even distribution of parallelism. In any parallel system we are always trying to
exploit parallelism, thus any improvements in this area are desirable.

4.3.1 Concurrent D&C object execution

In section 4.1.1 we considered a D&C list of D&C objects. This structure enabled different
types of D&C object to be evaluated in parallel. However, the drawback of this approach
is that all D&C objects need to have been created in order for evaluation to proceed. An
alternative approach might be to allow D&C objects to be evaluated as they are created,
as normal, but not to wait for the results before proceeding to the next object. This would
overcome the need to wait for all objects to be created. The choice, however, between
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template <class T> class ptr_probe {
const DacRep* p_d;
public:
ptr_probe(const Dac& d) : p-d(d.rep()) {}
ptr_probe(const DacRep« d) : p-d(d) {}
operator Tx()
{ return (Tx)(p_d—get_this_ptr(int(T::exemplar—type), true)); }
T+ operator— ()
{ return (Tx)(p-d—get_this_ptr(int(T::exemplar—type), true)); }

¥

class zEnvelope : public DacRep

{

protected:
Dac e letter;
voidx get_this_ptr(int i, int p) const {
void *xv=0;
if (i == int(exemplar—type)) {
v = (voidx)this;

else if ( (v = DacRep::get_this_ptr(i,p)) == 0 && p) {
v = eletter.get_this_ptr(i,p);
}

return v;

}

private:
static DacRep* exemplar;
b

Figure 4.12: Probing container relationships

The figure shows how DE&C container relationships can be followed
using a dynamic casting class. get_this ptr() lries inherilance re-
lationships first before trying container relationships.

one method or the other, would depend on the computational requirements for creating
objects and the computation between object instantiations.

How might the latter method be implemented? The key is to remember that the execu-
tion stack is continuously being scanned by the scheduling process, regardless of whether
a D&C pass is executing or not. The scheduler is stateless with respect to evaluation
sequences, it simply evaluates available objects. Thus, instead of applying an evaluation
function, such as run(), to a D&C object, we could simply push the object onto the ex-
ecution stack. The scheduler will then whisk the object away for distributed evaluation.
Once all objects have been created, we can pop any un-evaluated ones off the stack and
complete the evaluation. If this evaluation is carried out using the stack, as for any normal
D&C evaluation, then load-balance will continue to be maintained.

The only question that remains to be answered is how this can be implemented trans-
parently, using the tools available to us. Pushing objects onto the stack is easily accom-
plished, however, we need some method of returning evaluated objects behind the back of
the programmer. Since the desired scenario involves evaluation features, the natural place
to put functionality is in a wrapper, DacPar, derived from Dac. We can arrange for the
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class DacPar : public Dac {
public:
DacPar(const Dac& d) { init(d); }
DacPar(DacRep* d) { init(Dac(d)); }
const Dac& operator=(const Dac& d) { return init(d); }

const DacRep* rep() const { // intercept attempts to get the letter
if (head) runp();
return Dac::rep();

}

protected:
const Dac& init(const Dac& d) {
if (d==0) ::error() <€ "init() failed: =zero dac object" K fatal;

Record* r=::new Record(xthis); // add object to list
r—next = head;
head = r;
p—push(d, DacStack::pending, DacStack::parallel); // add to stack
return d;
}
static struct Record { // object list
Record(Dac& d) : dac(d) {}
~Record(){}
Dac& dac;
Record* next;
} #head;
void DacPar::runp() const
{
Recordx d; // iterate over all recorded objects
while (p—key() == DacStack::parallel && head) {
if (p—state() & (DacStack::evaluated|DacStack::fixed)) {
head—dac = p—pop(); // pop if evaluated ...
} else {
head—dac = p—pop().run(); // run of not
}
d = head;
head = d—next;
::delete d;
}
}

I3

Figure 4.13: Parallel D&C wrappers

The figure shows a DEC wrapper class for evaluating DEC objects
in parallel. If a DacPar object is inilialized with a Dac then the Dac
s added to the list head and pushed onto the evaluation stack. When
the Dac’s letter is accessed, runp() is invoked to ensure that the
object has been evaluated.



4.4 Further applications

107

DacPar constructor to push its letter onto the evaluation stack. We also need some record
of where the evaluated object needs to be returned to. Thus, we enter the envelope’s ad-
dress into a linked list. We arrange for operator= to evaluate any remaining un-evaluated
objects, and then assign each result to the correct envelope as recorded in the linked list.
We can also arrange for any attempt to access an envelope’s letter, most notably use of
ptr_cast<T>, to trigger evaluation. The class is shown in figure 4.13.

Catching accesses that might fail is roughly equivalent to the rtf() — return to fu-
ture — mechanism of the Mentat system [44]. It is only by virtue of our object-oriented
D&C system that dependency management can be accomplished easily and transparently.
Specifically it is the separation of envelope and letter, evaluation and evaluated, that is key
to transparency. The envelope /letter idiom is used here as a data-hiding mechanism [14].
All data-dependencies will be on the letter, which is hidden by encapsulation. Breaking
encapsulation — done dynamically here — is caught and synchronizes evaluation state. If
encapsulation is not violated then data dependencies will be secure.

4.3.2 Nested evaluation

In section 3.1.2 we described a stack-based implementation for D&C. The advantages of
this approach were simplicity and space efficiency, however, there is another advantage.
Stack-based evaluation has many similarities with normal computational execution, and
thus we can recurse evaluations, nesting one on top of another.

We have argued [81] (section 2.2.1) that the design of efficient parallel algorithms
should only be a means to an end, rather than an end in itself. However, many parallel
implementations concentrate solely on the efficiency of a single algorithm without much
thought as to the operation of this part in a wider whole. This is especially true of D&C
implementations. We have argued that D&C gives us the means to integrate together
efficient parallel algorithms; nested evaluation makes this more of a reality. By adopting
a stack-based evaluation structure, it becomes possible to evaluate multiple D&C tasks
at the same time, i.e. a D&C task can contain other, differing D&C tasks which will be
evaluated in parallel as well as the main task.

The beauty of this system is that, although nested D&C tasks imply a finer grain of
concurrency, they do not imply a performance loss. This is because the higher level, and
therefore larger, tasks will be stacked first. The finer grain tasks will only be evaluated
in parallel if there are no larger tasks available on the stack. In theory this should only
happen at the very beginning and end of processing.

In case parallel evaluation is not required —in debugging D&C applications for example
— it is easy to use the recursive implementation which is interchangeable with the stack-
based algorithm. If necessary, it would be trivial to pass a flag to a D&C object when it
is initialized, determining which algorithm to use. The only change that need to be made
to the evaluation algorithm is to record stack start positions. This prevents separate
evaluations from trespassing on each others data.

4.4 Further applications

In ensuing sections we look at some more complex examples of D&C problems. We examine
the simplicity with which these problems can be expressed and implemented, and then go
on to make use of some of the techniques we have discussed so far. Finally we examine
run-time performance and changes we can make to improve this.
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First of all we return to the horizontal back-propagation algorithm of section 2.3.

4.4.1 Back-propagation revisited

In section 2.3, we described informally a D&C implementation of the back-propagation
algorithm. We now return to this and take a more detailed look at the implementation,
using the techniques of chapter 3.

4.4.2 D&C implementation

The basis of the back-propagation algorithm is iterating over training frames calculating
weight matrix updates. We thus choose a zArray<T> as our basic D&C structure. Ideally,
we might want to use two zArray<T>s one for input frames and one for outputs. Unfortu-
nately, if we were to do this then we would have to explicitly program sequential iteration.
Instead we create a zArray<T> of training frames where a training frame is a vector of
inputs and a vector of outputs. In order for these objects to be safely stored contiguously
(see section 2.1.2) we use SimpleArray<T>’s. These structures are parameterized on the
array size, and data is allocated in the structure itself rather than separately from the
heap. The drawback with using these structures is that changing any array dimensions is
a compile-time action.

template <class T>
class zMapArray : virtual public zContainer<BuiltinArray<T> >

{
protected:
zMapArray() {}
virtual Dac mapfunc(const T&) const=0;
Dac evaluate() const
{
BuiltinArray<T> b = data();
Dac r = mapfunc(b[0]); // get the first resull
int elems = b.elems(); // do the rest
for (int i=1; i<elems; i++) {
r = r.combine( mapfunc(bli]) );
}
return r;
}
};

Figure 4.14: A D&C array iterator

The figure shows a DEC class for iterating over an array. mapfunc()
is assumed to have been defined in a derived class and is called for
every element of the array. The class is virtually derived from an
array container so that only one data item per object exists.

Thus our back-propagation object is derived from zArray<TrainFrame<T>>, zPartition,

zCombine and zMapArray<TrainFrame<T>>. A zMapArray<T> is another member of the
Beeblebrox library. It is a mix-in for zArray<T> derivatives, and provides evaluate()
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template <class T, int I, int O> struct TrainFrame

{ // Backprop training frames
SimpleArray<'T, I> inputs;
SimpleArray<T, O> outputs;

operator Vector<T>() const { return Vector<T>(I40,(Tx)(&inputs)); }

¥

template <class T, int I, int O>

class zBackprop : public zArray< TrainFrame<T, I, O> >,
public zMapArray< TrainFrame<T, I, O> >,
public zPartition

{
Matrix<T> W_ij;
Matrix<T> W_jk;
public:

Dac mapfunc(const TrainFrame<T,][,0>& t) const

{
Vector<T> S_j, Sk, O, Ok, d k;
Matrix<T> d_-Wij;
Matrix<T> d-Wjk;
Vector<T> t_k = t.outputs;
Vector<T> O = t.inputs;

// feed forward equations
S =~W.ij* Oi:
O_j = sigmoid(S_j);
Sk = ~W_jk  Oj;
Ok = sigmoid(S_k);
// feed backward of error equations
dk = (tk - OKk) * dsigmoid(S_k);
d Wik = O % ~d k:
d_Wij = O * ~((W_jk * d_k) * dsigmoid(S_j));
return Dac( new zSum<Matrix<T> >(d_-Wjk) ),
Dac( new zSum<Matrix<T> >(d-Wij) );
}
};

Figure 4.15: A D&C class for back-propagation

The figure shows a DE&C class that computes the back-propagation
algorithm in the iterator function mapfunc(). The class is parame-
terized on a TrainFrame<T,I,0> class which is used for holding the
training data. mapfunc() returns a compound DEC object which
arranges for the partial weight update matrices to be added together.
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which is arranged to apply the member function mapfunc() to each element of the array.
See figure 4.14. zMapArray<T> is unnecessary if division proceeds to vectors of unit length.
However, if we wish to have a reasonably efficient implementation, then vectors of signifi-
cant lengths must be processed. Thus it is that we use zMapArray<T> and zPartition.

All that remains is to define the core operations in mapfunc(). This simply applies
the back-propagation algorithm to the training frame provided by mapfunc()’s argument.
The result we are interested in is the sum across frames of the two weight matrices updates.
We achieve this by constructing a zCompound from two zSum<Matrix<T>>s, and returning
this from mapfunc(). zSum<T>s sum their formal parameters in combine(), section 5.3.3
describes this class in more detail. Note the use of operator, to combine two Dac objects
into a compound. dac-mode is then used to fill in all remaining auxiliary functions. The
resultant class is shown in figure 4.15.

4.5 Tree language models with D&C

In this section we describe the use of tree language models for speech recognition, and the
implementation of one particular tree growing algorithm using object-oriented D&C. We
then consider a parallel improvement to the algorithin using nested D&C. The following
discussion is based on [108].

In the field of automatic speech recognition (ASR), language models, which attempt
to provide an accurate prediction of the next word in a sequence, are important for good
overall performance of any ASR system.

Figure 4.16: Tree

The diagram shows schematically a decision tree. The nodes are
labelled t;. At each node a decision is made as to which set of words
the current word is in.

Decision trees (figure 4.16) are one possible type of language model [108]. A tree T
may be viewed as a set of nodes T = {to,t1,...,t,}, with o reserved as the root node.
The input to the tree w;_,, w;_py1,...,wj—1 is a string of the previous n words, and
the output from a leaf of the tree is a probability distribution over the possible predicted
words W. Starting from the root node of the tree, at each non-terminal node ¢., a binary
function ). is performed on wyg, one of the n words of the input. This function takes the
form: ‘is wy € SI7°, where S? is the jth set of words (for binary branching 0 < j < 2). If
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the result is true, the left branch from the node is followed, otherwise the right branch.
This is repeated until a terminal node is encountered.

In growing a tree, the objective lies in minimizing risk for a given cost constraint. Each
step consists of splitting some terminal node ¢ into two children in order to maximize a
merit function, merit(.), for some test ), which will lead to a tree which satisfies the global
constraints.

Due to the computational complexity of growing optimal trees, practical design pro-
cedures (deciding on the best splits and hence the sets S.) are invariably steepest-descent
based. However, even practical approaches are extremely computationally intensive and
a good candidate for parallel evaluation.

For the purposes of this work, a clustering-based algorithm due to Chou [28] and
implemented serially by Waegner and Young [108] was employed. Vectors consisting of the
conditional probabilities of the predicted words, conditioned on a particular instantiation
of wy, are iteratively clustered into bins. The clustering algorithm is classically D&C with
all computation being done in the divide phase of the algorithm.

4.5.1 Parallel implementation of Chou’s algorithm

The strategy we employed in implementing a parallel version of Chou’s algorithm is im-
portant, as it reflects a general strategy for writing programs using object-oriented D&C.
Our initial strategy entailed the following:

1. Identify how the algorithm is “divide-and-conquer-able”.

2. Identify data that child nodes require from their parents and vice versa and encap-
sulate these in an object definition (class) derived from DacRep.

3. Identify data required by all nodes and add these to the class as static members.

4. Add the required primary D&C functions to the class definition through: inheritance
if they are standard, or by writing them if they are not.

5. Format the class in the emacs editor with dac-mode so that objects of that class are
usable in a message passing environment.

6. Define in sti() any initial conditions required.

Our original aim was to use much of the serial code, written in C, as it stood. Much
of this code was concerned with actual D&C evaluation, so this could be thrown out
in favour of our parallel framework; leaving only the guts of the partitioning algorithm
itself. This, we hoped, could be left as a C module that only required linking in to the
parallel framework. For an initial attempt this proved possible — if slightly clumsy — by
defining appropriate conversion operators from C++-world array objects and the like to
C-world arrays. However, when it came to more complicated implementations, it was
found far easier to recompile the C-code with a C++4 compiler, thus giving the C-module
easy access to all the C4++4-world data structures. Although this approach does not work
with programs for which the source is not available, it is vastly preferable from a flexibility
point-of-view.

The clustering algorithm made up the flesh of the divide() phase of the algorithm
and in terms of writing functionality there was little else to do. Since we are growing
these trees and therefore have no interest in combining anything, evaluate() was made
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to return a zNull object. This object did nothing except satisfy the requirements for
successful completion of the evaluation algorithm.

4.5.1.1 Tree dumping

One other important issue needs considering. Data is generated from each non-terminal
and terminal node in the tree, but how can we guarantee that the tree constructed on
disk is ordered correctly? The data cannot be written to a single file as there is no way to
tell the size or shape of a tree before evaluation — it is an unbalanced D&C computation.
The only obvious solution is to write a separate file for each sub-task evaluated. Several
methods were tried of naming these files so that their order could be determined easily, but
this required preorder node-number information which would have been available under a
serial implementation, but which was indeterminate under the parallel implementation.

In the end the nodes were numbered in level order using node() - a numbering scheme
which is independent of the size of the tree. The output files were identified by the root
node that was processed in a sub-task, and then the files were parsed using Sedgewick’s
stack-based pre-order tree-traversal algorithm in order to discover their concatenation
order.

Since tree growing is more generally applicable to D&C than just for language mod-
elling, this technique should be more widely applicable.

The speedup results for the initial implementation are given in section 4.6.

4.5.2 Improved parallel performance using nested D&C

In this particular tree-growing application, at each non-terminal node we are trying to
partition a corpus into two. The partitioning algorithm is of time complexity O(N). So
it can be seen that at the start of evaluation, when there is a single large context, the
(serial) partitioning of this will dominate the execution time of the whole. At the end of
execution the partitioning is of many small contexts but these are done in parallel.

Thus it would be desirable to parallelize the initial partitioning somewhat to achieve
better processor utilization. The partitioning algorithm involves looping over the entire
corpus for each member of a given context. Thus, if we were to parallelize across the
context elements we should be able to improve the performance of the partitioning by a
factor close to the number of elements in a context.

4.5.2.1 Nested Implementation

In designing this extra level of parallelism we adopt an approach similar to that given
in section 4.5.1. However, this time we are merely iterating over an integer so a general
D&C iterator can be used to do much of the programming leg-work, see figure 4.17. From
a functionality point-of-view we merely have to separate the loop and the partitioning
algorithm, and assign each to a class.

At this point we can make use of inheritance to simplify the class definition. The tight
coupling of the outer loop with the partitioning algorithm also implies a tight coupling
of data, and we can thus factor the data common to both control structures into a single
base class. It is worth considering this property for a moment, as it is an important one
for our object-oriented approach. In general, once a D&C strategy has been decided for
a particular problem, then the next candidates for parallelism are any outer loops in the
D&C primary functions. However, the only required additions to the locality of reference
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class zlterator : public DacRep, public zUnit {
public:
zlterator(int sa=0, int stop=0)

I3

: DacRep(elems), start(sa), elems(stop-start+1) {}

Dac zlterator::iterate(int sa, int stop)
{
start = sa;
elems = stop-start+1;
return run();
}
protected:
Dac divide(Dac& 1, Dac& r) const
{
1 = make();
r = make();
zlterator# il = ptr_cast<zlterator>(l);
zlterator ir = ptr_cast<zlterator>(r);
il—selems = elems / 2;
ir—start = start + elems / 2;
ir—elems = elems - elems / 2;
return 0;
}
Dac evaluate() const
{
return mapfunc(start);
}
virtual Dac mapfunc(int) const=0;
int start;
int elems;

// defined by derived classes

Figure 4.17: A D&C iterator class

The figure shows a DEC class for general iteration. Like
zMapArray<T> mapfunc() is assumed to have been defined by a de-
rived class, and is called in evaluate() with each value of the itera-
tion. Ileration is started by the function iterate() which is initial-

ized with the ileration bounds.
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already provided by the D&C partitioning, will be data local to the D&C primary functions.
Thus, the factoring together of common data will be a common occurrence in making use
of nested D&C, and it is only by virtue of the object-oriented approach that this is easily
achieved.

The fact that the parallelized looping as a sub-task of the parallelized clustering is
coped with is because of the generality of the stack-based approach described in sec-
tion 3.1.2.

A comparison of the performance of the two approaches is given in section 4.6.

4.6 Performance of the system

In this section we give performance results for the simple and nested implementations of
the tree-growing algorithm. We then consider some implications of these results and give
some improved results through an understanding of D&C systems in general.

In the ensuing discussion it is important to realize that tree-growing is a true D&C
application, in other words the appropriate method of serial evaluation is D&C. For this
reason there is no need to compare the parallel implementation with a control as the
uniprocessor case is the same, performance-wise, as the serial case; neglecting processor
usage due to scheduling. It is also important to realize that partition size [88] is an
integral part of the algorithm. Thus finding an optimal partition for parallel evaluation
must be entirely separate from specifying a D&C partition.'n this and subsequent sections,
a balanced tree is assumed. Whilst not true in general, this assumption is believed to be
valid for the data sets used here.

4.6.1 Non-nested implementation

Figure 4.18 gives the speedup results for the non-nested implementation using a small
corpus of 16384 words (16376 contexts) and a cluster size of 64 words. The experiments
were conducted on a toroidal mesh of T800 transputers running the Trollius™ operating
system.

As can be seen performance is good though, as noted in [81], there are some discontinu-
ities in the curve. As we explained in section 2.4.1.1 these discontinuities can be attributed
to the connectivity of a transputer node. The depth-first evaluation scheme that we em-
ploy means that the size of task offloaded to neighbouring processors decreases in size as
1/2"™, where n is the task number. So the first processor receives 1/2 the problem, the
second 1/4 and so on. However, once the nearest neighbours have been exhausted due to
the single-steal rule [72], then the speedup is limited to some extent by the size of problem
remaining on the root processor. Thus we would expect the speedup to be limited to
2Minks — however many processors there are.

This is borne out by figure 4.18. The processor numbering scheme we have adopted
means that there is only one link available for 1-4 processors, two for 5-12 processors and
three for 12-16 processors. The breakpoints for the number of links correspond to the
discrepancies in the graph. The sudden drop in performance after each breakpoint can be
attributed to a large proportion of the problem being scheduled to a solitary processor.
This processor is connected to the newly available link with no other neighbours to offload
to.

g
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Figure 4.18: Nested and non-nested performance

The diagram compares the nested and non-nested performances of a
DEC based language model. As can be seen, nesting gives significant
performance improvement.
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However, the results are inconclusive and we will present more compelling evidence
below.

4.6.2 Nested implementation

In figure 4.18 the speedup results for the nested implementation are presented, together
with the non-nested implementation. As can be seen, the nested implementation gives
a significant improvement over the simple implementation. We would also expect this
improvement to increase as the problem size is increased and parallel overheads become
less significant. However, we would expect the maximum performance increase to have an
upper bound equal to the maximum speedup given by the nested performance only — in
this case 8.

4.6.3 Performance improvements

We have surmised that the performance of a depth-first D&C system will be limited by
the connectivity of the processors, and we have provided some scanty evidence for this.
Therefore, for a 4-link processor, we would expect the performance to be largely unaffected
by an increase in the number of processors past 16, if the connectivity of the processors
remained unchanged. If we increase the number of processors from 16 to 32, we obtain
the results given in figure 4.19.

Obviously the system as it stands is not at all scalable, and scalability is highly desir-
able. However, if our connectivity argument is right then we can achieve better scalability
by utilising a processor network with a higher degree of connectivity. Specifically, if we
require each processor to have access to a larger number of neighbours, then a hypercube
architecture is the obvious candidate. Furthermore, if speedup is limited to 2™irks and
speedup is also limited to nprocessors then we will attain maximum speedup for:

s
2Mmks - — TNprocessors

Niinks = log? (nprocessors)

which is true for all hypercubes.

4.6.3.1 Virtual hypercubes

It is clear that a hypercube interconnection network is desirable for D&C systems, but a
transputer only has four links! Ideally we would use a network of TI C40’s which would
yield a physical hypercube of maximum degree 6; but is this really necessary? We can
achieve higher dimensionality hypercubes by forming groups of physically connected hy-
percubes and connecting these to each other by means of “virtual” — or multi-hop — links.
Arranging for this to happen is simple if the real hypercubes are numbered in units of 16.
In this case a processor will have virtual neighbours at processor identifiers:

(procid + 21+ MOD 2'+5

where 1 = 0,1, ....

Applying this to the 32 processor case yields the results given by figure 4.20. As can
be seen the speedup is now much more linear with a greater maximum speedup.

Parallel overheads could possibly account for the decreasing efficiency. If this is the
case then increasing the problem size should result in increased efficiency.
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Figure 4.19: 32 processors non-nested performance

The diagram shows how performance is severely impaired for more
than 16 mesh connected processors. We can see no improvement
between 16 and 30 processors, and it is only at 31 processors, when
all 4 links of the root processor are used, that performance reaches
that of the 16 processor implementation.
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Figure 4.20: Virtual hypercube performance

The diagram shows the performance for a 32 processor implementa-
tion of the DEC language model, but this time the processors are hy-
percube connected. Performance is now relatively scalable with a con-
tinuous tmprovement in performance as more processors are added.
It is interesting to note that performance appears to be largely unaf-
fected by the fact that some of the processor connections are multi-

hop.

4.6.3.2 Problem scaling to reduce overheads

By increasing the size of problem we obtain the results given by figure 4.21.

As can be seen, increasing the problem size does increase the efficiency of the system.
However, a corpus of 100000 words was the largest problem that could be tried with the
memory available, and it is not clear that the maximum efficiency has been obtained with

a problem of this size.
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Figure 4.21: Virtual hypercube performance with increasing problem size

The diagram shows how relative performance can be improved by in-
creasing the size of the evaluated problem. As expected the asymptote
for this improvement is that of linear speedup; although it would take
an infinitely large problem to achieve this.

Interestingly enough, adding a further dimension to the hypercube (figure 4.22) for the
100000 word case yields little further speedup, performance actually decreasing after 46
processors. It would therefore appear that tuning the D&C partition would be a sensible
thing to do, to limit the number of processors used, as well as evaluating still larger
problems.

4.7 Theoretical speedup

In this section we present some theoretical speedup results for D&C and relate them
to the practical results presented in section 4.6. Lewis et al [69] gave the maximum
possible speedup for D&C problems as N/logaN. However, our results exhibit rather
better performance than this for an algorithm with classical D&C properties. Therefore,
we develop a better model of D&C which takes into account the effects of problem scaling.
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Figure 4.22: Degree 6 virtual hypercube performance

The diagram shows the performance of a 64 processor, degree 6 hy-
percube implementation of the DEC language model. Performance
is good up to about 45 processors, and then tails off rapidly. We
surmise that this is due to a combination of the size of the problem
involved, and the number of multi-hop connections being used by the
virtual hypercube.

These results tie up well with the practical results of section 4.6. We then develop a more
complex model which takes into account the possibility of variable divide time; a property
which the tree algorithm should exhibit. However, the theoretical results are much worse
than our experimental results and so we conclude that this property is not significant for

the tree algorithm.

4.7.0.83 Framework

In the execution of a D&C problem, we define d = 1...D as the depth down the D&C
tree so that there are:

np = 2P (4.1)
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terminal nodes in the tree if the tree is balanced. This also means that there are:

N = 2P+t (4.2)
nodes in the tree in total, and
2P 1 = np-1 (4.3)
= (4.4)
non-terminal nodes. We note also that the maximum depth:
D = logs(np) (4.5)
We define:
ty = time to perform a single divide
t. = time to perform a single combine
ty = time to perform a single evaluation

but we will often assume that ¢4 = ¢..
We assume that communication time is zero and that there is no limit to the availability
of processors.

4.7.1 Basic D&C

We first investigate a simple theoretical model of D&C, where the divide time dominates.
This yields the result given by Lewis et al. [69].

We note that it is not possible to make use of more than np processors. Thus if we
wish to evaluate all nodes in parallel the execution time will be:

T(TLD) = Dig+ty+ Dt,
= 2Dty +1t;
= Qtdlogg(np) +tf (4.6)
if t4 = t.. This is because the time to evaluate all nodes at depth = k in parallel will be

tq, and all nodes at depth k cannot be evaluated before nodes at depth & — 1.
The serial execution time for this problem is given by:

T(l) = mylg + nyle +nply
(TLD - l) (td + tc) +npty
2td(nD — 1) + npty (4.7)

thus the speedup,
S = T()/T(N)
2t -1 t
_ 2b(np —1) +nply (4.8)
Qtdlogg(np) + tf
We note that the speedup is np for the best case of {7 = 0. The worst case is for small
t¢, which gives:

lim S = 2a(np = 1)
ty—0 2t4loga(np)
np — 1
= — 4.9
logz(np) (4.9)

which is that given by Lewis et al. [69].
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4.7.2 D&C with problem scaling

The result obtained above obviously scales very badly with increasing numbers of proces-
sors. However, as demonstrated by Gustaffason et al. [52], the sensible thing to do is to
scale the problem relative to the number of processors. Thus, we develop a theoretical
model based on this premise.

If we scale the problem relative to the number of processors then we can view the
execution on n, = 2P processors as a purely parallel evaluation up to depth p, and a serial
evaluation of np/n, nodes.

In this case the serial execution time is the same as above, but the parallel execution
time is given by:

P P
n
= 2t4logy(n,) + n_D(

T(N) = 2t4logs(ny) + ’;—Dt ;4 2t (’;—D - 1)

ty+ Qtd) — 2tq4 (4.10)
P

so that the speedup is:

g = Qtd(npzl)-l-nptf (4.11)
Qtdlogg(np) + ﬁ(tf + Qtd) — 2ty

If we introduce a scaling ratio:
a = D (4.12)
Ty
np = an, (4.13)
then the speedup becomes:

2tq(an, — 1) + anyts

S 4.14
Qtdlogg(np) + Oe(tf + Qtd) — 2ty ( )
m S — 2tq(amn, — 1)
t;—0 2tgloga(n,) + a2ty — 2t4
np — 1
- M (4.15)

loga(ny) + o —1

Thus by increasing o we can produce a more linear speedup than the simple D&C case
of section 4.7.1. Figure 4.23 shows theoretical speedups for varying «. These results tie
in nicely with the practical results presented in figure 4.21. The case a = 1 is equivalent
to the simple case, given above. It can be seen, therefore, that problem scaling is a good
thing to do with D&C systems, as this yields more efficient speedups.

Note that these are worst case results, in practice ¢y # 0 and therefore the n,t; term
will be significant, increasing the linearity of the speedup.

Intuitively this is the result we would expect; for the case @ = 1 processor utilization
is only at a maximum when nodes at maximum depth are being evaluated. However, if
« > 1 then processor utilization is at a maximum from depth p onwards.

4.7.3 D&C with variable divide time

The tree algorithm presented in section 4.5 processes a context of ever decreasing size.
The algorithm involves looping over each member of the context; so we would expect the
iteration time - the divide time — to decrease as the algorithm progresses. We now analyse
the theoretical speedup expected from systems with this property.
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Figure 4.23: Performance with varying scaling ratio

The diagram shows the theoretical performance improvement from
increasing the relative size of the problem. It demonstrates that if
the number of DEC nodes is only an order of magnitude larger than
the number of processors then performance is significantly increased.

The ratio of DEC nodes to processors is represented by «.

4.7.3.1 Basic algorithm

80

The divide time should vary as 1/ng where ng is the number of nodes at depth d. If we
therefore take ¢y as the maximum divide time, then the actual divide time will be t4/nq.

Thus the serial execution time for this case will be:

T(1)

Dby o D2ly 9

DR i

D(tg+t.) +2Pt;

Qtdlogg(nd) + ngty

—|-2th

(4.16)
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and the parallel execution time will be:

D—1 D—1
T(N) = [

13 te
SRS EY
=0 =0

D-1 1
= 2iq E 5 +t

1=0
o, (1= 1/2P L
\1-1/2 !
= 4td(1— l/nd)+tf (4.17)
So the speedup will be:
S = T(1)/T(N)
Qtdlogg(nd) + ngty

4td(1 — 1/nd) +tf

. B loga(ng)
A0S = S0 1y (4.18)

This is a very poor result, since for large nq the speedup is logz(ng). Thus, as previously,
we must look at variable divide time with problem scaling.

4.7.3.2 Variable divide time with problem scaling

In this instance we can again view the parallel execution as purely parallel up to n, nodes
and then serial for ng/n, nodes, ignoring any ¢y terms at depth n, since they are not
applicable. We note also that the maximum divide time at depth p will be ¢3/n,. Thus:

t n
T(N) = 4t4(1 = 1/n,) +2-Llogy(ng/n,) + =2t
Tp Tp
t
= 4tg(1—1/n,) + Qn—dlogg(a) + aty
2
t
= 2n—d (loga(@) — 2) + 4tg + at; (4.19)
P
The serial execution time is the same as above so the speedup is:
S = T(1)/T(N)
Qtdlogg(‘nd) + ngty
22—1 (loga(e) = 2) + 4tq + aty
2t4logs(an,) + anyts

4.20
22—‘; (loga(er) —2) +4tq + aty (4.20)
lim S = — 2t4logs(an,)
ty—0 Qi(logg(a) —2) + 4ty
_ nplogs(an,) (4.21)

logs(a) — 2+ 2n,
Again increasing « will yield better performance but not nearly as good as that for the

fixed divide time case. In practice the ¢ terms will be significant and performance will be
better.
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4.7.4 Application to the tree implementation

The tree growing implementation presented in section 4.5 is one in which the divide time s
variable. However, the results presented in section 4.6 are considerably better than those
indicated by equation 4.21. This is partially due to the nested implementation but also
must be due to the fact that ¢; # 0 and that there must be some constant element in the
divide time. Presumably this constant element will be less dominant for larger problems
so the effect of increasing the scaling ratio will become less effective for larger problems.
For the largest problem tried:

a = ng/n,
100000/64

64
= 2441

Thus for a fixed divide-time and ¢y = 0 the maximum expected speedup on 64 processors
is:

. 2441 x 64 — 1
lim § =
t;—0 log.64 +24.41 — 1
= 53.09

and for the variable divide time case:
4] 24.41 4
m § — 64logs( x 64)

tps0 logy(24.41) — 2 + 2 x 64
= 5.20

Which is far less than the results actually obtained (figure 4.22). So obviously the variable
divide time effect cannot be particularly significant for this particular problem.

We may conclude then that D&C can provide much better speedups than that pre-
sented by Lewis et al [69], if the problem is scaled relative to the number of processors.
However, we note that variable divide time leads to very poor performance even if the
problem is scaled. Fortunately, few problems will only display properties of variable di-
vide time.

4.8 Summary

We have described some Beeblebrox library classes which yield a degree of programming
convenience. We have also described classes which yield improved parallel performance.
In particular we have demonstrated the performance improvement given by nested D&C
evaluations. We have examined the D&C algorithm theoretically, and demonstrated that
problem scaling and hypercube connectivity increase parallel performance.



Chapter 5

The Kanerva model

Every kingdom divided against itself will be ruined. Maithew 12

So far we have mainly discussed problems that have a direct mapping to D&C, and
with a fairly implementation-oriented perspective. We have seen the limitations of D&C
as far as speedup is concerned and also discussed some improvements performance-wise.
However, our object-oriented environment provides features on which we wish to capitalize.
It is to this that we now turn.

We need to address two fundamental concerns:

e Can we allow an application programmer to statically and, more importantly, dy-
namically manipulate D&C objects to give, transparently, added functionality and
speed?

e Can we ensure such manipulations make efficient use of system resources where
possible?

We start with a problem, for without a real world situation it is difficult to envisage
where potential gains might be made.

5.0.1 Chapter organization

In section 5.1 we discuss the Kanerva sparse, distributed memory model, and in section 5.2
its parallel implementation. In section 5.3 we look at the D&C features required to im-
plement this model using delayed evaluation. In section 5.4 we look at refinements that
can be made to the logical structure of these features, and in section 5.5 we look at refine-
ments that can be made to the evaluation structure of these features. In section 5.6 we
describe how these features can be presented to the programmer in a seamless fashion. In
section 5.7 we look at some automatic partitioning optimizations. Equipped with these
features we then describe the Kanerva implementation in section 5.8. In section 5.9 we
look at the performance figures for this implementation. Finally in section 5.10 we look
at the optimization of expressions constructed using delayed evaluation.

5.1 The Kanerva memory model

Kanerva derived a memory model by considering what form a neural network should take in
order to exhibit the functionality of human memory [64]. He demonstrated that his design
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would have interesting pattern matching properties in a sufficiently large implementation.
Little practical work has been done on this model because Kanerva’s theory predicted that
its most powerful properties would only be exhibited in implementations far too big to be
simulated on serial computers. Kanerva’s model has been subsequently modified to try
and achieve useful results for smaller implementations [85], however his original results
are still superior for the right size of implementation.

5.1.1 Kanerva’s memory theory

The Kanerva model consists of three layers: the input unit layer, the location unit layer
and the output layer. Each location unit has a fixed, random, binary address with the
same characteristics as the input pattern. The locations have outputs described below and
these outputs are connected to the output units by a conventional mesh of links holding
bias values.

In order to store a pattern, each of the location units’ addresses are compared with
the input pattern. If the Hamming distance between the two is less than the activation
radius, then the location is considered to be active and its output is set to 1. If not then
the output is set to 0. The activation radius is a parameter of the model. The desired
output pattern is presented at the outputs and each link from an active location unit to
an output location is examined. If the output is 1 then the corresponding link bias is
incremented by 1. If the output is 0 then the corresponding link bias is decremented by
1. The pattern is then considered stored. More sophisticated approaches to storage have
been found [85], but the simple storage algorithm given above is sufficient for large enough
models.

In order to retrieve a pattern, the active locations are determined as for storage, but
this time the outputs are generated by multiplying the vector of active locations by the
matrix of link biases. The resulting output vector is adjusted so that values greater than
0 are made 1 and values less than or equal to 0 are made 0. See Figure 5.1.

Kanerva showed that large-scale models would be useful for pattern recognition in
corrupt data, because of the properties of binary spaces with many dimensions. For any
point in the space, if the dimensionality n is high, the distribution of the distances to other
points in the space is such that the vast majority are a Hamming distance n/2 away, and
few are closer or more distant than this. For larger n this becomes even more pronounced.
As a consequence of this, the overlap between those locations activated by a pattern and
those activated by a corrupted version of the same pattern is considerable. However, for
the model to be able to store a significant number of patterns and for these patterns to
be retrieved reliably, Kanerva showed that the pattern space needed to be at least 103
bits and the number of location units to be at least 10°. If we desire 1000 outputs this
leads to a storage requirement of roughly 2Gb - generally too large by modern computer
standards. Additionally, finding the Hamming distance between the input pattern and
all the location units is a computationally intensive task requiring 10° operations. These
two features make the Kanerva memory model an attractive proposition for a parallel
implementation.

5.2 Towards a parallel implementation

The first, and possibly most obvious, feature of the Kanerva model is that it is an
algorithm-parallel rather than data-parallel problem. Unlike back-propagation there are
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Figure 5.1: The Kanerva model

The diagram shows schematically the Kanerva memory model. The
input pattern p is compared with the location unils u, and the active
locations a determined. The outputs are then given by the product of
the active locations and the weight matric W, normalized to 0 or 1.
For storage the weight matrix is updated by the product of the desired
oulputs og, normalized to -1 or +1, and the active localions.

not large numbers of training frames needing to be presented to the model, and the model
is not small enough, in its full incarnation, to be accommodated by a single processor.
Thus we are naturally drawn back to reconsider delayed evaluation as an implementing
technology for this algorithm.

The second consideration is also related to size. If a full implementation of the Kan-
erva model is of the order or 2Gb then it is unlikely to fit on a 128Mb transputer array,
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which is the hardware we have available. Instead, we are drawn to a readily available
technology which does have the resources we require, namely that of workstation clusters.
However, in using this technology we must bear in mind the significantly different com-
munication / computation characteristics that modern workstations have to transputers.

5.2.1 Cluster computing

Cluster computing is becoming a common feature of parallel processing systems. Many
parallel processing systems claim to run on clusters of workstations [48], and some par-
allel systems are specifically designed for workstation clusters [41]. Cluster computing is
attractive because of the ready availability of the hardware. Any network of computers is
potentially a parallel machine and cluster computing aims to make it so. TrolliusT™”’ de-
sign is such that a cluster computing implementation is easily achieved and has been done
so in Trollius LAMTM | Tn fact Trollius™ has been designed as a heterogeneous operat-
ing system [16]. Since our D&C system is designed to sit portably on top of Trollius™™
it is a simple matter to use the system on a network of workstations. The only additional
concerns are memory management, and where the network might be heterogeneous in
nature and issues such as byte ordering become a problem.
In the light of this let us look at the equations relevant to the Kanerva model.

5.2.2 Kanerva maths

If we define a function dj(a1,az) which finds the hamming distance between a; and as,
and a mapping function:

map: {v,f} — u WHERFE
u={f(v1),..., fvn)} (5.1)

Then the vector of active locations a is:

a = map(map(u,dp), < rg) (5.2)

where u is the vector of location units, and rj is the activation radius. The weight updates
are then:

AW = (204 — 1)al (5.3)
W = W+AW

the adjustment of oq, the desired outputs, being to -1, 41 rather than 0, 1.
In order to retrieve a value from the model, the outputs o are given by:

o = Wmap(map(u,dy), < r) (5.5)

with o bounded to the range 0,1.

These equations are relatively simple, but the fact we must bear in mind is the size
of the vectors we are dealing with. Because these are so large, we have a very different
problem to that of back propagation. Evaluating these equations will involve a major com-
putational effort, and anything we can do to reduce the level of computation by increasing
the parallelism would be beneficial. In the next section we will examine some features we
can introduce to the Beeblebrox class library to improve the efficiency of problems of this

type.
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5.3 Features

In examining the Kanerva model we are looking at a problem that can be represented
simply in mathematical notation. In adding features to the Beeblebrox system we are
trying to do so in a way that matches the generality of the mathematics, rather than the
specifics of the Kanerva model. However, it is likely that any initial implementation of
these features will contain a certain bias towards the Kanerva model.

5.3.1 Delayed evaluation

Delayed evaluation, as described in section 2.2.3, must form the basis of our parallel imple-
mentation. It is obvious that an implementation that evaluates map functions individually
over a large array is going to be enormously ineflicient. Thus we must ensure that oper-
ation sequences are stored before evaluation. Examining the Kanerva equations, it would
appear that we need objects to represent map, vector multiplication, matrix-vector mul-
tiplication and matrix addition. However, blindly defining these objects takes no account
of the parallel environment in which we are operating. Delayed evaluation seeks to take
advantage of the decomposed state of extant data, but it will only work if the delayed
evaluation objects match this state to the method of evaluation.

For instance, if we multiply two vectors to yield a matrix, it is possible to do this in
two ways. These two ways depend on whether the left or right vectors are distributed
across the processor network, If the left is distributed then the distributed result will be
that of row vectors that need to be concatenated on top of one another. If the right is
distributed, then the distributed result will be that of column vectors which need to be
concatenated next to each other. Either way is possible, except that if the resulting matrix
needs to be added to another distributed matrix, then the partitioning of both must match
if delayed evaluation is to be employed. See figure 5.2. If we then remember that vectors
can be partitioned two ways — partitioned or not at all — and matrices can be partitioned
four ways — column-wise, row-wise, block-wise or not at all — then the number of possible
classes appears to explode to match the possible combinations of these two data types!

5.3.2 Polymorphic operands

As outlined above, the differing partitioning possibilities for D&C objects of the same
HAS-A type could lead to a multitude of operation type classes. These classes would
represent the union of all possible combinations. However, since we are using delayed
evaluation, it is possible to avoid this problem.

D&C delayed evaluation works by recursively calling the D&C primary functions when
a compound object representation has been constructed. Since the operands in delayed
evaluation are made to be polymorphic D&C types, the operation class knows nothing
about the operands it is working on. It only knows their eventual type, which is extracted
using ptr_cast<T>. The whole scheme ensures that operands, which are themselves com-
pound representations, are evaluated before being used. This works to our advantage,
since we can make the classes with differing partitions evaluate to the correct type for
extraction. This means that the original operand can even be a class which does not
actually contain data to start with but in which evaluate() triggers the data’s presence.

This usage relies on the the evaluated types of the operands being correct for the
operation class being used. If this is not the case then ptr_cast<T> will return 0, and, in
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The diagram shows how vector multiplication, matriz addition and
matriz-vector multiplication can be performed consecutively over a
distributed processor network. The shading indicates which proces-
sor each particular data segment resides on. The final results are
distributed vectors which must be added together to achieve a single
vector result.

an ideal world an exception would be thrown. In the real world we check for this condition
at run-time.

5.3.3 Initial object definitions

For now we will provide only those classes that we need for the Kanerva model.

Since calculations involving the location units are the critical factor in this evaluation,
it is this vector that we desire to partition. Thus the vector-vector multiplication in
equations 5.4 will have the right-hand operand partitioned and the resultant matrix will
be partitioned column-wise. The matrix addition in 5.4 must be partitioned column-wise
as well. The matrix-vector multiplication of equation 5.5 must then be of a column-wise
partitioned matrix and a partitioned vector, since the vector results from the location
units. A little thought shows that this is possible, since multiplying a matrix and vector
in this way will result in whole vectors, that simply need to be added together to achieve
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template <class T>
class zSum : public zContainer<T>
{
public:
zSum(const T& t) : zContainer<T>(t) {}
zSum(const Dac& d) : zContainer<T>(d) { }
operator T() const { return T(member); }

protected:
Dac combine(const Dac& r) const
{
return Dac(
new zSum<T>(
member + ptr_cast<zSum<T> >(r)—>member

)
);

Figure 5.3: Beeblebrox combining adder

The figure shows a DEC container class which sums its data mem-
ber in combine(). The result returned from combine() is another
zSum<T> object so that summation will continue recursively.

the correct result. This addition can be simply achieved in the combine phase of D&C.
This scheme is show schematically in figure 5.2.

From this informal analysis we can identify all of the different D&C container class
groups of section 3.5.3.

Equipped with these classes we can then define the classes we really want. We derive
zMatrix<T> and zVector<T> classes from zContainer<T>, zMapf<T> from zEnvelope and
zProductVectorVector<T>,zProductMatrixVector<T> and zSumMatrixMatrix<T> from
zCompound. Any partitioning differences can be met by further deriving the classes derived
from zContainer. In order to fulfil the requirement for the matrix-vector multiplication to
have its distributed results added together, we can arrange for zProductMatrixVector<T>
to change its return argument from evaluate() into a zSum<T>. We derive this class from
a zContainer<T>, but give it a combine function that performs the required addition
(figure 5.3). See figure 5.10 for the class relationships.

The matrix class that zMatrix<T> is based on is reference counted like the zArray<T>
of section 3.5.4. The overall operation is similar to that presented by Birchenall [12],
allowing matrices and sub-matrices to be used interchangeably.

In all these classes the actual functionality involved — the addition, multiplication etc
— is contained in one of the D&C primary functions, usually evaluate(). See figures 5.4-
5.9. We note here that this operation is usually the only place where the type of the
resulting object needs to be known. The resultant type is either hard-wired into the class
definition or is passed as a template formal for an object instantiation. In order to make
our object-oriented strategy as general as possible, we need to think of ways of removing
these dependencies. To this, and other generalizations, we now turn.
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template <class T> class zMatrix : public zContainer<Matrix<T> >

{
public:
zMatrix(const Matrix<T>& m) : zContainer<Matrix<T> >(m) {}
protected:
/*
x Divide a matriz into two vertical strips.
*/
Dac divide(Dac& 1, Dac& r) const
{
1 = make();
r = make();
ptr_cast<zContainer<Matrix<T> > >(1)—init(
Matrix<T>(
member,
0,0,member.rows(),member.cols()/2
)
)i
ptr_cast<zContainer<Matrix<T> > >(r)—init(
Matrix<T> (
member,
0,member.cols()/2,member.rows(),member.cols()-member.cols() /2
)
);
return 0;
}
/*
x Other definitions removed for clarity.
*/
Dac combine(const Dac&) const;
};

Figure 5.4: Beeblebrox matrix class

The figure shows a DEC class for containing matrices. divide() is
defined to generate two sub-matrices split column-wise. It is assumed
that the matriz class has the appropriate functionality for generaling
sub-matrices.
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template <class T> class zVector : public zContainer<Vector<T> >

{
public:
zVector(const Vector<T>& v) : zContainer<Vector<T> >(v) { }
protected:
/*
x Divide a vector up into two halves.
*/
Dac divide(Dac& 1, Dac& r) const {
1 = make();
r = make();
ptr_cast<zVector<T> >(1)—init(
Vector<T>(
member.elems() / 2,
member,
0
)
)i
ptr_cast<zVector<T> >(r)—init(
Vector<T>(
member.elems() - member.elems() / 2,
member,
member.elems() / 2
)
)i
return 0;
}
/*
* Other definitions removed for clarity.

*/

Dac combine(const Dac&) const;
¥

Figure 5.5: Beeblebrox vector class

The figure shows a DEC class for containing vectors. divide() is
defined to generate two sub-vectors splil equally. It is assumed that
the vector class has the appropriate functionality for generating sub-

vectors.
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template <class T, class F> class zMapf : public zEnvelope
{
public:
zMapf(const DacVector<T>& v, const F(«p)(T));
zMapf(const DacVector<T>& v, const F(+p)(T,T), T a);

protected:
/*

* map over the vector applying the function pfuv.
*/

Dac zMapf< T ,F>::evaluate() const

if (largs) {
return Dac(
new zVector<F>(
mapf(
ptr_cast<zVector<T> >( e_letter.evaluate() )—data(),
(F(+)(T)))pi,
Resolve<F>()

)

} else {
return Dac(
new zVector<F>(
mapf(
ptr_cast<zVector<T> >( eletter.evaluate() )—data(),
(F(+)(T,T)))ptv,
argl,
Resolve<F>()

)

}

void (*pfv)(); // Function to call
T argl; // First argument to function

unsigned short args; // Number of function arguments

I3

Figure 5.6: Beeblebrox vector mapping class class

The figure shows a DEC class for applying a function to consecutive
elements of a vector. The class is initialized with a pointer to the
appropriate function, and the mapping occurs in evaluate(). Note
that the class is paramelerized over the arqgument vector type and the
return vector type. If these types differ then the overloaded function
map () is resolved by the dummy class Resolve<F>.
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template <class T> class zProductVectorVector : public zCompound

{
public:
zProductVectorVector(const Dac& 1, const Dac& r) : zCompound(l,r) { }
protected:
Dac evaluate() const
{
return Dac ( // Multiply two vectors together.
new zMatrix<T>(
ptr_cast<zContainer< Vector<T> > >(left.evaluate())—data()
*
~(ptr_cast<zContainer<Vector<T> > >(right.evaluate())—data())
)
);
}
};

Figure 5.7: Beeblebrox vector multiplication class

The figure shows a DEC class for multiplying two vectors together.
The actual multiplication occurs in evaluate(). Nole that the con-
tained data members are evaluated before the multiplication.

5.4 Generalizing the class relationships

In considering how we can generalize the D&C class relationships, we must address two
competing issues.

The strongly typed language we are using tends to force us to make types explicit. This
is good in one sense because we benefit from the type checking facilities of the language
compiler. The problem is that explicit types lead to an explosion of classes when we use
them in a delayed evaluation structure (see section 5.3). We can overcome this explosion
from a programing point-of-view by extensive use of parameterized types. However, this
does not solve the problem, it merely shifts the onus from programmer to compiler. The
multitude of classes still exist, except that they are now generated at compile time. To
a certain extent we are prepared to accept this: any lessening of programmer burden is
a step in the right direction. However, the over use of templates tends to result in very
large executable sizes and long compilation times, which may, or may not, be acceptable.

Another related problem is of concern. The D&C interface and hierarchy has been
designed to allow class functionality to be ‘mixed-in’ to class definitions. Where the
resultant class is going to be used many times, this method is entirely acceptable. However,
if the resultant class is only going to be used once or twice, we are again creating classes
we would like to avoid. We have discussed mix-in templates in section 4.2.1, but this again
only alleviates programmer burden.

To address these problems we introduce some new concepts.

5.4.1 Evaluation manipulation classes

Often in defining D&C classes we wish to make one of the primary functions, usually
evaluate(), return a D&C object that is of a different type to the evaluating object. The
example we have encountered thus far is that of matrix-vector multiplication involving the
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template <class T> class zSum : public zContainer<T>

{

public:
zSum(const T& t) : zContainer<T>(t) {}

protected:
Dac combine(const Dac& r) const

{

return Dac( // Add two operands together.
new zSum<T>(

member + ptr_cast<zSum<T> >(r)—>member

)
);

¥

template <class T> class zProductMatrixVector : public zCompound

{

public:
zProductMatrixVector(const Dac& 1, const Dac& r) : zCompound(l,r) { }

protected:
Dac evaluate() const

{

return Dac (
new zSum< Vector<T> >(

ptr_cast<zContainer<Matrix<T> > >(left.evaluate())—data()
*

ptr_cast<zContainer< Vector<T> > >(right.evaluate())—data()

)

// Multiply a matriz and a vector.

);

Figure 5.8: Beeblebrox matrix-vector multiplication class

The figure shows a DEC class for multiplying a matriz and vector

together. The same considerations apply as for vector-vector multi-
plication.
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template <class T> class zSumMatrixMatrix : public zCompound

{
public:
zSumMatrixMatrix(const Dac& 1, const Dac& r) : zCompound(l,r) { }
protected:
Dac evaluate() const
{
return Dac ( // Add two matrices together.
new zMatrix<T>(
ptr_cast<zContainer<Matrix<T> > >(left.evaluate())—data()
_I_
ptr_cast<zContainer<Matrix<T> > >(right.evaluate())—data()
)
);
}
};

Figure 5.9: Beeblebrox matrix addition class

The figure shows a DEC class for multiplying two matrices together.
The same considerations apply as for vector-vector multiplication.

summation of distributed vectors. In this example evaluate() generates a Vector<T>
which it then converts to a zSum<T> so that the proper combination takes place.

The problem is that there are many overall operations which involve different combi-
nations of the operation performed in evaluate() and the type evaluate() returns. For
instance, take the example of multiplying a vector by a transposed vector. If both vectors
are distributed then summing the partial results will achieve the desired result. However,
if the partial results are concatenated then the result will be element-wise multiplication.
In these two cases the operation performed on the vector operands is multiplication, it is
only the return type that is changed. In the former case the return type is a zSum<T>, in
the latter a straight zVector<T>. Ideally, we don’t want to have to define two separate
classes to perform these operations. Instead we use evaluation manipulation objects.

Evaluation manipulation classes are simply zEnvelopes. The only difference is that
evaluate() is defined to convert the returned object of its letter’s evaluate() to a given
type. Furthermore, we can make these classes more general by defining a single parame-
terized class. Thus the type that the result of evaluate() is converted to is that of the
formal parameter of the manipulator. See figure 5.11.

Evaluation manipulators can also be used to change the resulting partition of a D&C
object. We have to remember that D&C operator classes have no knowledge of the types
of their operands. They only know the evaluated type, and the evaluated type contains
no partitioning information as it has been lost during the execution of evaluate(). Thus,
in the zSumMatrixMatrix<T> class, figure 5.9, we have assumed that zMatrix<T> has
the same partition as its operands. So far this assumption is correct, since we have
defined all zMatrix<T>s to be partitioned column-wise. However, we can partition matrices
other ways, and if we do then our assumption is no longer valid. We could define a
zSumVerticalMatrixMatrix<T>, but this again results in more classes than we would like.
Instead, we let the zSumMatrixMatrix<T> be wrapped up in an evaluation manipulator,
and require the user of the class to provide a manipulator of the right type.
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Figure 5.10: Initial D&C classes

The diagram shows the hierarchy of classes introduced so far. The
diagram uses Booch’s notation.

In the particular case above, it is difficult to see how the desired affect could have
been achieved with mix-ins, thus highlighting the usefulness of this class. This is because
we are not choosing between different evaluate()s, but are rather trying to combine two
different evaluate()s to achieve a whole.

5.4.2 Generic templates

In examining evaluation manipulators we have introduced the idea of making operand
types be the formal parameters of a parameterized type. We can extend this idea further
to the classes we have already described, by making their operand types template formals,
rather than hardwired matrices or vectors. Thus zSumMatrixMatrix<T>, for example,
becomes zSumOpTemplate<T1,T2>, the two template formals T1 and T2 being Matrix<T>s
in this case. See figure 5.12.

We can use this idea for multiplication as well, replacing zProdMatrixVector<T> with
zProdOpTemplate<T1,T2> and using zEvaluateTemplate<T> to modify evaluate()’s re-
turn type to a zSum<Vector<T>>. This particular example throws up another issue that
has already surreptitiously been answered. The problem is this: what is the evaluated
return type of the zProdOpTemplate<T1,T2>? Unlike addition, the return type can be
that of either, or neither, of the operands. Matrix-vector multiplication returns a ma-
trix, vector-transpose vector multiplication returns a scalar, transpose vector-vector mul-
tiplication returns a matrix. We have to know the return type in order to encapsulate
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template <class T> class zEvaluateTemplate : public zEnvelope {

public:
zEvaluateTemplate(const Dac& d) : zEnvelope(d) {}

Dac evaluate() const
// Formal parameter is a D&C class

{
}

return Dac( new T(eletter.evaluate()) );

I3

Figure 5.11: Evaluation manipulator

The figure shows a DEC class for evaluation manipulation.
evaluate() is defined to return an object of the type of
zEvaluateTemplate<T>’s formal parameter. Note that the conlained
object is evaluated before being converted into the formal parameter

type.

template <class L, class R>
class zSumOpTemplate : public zCompound {

public:
zSumOpTemplate(const Dac& 1, const Dac& r) : zCompound(l,r) { }

protected:
Dac evaluate() const

{
/*

* add and containerize letters

*/
return Container (
ptr_cast<zContainer<L> >( left.evaluate() )—data()

+
ptr_cast<zContainer<R> >( right.evaluate() )—data()

);

Figure 5.12: General operand summation template

The figure shows a DEC class that generalizes some of the operation
classes introduced so far. The formal parameters of the class, L and
R, are the types of the operands to be added together. The actual

addition is performed in evaluate().
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the evaluated object in an appropriately typed D&C object. Or do we? In figure 3.19
there is a template function, Container(), defined. By using a template function we
can make the compiler match the type of the function’s parameter to the zContainer<T>
we require. The type of container required is fixed by the return type of the operation
in question. The function can then return this, correctly typed, object. By using this
function to construct zContainer<T>s we can avoid having to put explicit typing in the
zProdOpTemplate<T1,T2> [31].

5.4.3 Type field operation classes

So far we have managed to reduce our original plethora of classes to fewer parameterized
classes. We can reduce the number still further by introducing type-fields for some common
operators. This means that the number of instantiated classes is not dependent on the
number of operators. Instead it is simply dependent on the number of different types
being used for delayed evaluation.

The key to this is introducing an enumerated type representing different operations:
Mult for operator#*, Plus for operator+ and so on. Then, for given argument types,
we can have one class representing all infix operations. At run-time we choose between
the different possibilities using a switch statement. This necessarily introduces additional
overhead, but greatly simplifies our class structure. In transmission, the operator type of
the object is transmitted as well as the object and its arguments.

Since most operand type checking will be performed by an outer wrapper class (see
section 5.6), the type-checking we lose through the use of type fields is not significant.
Although it is possible for there to be run-time errors if the wrapper class has not done
its job properly.

The last thing we must note is that this simplification cannot be made without the
use of evaluation manipulators. Although some operations could be implemented without
evaluation manipulators — simple additions etc — the number would be so few as to achieve
little real reduction in class numbers. With evaluation manipulators however we can
encapsulate all operations in a single class. See figure 5.13.

5.4.4 Polymorphic evaluation manipulators

In the previous sections we used evaluation manipulators to reduce the number of class def-
initions; whether programmed or automatically instantiated from parameterized classes.
However, zEvaluateTemplate<T> is parameterized itself, thus every different use of it
introduces a new instantiation. This is acceptable from a time perspective but not neces-
sarily so from a space perspective. Thus we introduce a new type of evaluation manipulator
that is truly polymorphic and needs only a single class definition.

In order to implement this class we use the ideas of classless languages such as Self
[106]. Instead of an evaluation manipulator containing a template formal which defines
the type of object we are going to build, the class contains an actual object of the type
we require. From this object we clone objects as needed. In order to be truly polymor-
phic, and therefore typeless, the type of the object member is simply a Dac. This means
that the underlying type can be anything at all, without the need for additional classes.
Initialization can be carried out by making the clone function, which has to be virtual
anyway, accept an argument of type Dac. It is then up to the cloning object to use this
argument in an appropriate way. Since the cloning object is never actually used itself, it
can be reference counted in divide() et al. rather than duplicated. See figure 5.14.
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template <class L., class R>
class zOpTemplate : public zCompound {
public:
zOpTemplate(const Dac& 1, const Dac& r, const Operation o)
: zCompound(l,r), op(o) { }

protected:
int op; // type of operation
Dac evaluate() const
{
/*
x operate on and containerize letters
*/
Dac | = left.evaluate();
Dac r = right.evaluate();

Dac x;

switch (Operation(op)) {
case Plus:
x = Container ( ptr_cast<zContainer<L> >(1)—data()
+ ptr_cast<zContainer<R> >(r)—data());
break;
case Minus:
x = Container ( ptr_cast<zContainer<L> >(1)—data()
- ptr_cast<zContainer<R> >(r)—data());
break;
case Mult:
x = Container ( ptr_cast<zContainer<L> >(1)—data()
* ptr_cast<zContainer<R> >(r)—data());
break;
case PlusEq:
x = Container ( ptr_cast<zContainer<L> >(1)—member
+= ptr_cast<zContainer<R> >(r)—data() );
break;
case MinusEq:
x = Container ( ptr_cast<zContainer<L> >(1)—member
-= ptr_cast<zContainer<R> >(r)—data() );
break;
case MultEq:
x = Container ( ptr_cast<zContainer<L> >(1)—member
* = ptr_cast<zContainer<R> >(r)—data() );
break;
default:;

}

return x;

Figure 5.13: Type field operator template

The figure shows a DEC class for performing various binary opera-
tions on two DEC objects. The operands are held in the zCompound
which z0pTemplate<L,R> inherits from. The formal parameters of
the class are the actual types of the operands. Which operation is
performed is determined by the type field op. Note that the returned
objects are encapsulated using the Container () templale function,
so that the correct return type is selected.
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class zEvaluateWrap : public zEnvelope

{

public:
zEvaluateWrap(const Dac& w, const Dac& d) : zEnvelope(d), wrapper(w) { }

protected:
Dac wrapper;
Dac evaluate() const

{
}

return wrapper.make_copy( zEnvelope::evaluate() );

I3

Figure 5.14: Polymorphic evaluation manipulator

The figure shows the polymorphic equivalent of
zEvaluateTemplate<T>. Fach object of the class contains a DEC
object, wrapper, into which the return value of evaluate() is put.
It is assumed that all DEC classes which will be used as wrappers
have the virtual member function make _copy() defined.

Two caveats apply to this class. The first is that the cloning function fattens the
interface of the base D&C class Dac. The second is that carrying a real object around
creates additional overhead in transmission. Since cloning with a generic D&C argument
is likely to be a more generally useful function, the former is not a particular hardship.
The latter means that careful consideration should be given by the programmer as to what
type of evaluation manipulator best suits his needs.

This type of manipulation is similar to the dynamic mix-ins of section 4.2.3

5.5 Evaluation optimizations

Thus far we have considered what can be termed programming optimizations. Since we are
also, and perhaps primarily, concerned with raw performance it would be good if we could
provide some classes that implement run-time optimizations. Once again, we will use the
Kanerva model as our trial example and try and extrapolate possible enhancements from
the possibilities within this example.

5.5.1 Persistence

The first thing we note is that currently, Kanerva storage and retrieval constitute two
different operations both of which require a separate D&C pass. We note also that for
both operations the data (location units and weights matrix) is partitioned the same way.
This is also true for different storage and retrieval operations. In fact both operations
can be carried out with the data distribution being fixed. However, our current D&C
implementation requires that the data be divided, broadcast and retrieved for each D&C
pass. This is clearly ludicrous, in terms of performance, since we would be needlessly
transmitting large amounts of data. What is really needed is for the data to be locally
cached between operations so that the only transmission necessary is that of a new input
pattern.
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class zPersistent : public zEnvelope {
protected:
enum State { Real, Virtual, Flush };

public:
zPersistent(const Dac& d)

: zEnvelope(d), p-obj(p_key++), p_state(Real), p_fixed(false) {}

void real() { p-state = Real; }
void flush() { p_state = Flush; }

protected:
unsigned int p_obj;
short p_state;
short p_fixed;
static unsigned int p_key;
static HashList<Dac>x* p_list;

Dac divide(Dac& 1, Dac& r) const

if (node()==1 && p_state # Flush) {
if ('plist—empty()) {
if (Dac::schd—fix()) {
((zPersistent*)this)—p_fixed = true;

}
if (pdist—search((p-obj<24)+node()) # 0) {
((zPersistent*)this)—p_state = Virtual;

else {
p-list—insert((p-obj<24)+node(), *this);
}

zEnvelope::divide(l,r);

return 0;

}

Dac evaluate() const

{

Dac r;

/*

x If it’s real, evaluate and cache it. If it’s not read the cache.

* Then flush the object if required.
*/
if (p_state == Real) {
r = eletter.evaluate();
p-list—insert((p-obj<«24)+node(), r);

else {
if ((r = p_list—search((p-obj<24)+node())) == 0) {
error(__FILE___LINE_) € "cache miss" < fatal,
}

if (p_state == Flush) {
p-ist—delete_item((p_obj<24)+node());
}

}

return r;

// current object id
// list of cached Dac’s

Figure 5.15: Persistent beeblebrox class
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const Dac& persist(Dac& d)

{
if (ptr_cast<zPersistent>(d)) {
ptr_cast <zPersistent>(d)—real();
} else {
d = Dac( new zPersistent(d) ) ;
}
return d;
}
const Dac& flush(Dac& d)
{
if (ptr_cast<zPersistent>(d))
ptr_cast<zPersistent>(d)—flush();
return d;
}

Figure 5.16: Persistent object manipulators

The figure shows two functions for making DEC objects persistent
and transient.

The previous figure shows a DEC class for making DEC objects per-
sistent. Objects that are designated persistent are entered into the
hash table p_1ist in evaluate(), unless they are already there in
which case they are retrieved. The first pass through divide() reg-
isters objects that will be persistent and manipulates the state of the
scheduler.

How can we implement this in a transparent fashion?

We make the assumption that data will not be required until evaluate() is executed.
If this assumption is incorrect then caching data will not gain anything anyway, as data will
not necessarily have been distributed. We define a zEnvelope class for which evaluate()
consults its cache for the letter and if found returns that. If the zEvaluate object cannot
get a cache hit then it returns evaluate() of its letter and caches the return value.

This implementation strategy is essentially giving D&C objects the ability to be per-
sistent [13, p190]. The envelope approach we have adopted means that the letter object
need not have any knowledge about persistent objects at all. It is only the envelope that
has that knowledge. Of course these persistent objects need to be created in the first
place and it is here that the programmer can give hints as to which objects need to be
persistent. We can do this by providing a function persist(Dac&) which takes its D&C
argument, and replaces the letter (remember Dac objects themselves are envelope classes)
with a persistent zEnvelope letter, which itself has the original letter as its letter. See
figures 5.15 and 5.16.

Ideally we would like the system to automatically make objects persistent as required.
However, this would probably entail structure inferences which only a compiler could
provide, and thus would draw us away from our “no-new-compiler” philosophy. One
possibility is to cache all objects and then discard objects that haven’t been referenced
for a while'. The only problem with this is that the cache needs to be big enough to

!Like a LRU cache
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hold all objects from a single D&C pass. The resultant space overhead might well prove
unacceptable.

5.5.1.1 Temporary persistence

If we were to do a Kanerva retrieval immediately after a Kanerva storage then we note
that the vector of active locations is the same for both operations. In this instance it
would be natural to make this particular object persist between the two operations. This
is perfectly feasible with the implementation given above, but what of the cached objects
once we have used them? Really we need to be able to flush objects on their final, fixed
usage. To do this we provide another function flush(Dac&) which causes its argument to
be retrieved from cache when evaluate()ed, however, the object is subsequently removed
from the cache.

Again, it would be good to devise some policy which made this happen automatically.

5.5.1.2 Recording the schedule

In order to implement persistent objects, we need to be able to guarantee that the processor
that data has been cached on is the processor from which the same data will be retrieved.
Obviously, having a dynamic schedule will not provide this guarantee and it is therefore
necessary to fix the schedule after it has been played through once. Rather like a cassette
tape, we need to record what originally happened and then playback the recording for
subsequent schedules. At first sight it would appear that all that is necessary is to record
the order and processor to which data was sent. However, a little thought shows that this
is not sufficient. Although we can guarantee that data is going to the right destination,
we cannot guarantee that it is the right data that is being sent. The data that is sent is
that at the bottom of the evaluation stack, and the node at this location is dependent on
how far the evaluation has progressed. Thus we need to ensure that the correct data is
sent. This can be achieved by labelling each node in level-order and recording each object
that is sent and received. Then, when the schedule has been recorded, worker nodes will
only request the correct data item, and the scheduler will only release the data it has to
the correct node.
Two more issues need to be addressed:

e We need to prevent the evaluator from evaluating nodes that the scheduler is going to
need at a later time. We can achieve this by setting a ‘high-water’ mark in the stack,
indicating the ‘lowest’ node that the scheduler evaluated first time around. In any
independent evaluation?, this position will be the first node that the evaluator will try
that is needed by the scheduler — by virtue of the level-order numbering and depth-
first evaluation employed. Thus, if we prevent the evaluator from using this node,
all the others required by the scheduler in that evaluation will be safe. However,
this does not go far enough for processors that are not the origin —i.e. most. These
processors will process many independent evaluations during the course of recording,
and thus a high-water mark must be set for each object that is evaluated. In order
to do this, we need to record the last scheduled output for any evaluation — to use in
setting the high-water mark — as well as recording the scheduled outputs themselves.

2The cycle of receiving an object, evaluating it and returning it to the sender.
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e We need to determine when the scheduler switches from recording to playback. For
the root processor this is trivial, the switch can be made when the persistent objects
switch from storage to retrieval. For worker processors this is not so straightforward.
These processors have no knowledge of the ‘state’ of the machine, they simply take
nodes and evaluate them. Thus, we need to build into the scheduler some checking
of whether the node being evaluated is persistent and then whether it is cached or
not. The switch from recording to playback can be made to logically mirror this
information. This is slightly complicated by the fact that a worker processor cannot
know to switch until it actually has the first node in the playback. Thus, the first
request in the playback must be for any node, putting the onus on the scheduler to
ensure that the correct node is sent.

In fact, in practical implementations it was found that broadcasting the switch to
worker processes, from recording to playback, achieved far more reliable results.

5.5.2 Delayed assignment

We now have a system that enables us to avoid unnecessary broadcasts of information.
However, a major problem remains: cached D&C objects still need to be initialized on the
root processor. If our Kanerva model is very big then the space overhead that this incurs
will prove debilitating.

The assumptions we made in the previous section, about where cached data would
be used, are still valid for data initialization. We only need to access the data during
evaluate(), after the data has been distributed. So, the question we must now ask is:
how is the data initialized. There are three possibilities:

e initialized to zero,
e initialized with random data, or
e initialized from a data file.

The Kanerva model actually fits the second case since the location units are initialized
with random data. For each of these cases we can define a class that virtually represents
the data, and structure, of the object we require in evaluate(). These classes need not
contain any data at all — and so will incur negligible space overhead — but merely contain a
definition of how to realize the data when required. For zero or random initializations the
implementation is simple. For initializations from a file the situation is slightly complicated
by the need to track the position in the file from which the data will come. The whole
process can be concealed behind the initialization of zMatrix<T>s etc. We will term this
technique delayed assignment; see figure 5.17.

5.5.2.1 Back-propagation with delayed assignment

This technique is potentially very useful on hardware with limited space resources. Thus,
we can try the back-propagation experiments described in section 2.4 with even larger
numbers of training frames. Figure 5.18 compares the various options for 1024 training
frames.

Examining the results we can see one factor dominates all the results, and that is
whether data is obtained from file or generated on-line. If data is generated on-line then we
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TEMPL class zDelayMatrix : public zNull {
public:

zDelayMatrix(const charx fn) : d_type(fn) {
ifstream f(fn);
if (f.good()) error() < "open: " K fn K fatal,
f > d_rows > d_cols;

}

zDelayMatrix(int r, int ¢, const abstractType& a)
: zNull(), d_type(a), d_rows(r), d_cols(c) {}

zDelayMatrix(int r=0, int ¢=0) : zNull(), d_rows(r), d_cols(c), d_type() {}

protected:
Dac evaluate() const {
/*
* make the virtual data into real data and return it.
*/

Matrix<T> m;

if (d-type.id() == abstractType::random) {
m = Matrix<T>(d_rows, d_cols);
m = d_type;

else if (d_type.id() == abstractType::file) {
ifstream f(d_type.rep—a_file.name); int i; T t;
if ('f.good())
error() € "open: " K d_type.rep—a_filename < fatal;
f>i>i // get the size
for (i=0; i<d_type.a_pos; i++) f > t; // skip uneeded data
m = Matrix<T>(f, d_rows, d_cols);

}

else m = Matrix<T>(d_rows, d_cols);

return Dac( new zContainer<Matrix<T> >(m) );

}

Dac divide(Dac& 1, Dac& r) const {
/*
x divide the virtual data into two parts
*/
1 = make(); r = make();

zDelayMatrix<T> #ld = ptr_cast<zDelayMatrix<T> >(1);
zDelayMatrix<T> #rd = ptr_cast<zDelayMatrix<T> >(r);

ld—init(d_rows, d_cols/2); rd—init(d_rows, d_cols - d_cols/2);

if (d_type.id()==abstract Type::random) {
ld—d_type.seed=d_type.seed<1;
rd—d-type.seed=(d-type.seed<1) +1;

else if (d_type.id()==abstract Type::file) {
Id—d_type.a_pos=d_type.a_pos;
rd—d_type.a_pos=d_type.a_pos+(d_rows * d_cols/2);

}

return 0;

}

int d_rows, d_cols;

abstractType d_type;

void init(const int r, const int ¢, const int s=0) {
d_rows = r; d_cols = c; if (s) d_type.seed = s;

}

I3

Figure 5.17: Delayed assignment matrix class
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Figure 5.18: Results for different types of D&C back-propagation

The diagram shows the performance figures for different implemen-
tations, with different partitions, of DE&EC back-propagation. The
speedup is given by T(N)/T(1)pest where T(1)pest is the time on 1
processor for a standard, fast, implementation.

obtain a nearly optimal speedup curve. If the data is obtained from file then performance
is very poor indeed. These experiments were carried out on a transputer farm and it is
obvious that the I /O hardware employed must be fairly poor. However, this factor aside
we can still gain some insight into the relative performance of delayed assignment.

Partition | 256 | 512 | 1024 | 2048
Speedup | 0.72 | 1.43 | 1.22 | 0.90

Table 5.1: Delayed assignment for 8192 training frames on 8 processors

We observe that for small partitions performance is extremely poor. We surmise that
this is because for every task, on average half the data file has to be scanned. If the
number of tasks is large then this overhead is going to be large also. If we increase the
partition then performance begins to approach that of normal assignment. Of course the
real advantage is in evaluating very large problems, and a problem 8 times the size of
the maximum achieved with normal assignment, was successfully evaluated using delayed
assignment. The results are shown in table 5.1 assuming that the serial execution is going
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to be 8 times that for 1024 frames. The results show that it is no worse than the results
for lower numbers of frames, although overall performance is very poor. We envisage
using a binary file format making some difference, but better overall 1 /O is what is really
required.

5.5.3 Distributed assignment

We have now considered the cases of: delaying assignment till distribution, and caching
data that is only going to be accessed when distributed. We have one further case to con-
sider. If the data is initialized when distributed and updated from cache when distributed,
then there will be circumstances when the result need never be returned. For instance if
we invoke operator+= on distributed matrices then the assignment can be performed in
place. If we have no need for the result, apart from for the next distributed operation,
then we can wrap the result in an evaluation manipulator that simply returns zNull. In
this way we can save on yet more needless communication. operator+= and others can
easily be defined in z0pTemplate<L,R>,

Of course, if we do then need an undistributed result we must retrieve the distributed
results. This can simply be achieved by re-evaluating the delayed matrix wrapped in an
evaluation manipulator that defines concatenation of distributed results.

5.5.4 Summary

/ zEvaluate- °
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Figure 5.19: Delayed evaluation D&C classes

The diagram shows the hierarchy of delayed evaluation classes intro-
duced in this chapter. The diagram uses Booch’s notation .

We have described may different types of D&C letter classes. These classes provide
programming and evaluation convenience and efficiency. Each class is highly modular
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having no dependency upon classes to which it has no logical relation. Even classes which
have logical relationships are logically distinct. General manipulation type classes have
no impact, performance or compilation-wise, on a program unless they are actually used.
Objects which are modified by these classes have no knowledge that this is the case;
encapsulation is maintained. That this is the case is attributable to the overall design of
the D&C system, and the object-oriented environment.

The class hierarchy of classes described so far in this chapter is shown in figure 5.19.

5.6 Managing the evaluation classes

So far we have described various delayed evaluation classes; classes to make a programmer’s
life easier and classes to achieve better run-time performance. All of these classes are
concerned with D&C evaluation, however, none of them provide any of the characteristic
functionality of the structures they represent. There is no public operator+ defined for
zMatrix<T>s. This is because each class is a lelter type class derived from DacRep. Each
is derived directly or indirectly from DacRep and none are for direct manipulation by an
end-user. As we have intimated in section 5.4.3, it is the envelope class Dac that provides
the manipulation functionality. We now turn to the definition of this type of class when
applied to algebraic operations.

5.6.1 General management

As the management classes we require must be wrappers, it is logical that they be derived
from Dac. If they are defined in this way then their default operation will be as for normal
wrappers. Any further functionality can be added as required.

One characteristic of these wrappers, whatever the types they are managing, is that
operator= invokes Dac::run(). This is in keeping with how delayed evaluation is sup-
posed to work. Since we may wish to assign objects without evaluating them, we will also
define operator<< as an insertion operator working to this effect.

Most other operators are specific to the representation type — matrices, vectors etc —
and it is to these that we will now turn.

5.6.2 Managing matrices

In this section we describe in detail the implementation of operators that we require
for matrices in the Kanerva model. These operations are defined for DacMatrix<T>, an
envelope derived from Dac.

5.6.2.1 Initialization and instantiation

The first thing we need to be able to do with DacMatrix<T>s is to instantiate them.
Thus, we define a constructor that takes a real Matrix<T> as an argument and builds a
zMatrix<T> from it. We also wish to be able to define zDelayMatrix<T>s of arbitrary
dimensions, and so we provide a constructor that creates a zDelayMatrix<T> from row
and column arguments.

Having the ability to create zDelayMatrix<T>s is good, but we also need to be able
to initialize the structure with zero, random or file arguments. To do this we define an
operator= that takes an abstractType as an argument. However, we must remember
that this operator has no knowledge about the actual type of the object it represents.
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template <class T> class DacMatrix : public Dac {
public:
DacMatrix() : Dac() { }
DacMatrix(const Matrix<T>& m) : Dac( new zMatrix<T>(m) ) { }
DacMatrix(const int r, const int c)
: Dac( new zDelayMatrix<T>(r,c) ), transposed(false) { }
const abstract Type& operator= (const abstract Type& a)

{
/*
* of its a delay vector then we can change its initialisation spec.
*/
if (ptr-_cast<zDelayMatrix<T> >(*this)) {
ptr_cast<zDelayMatrix<T> >(xthis)—init(a);
/*
* of its not then we’ll try to assign to it anyway
*/
else if (ptr_cast<Container_t>(*this)) {
ptr_cast<Container_t>(*this)—member = a;
else {
error() € "parse error: DacMatrix = abstractType" K fatal;
}
return a;
}
b

Figure 5.20: Initialization and instantiation of D&C matrices

The figure shows how a DEC matriz wrapper class can be initialized
with matriz type parameters. A zDelayMatrix<T> is used if possible,
otherwise a zMatrix<T> is used. Note that the class is derived from
a Dac so that all Dac-type functions will work for objects of this type.

Therefore we must check to see if its type really is a zDelayMatrix<T> before assigning
to it. If it is not, then there is a possibility it is simply a container in which case we can
initialize that instead. See figure 5.20.

5.6.2.2 Simple operations

We now need the ability to perform simple operations on DacMatrix<T>s using zOpTemplate<L,R>.
By simple, we refer to operations where the operand types and return type are the same

as the object type. For these cases we do not need to do any special processing with
evaluation manipulators, we simply need to make sure that the evaluate()ed partition

is consistent with the divide()ed partition.

We can do this quite simply by making the infix operators for DacMatrix<T>s create
z0pTemplate<Matrix<T>,Matrix<T>>s. We wrap this object in an evaluation manipula-
tor which turns the zContainer<Matrix<T>> return type back into a zMatrix<T>. We
also must check for the possibility of zPersistent objects. If the object in question is
persistent then we can make the evaluation manipulator return zNull. Figure 5.21 shows
this functionality and also demonstrates the use of polymorphic evaluation manipulators
for the persistent case.
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template <class T> class DacMatrix : public Dac {
const DacMatrix<T>& operator+=(const DacMatrix<T>& d)
{ return op_eq(d,PlusEq); }
const DacMatrix<T>& operator-=(const DacMatrix<T>& d)
{ return op_eq(d,MinusEq); }
DacMatrix<T> operator- (const DacMatrix<T>& d) const
{ return DacMatrix<T>( op(d,Minus) ); }
DacMatrix<T> operator+ (const DacMatrix<T>& d) const
{ return DacMatrix<T>( op(d,Plus) ); }

DacRep# op(const DacMatrix<T>& d, const Operation o) const
DacMatrix<T> l=xthis,r=d;

DacRep *p;
if (ptr_cast<zPersistent>(*this)) {
/*
* stop anything coming back for a delayed matriz
*/
p = new zEvaluateWrap(
Dac( new zNull ),
Dac(
new zOpTemplate<Matrix<T> ,Matrix<T> >(1,r,0)
)
} else {
p = new zEvaluateTemplate<zMatrix<T> > (
Dac(
new zOpTemplate<Matrix<T> ,Matrix<T> >(1,r,0)
)
)i
}

return p;

}

const DacMatrix<T>& op_eq(const DacMatrix<T>& d, const Operation o)
{
Dac x( op(d,o0) );

x = x.run();

if (! ptr_cast<zPersistent>(*this) ) {
if ( ptr_cast<Container_t>(x) ) {
xlate(
new zMatrix<T>(
ptr_cast<zContainer<Matrix<T> > >(x)—data()
)
} else {

error() € "result was not a container" K fatal;
}

return xthis;

Figure 5.21: Simple operations on D&C matrix objects

The figure shows how the malriz wrapper can be used to construct
binary operation objects. Note the use of evaluation templates to
modify distributed return types.
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Operators that perform an assignment as well should simply fit within this framework.
The only difference in operation is that the result is swapped for the envelope’s current
letter.

5.6.2.3 Other operations

For the Kanerva model, the only other operation we really need for matrices is vector
multiplication. This can quite easily be achieved by using a zSum<Vector<T>> evaluation
manipulator, described previously. The actual operation can be implemented using a
z0pTemplate<Matrix<T>,Vector<T>> for multiplication. See figure 5.22.

template <class T>
DacVector<T> DacMatrix<T>::operatorx (const DacVector<T>& v) const

{
return DacVector<T> (
new zEvaluateTemplate< zSum< Vector<T> > >(
Dac(
new zOpTemplate<Matrix<T>,Vector<T> >(*this,v,Mult)
)
)
);
}

Figure 5.22: Matrix-vector multiplication

The figure shows the implementation of a matriz wrapper multipli-
cation operator. A z0pTemplate<L,R> is conslrucled, and ils dis-
tributed return type is modified by an evaluation template so that
resulling vectors are added together.

5.6.3 Managing vectors

Most vector operations are implemented in an almost identical fashion to matrix opera-
tions. We will therefore not discuss their implementation here.

One operation we will mention though, is that of mapping over vector elements. Since
mapf (<DacVector>, <fn>) is perhaps a more intuitive usage than <DacVector>.mapf (<fn>),
we will provide global template functions to achieve this functionality. These functions
simply create zMapf<T,F>s. evaluate() for zMapf<T,F>s returns a zVector<T> anyway
so nothing more is required. See figure 5.23.

Note that we could argue that evaluate() should simply return a zContainer<Vector<T>>
and then require an evaluation manipulator to arrange the right type for reconstruction.
Two considerations make this approach less appealing. The first is that vectors, un-
like matrices, will only ever be in one distributed, partitioned state. Thus assuming, in
zMapf<T,F>, that the partitioned state is going to be constant is reasonable. The second
consideration is that a zVector<T> has a zContainer<Vector<T>> as a base class. Thus,
if we wish to manipulate the evaluation return type, casting to a container will still work.

In describing zMapf<T,F>s we have neglected an important topic; that of function
portability. The next section will address this issue.
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template <class T> DacVector<T> mapf(const DacVector<T>& d, T (+p)(T))

{
}

template <class T> DacVector<T> mapf(const DacVector<T>& d, T (xp)(T,T), T a)

{
}

template<class T, class R>
DacVector<R> mapf(const DacVector<T>& d, R (#p)(T), Resolve<R>)

{
}

return DacVector<T>( new zMapf<T,T>(d,p) );

return DacVector<T>( new zMapf<T,T>(d,p,a) );

return DacVector<R>( new zMapf<T ,R>(d,p) );

template<class T, class R>
DacVector<R> mapf(const DacVector<T>& d, R (+p)(T,T), T a, Resolve<R>)

{
}

return DacVector<R>( new zMapf<T,R>(d,p,a) );

Figure 5.23: Mapping over D&C vectors

The figure shows how zMapf<T,F> objecls can be constructed us-
ing template functions. The constructed objects are wrapped in
DacVector<T>s so than further processing can occur.

5.6.3.1 Functors

In order to apply a function iteratively to the elements of a vector, we need to have
the address of that function. This is simple to provide on a single processor, but when
computation is offloaded to another processor how can the function be transported? On
processors with the same hardware architecture, the function addresses might be the same.
With heterogeneous processor clusters this will definitely not be the case. Since C4++ is
not interpreted, it is not practical to transmit the function definition. Instead we define
objects called functors. Each of these objects represents a function but it also contains a
textual key for the function. This key can then be transmitted between processors and
used to look up the actual function address. Of course, functions to be used in this way
must be registered in some way. In order to do this we provide a macro FUNCTOR() for
defining functions so that they are automatically registered.

5.7 Intelligent partitioning

We now have letter and envelope classes which should enable us to implement the Kanerva
model using D&C and delayed evaluation. However, one very important issue still remains.

In discussing the wrapper implementations, DacMatrix<T> and DacVector<T>, we
have made little reference to partitioned state. We have already described how different
operations can be implemented in a number of different ways, depending on the distributed
state of the data. We have not, however, described how we manage, or decide on, this state.
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Since the whole concept of delayed evaluation revolves around run-time optimization,
managing partitioned state must ultimately have the same focus. Keeping this in mind
we will first concentrate on structure manipulation.

5.7.1 Type changing

As mentioned in section 5.3.1, vectors and matrices can be distributed in a number of
different ways. This distribution, however, should be a characteristic that is hidden, to
a large degree, by the implementation. In managing these structures we wish to deal
with matrix and vector abstractions, rather than the specifics of their implementation.
However, managing abstractions in this way falls neatly into the scope of object-oriented
technology. We define the various partitioning options as classes with a common base
class, representing the overall abstraction we are dealing with.

This approach is fine for presenting a polymorphic interface, however, part of the
problem is that we cannot say initially with much certainty, of what actual type an object
is. What we really need to be able to do is instantiate an object of the abstraction, and then
manipulate that according to subsequent requirements. To do this we define a dynamically
bound function change_type(), which takes as an argument the type of partition required,
and returns a standard D&C object. We can then define this function in the base class
abstraction to return an appropriately partitioned object. Additionally, for objects that
already have a partitioned state, we can define this function to return a null object if the
required and actual states do not match. We also define a partition enquiry function,
partition(), for all delayed evaluation type D&C objects. See figure 5.24.

In doing this we have effectively eliminated much of the need for evaluation wrappers to
deal with partitioned objects. Instead, partitioning information is confined to the classes
to which it actually applies.

We note also that since change_type() is part of the general D&C interface, it can be
defined recursively for zEnvelope and zCompound objects. This means that entire D&C
compound objects can be changed using this generic interface, without any lower level
involvement by the management class in question. It also means that D&C envelopes like
zPersistent can transparently implement change _type() without impinging upon the
functionality of their letter. Again the type information is restricted to those classes to
which it applies.

5.7.1.1 Interaction with generic classes

The only problem that this approach falls foul of, is with its interaction with generic D&C
classes. We have defined generic operator classes that can cope with most variations of
infix operation. However, the partitioning requirements associated with each operation can
be quite varied. A simple solution is to combine the partitioned states of the operands in
some general fashion, though this does not completely solve the problem. Consider matrix-
vector multiplication. If the matrix is partitioned vertically and the vector is partitioned
horizontally, what is the partitioned state of the result? In actual fact the result has
neither of these states, as to achieve a result partitioned vectors must be summed together
(see figure 5.2). It is difficult to see how this particular operation can reveal its true state
without specific programmer intervention. One way to provide this specific information is
to define template specializations for the functions in question. Unfortunately the nested
generic specializations (section 4.2.2) that this would require is not supported by many
compilers.
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enum Partition {

I3

P none = 0x00,

P _horizontal = 0x01,
P_vertical = 0x02,

P _block = 0x04,

P_cube = 0x08,
P_persistent = 0x10,
P_fixed = 0x20

class Dac {

i

const Partition partition() const

{ return d_rep—partition(); }

Dac change_type(const Partition p) const

{ return d_rep—change_type(p); }

const Partition mask(const Partition p) const
{ return Partition(p&O0xf); }

template <class T>
class zMatrix : public zContainer<Matrix<T> > {

Dac change_type(const Partition p) const {

Dac x;
switch (mask(p)) {
case P _horizontal:
x = Dac( new zHorizontalMatrix<T>(xthis) );
break;
case P_vertical:
x = Dac( new zVerticalMatrix<T>(xthis) );
break;
default:
error() € "couldn’t change type to: " &« p <K fatal;
}

return x;

Figure 5.24: Example partition manipulation

The figure shows how a generic D&C matriz object, of type
zMatrix<T>, can be converted into a partilioned matriz object
through change type(). The argument to change_type() is an enu-
merated type describing the desired partition.
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5.7.2 Integrating type changing

As demonstrated in figure 5.21 most common operations can be defined in a general
operation function. To expand this to cope with different partitioned states, we make
the assumption that partitioned states must be the same for correct operation. This
assumption is not entirely correct (see section 5.7.1.1), but will do for many common
operations. Type manipulation is then simply a matter of making the partitions match,
and can be represented in pseudo-code as shown in figure 5.25.

FUNCTION type_coerce()

BEGIN
IF <right partition is fized, left partition not fized>
THEN
<change left type to match right>
ELSE IF <left partition is fized, right partition not fized>
THEN
<change right lype to match left>
ELSE IF <neither operand is fixed>
THEN
<arbitrarily change both types lo be the same partition>
ELSE
<error, operalion is impossible>
END

Figure 5.25: Type coercion

The resultant compound D&C object must be wrapped in an evaluation manipula-
tor of the appropriate partition. With template evaluation manipulators the resultant
partitioned type needs to be explicitly set. However, by using polymorphic evaluation
manipulators, the type of the evaluation manipulator itself can be changed dynamically.
In fact the manipulator can even have its type modified to a type that has no relation to
the original. This is useful for asserting the return type of persistent objects, for example.
This, perhaps, is another plus on the side of polymorphic evaluation manipulators. See
figure 5.26.

Using polymorphic evaluation manipulators in this fashion gives us insight into a possi-
ble way of solving the problem of section 5.7.1.1. We could put the partitioning information
of an operation in the evaluation manipulator for that operation. Difficult cases will be
dealt with separately by the managing class anyway (cf. operator* for DacMatrix<T>s),
so it is quite feasible to make these functions add the partitioning information as well.
Since we are really only interested in the evaluated partition of an object, and since that
is precisely what an evaluation manipulator represents, it would seem natural to use eval-
uation manipulators in this way.

5.7.3 Other type changing requirements

We have now described the basics of dynamically specifying partitioned state of D&C
objects. This general procedure is the same for DacVector<T>s, although greatly simplified
by the limited range of possible vector partitions. Ideally we would implement the full
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temaplte <class T>
DacRep* DacMatrix<T>::op(const DacMatrix<T>& d, const Operation o) const

{
/*

* Change the types of the matrices we are working on if we are able.
x if either is P_none then make it the type of the other.

DacMatrix<T> l=+this,r=d;

*/
/*
* now check for delayed-ness and persistent-ness
*/
DacRep *p;
if (ptr_cast<zPersistent>(xthis)) {
/*
* stop anything coming back for a delayed matriz
*/
p = new zEvaluateWrap(
Dac( new zNull ),
Dac(
new zOpTemplate<Matrix<T> ,Matrix<T> >(L,r,0)
)
);
} else if (L.partition() & P_vertical) {
p = new zEvaluateTemplate<zVerticalMatrix<T> > (
Dac(
new zOpTemplate<Matrix<T>,Matrix<T> >(lr,0)
)
)i
} else if (L.partition() & P_horizontal) {
p = new zEvaluateTemplate<zHorizontalMatrix<T> > (
Dac(
new zOpTemplate<Matrix<T > Matrix<T> >(l,r,o0)
)
)i
} else {
error() K "parse error" K fatal;
}
return p;
}

Figure 5.26: Changing the type of simple operations

The figure shows how type coercion integrales into the DacMatrix<T>
operator function described earlier. Once the operands have been co-
erced to appropriate types an operation object is created, and wrapped
in an evaluation manipulator which reflects the partitioning of the
operands.

range of algebraic operators, but for now we have sufficient functionality to implement
the Kanerva model, and have shown the basic structure of our delayed evaluation, D&C
system.



5.8 Kanerva implementation

160

5.8 Kanerva implementation

We have described the Kanerva model and its mathematical representation. We have
designed and described D&C classes which implement delayed evaluation, and D&C classes
which manipulate these in an outwardly normal fashion. The D&C classes DacMatrix<T>
and DacVector<T> have the same outward functionality, bar persistence, as their standard
maths library counterparts. All that remains is to implement the Kanerva model using
these classes. Figure 5.27 shows this implementation.

Looking at this implementation we can see that there is very little evidence of parallel
evaluation or even D&C. The only clues we have are the fact that the location units and
the weight matrix are defined to be persistent D&C objects. The presence of functors also
also points towards something slightly non-standard, although the functions themselves
would have to be declared anyway®>. It is only the method of declaration that is slightly
strange. Of course the simplicity belies the complexity of the implementation, however,
the implementation is designed to be general and flexible so that the complexity need only
be dealt with once.

The other thing to note is that because we have adopted a modular and, where possible,
parameterized approach, it is simple to create arbitrarily typed DacVector<T>s etc. Since,
in the Kanerva model, we desire to perform operations on locations with large numbers
of bits, it is simple to parameterize the DacVector<T>s with an arbitrary number class
BigNum<T>, rather than from int or long, say. If the implementation of BigNum<T> is
sufficiently complete then the only programmer changes needed are to the main routine.
The application itself will need complete recompilation, however.

We now turn to the performance of the implementation at run-time.

5.9 Results

In examining performance figures for the implementation it is good to remember why we
expect reasonable performance. The essence of delayed evaluation is to group together
as much distributed computation as possible and so to reduce serial evaluation. Addi-
tionally, with D&C, we expect some overhead associated with the D&C implementation,
however, by optimizing the computational grain size we hope that this overhead will be
small compared to the computation in each grain. On the other hand we desire balanced
computation so that we make optimal use of the computing resources available to us. This
requires that we have enough grains to allow some dynamic load balancing. The question
is, which of these factors is most significant for the problem in question.

The results were obtained by running the code on a local area network of Sun Sparc?™
workstations. The workstations’ capabilities were quite varied although the spread was
kept reasonably even. Unfortunately, it proved impossible to run programs with the
workstations at zero load. However, this is perhaps a more realistic scenario. The number
of locations used was 500,000, the number of bits 32.

The initial results in figure 5.28 are not too promising. We have an observable speedup
but it is only for small numbers of processors. Varying the partition makes a significant
difference as to whether we get any speedup at all. In observing the system at runtime
we notice that one problem is the fixed schedule used for persistent objects. Once the
schedule has been run and is fixed there can be no more load balancing for the system,

3In C++ one cannot take the address of a built-in operator.
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FUNCTOR(int,ham,(BigNum<NBITS> a, BigNum<N_BITS> b))
{
int s=0;
for (BigNum<N_BITS> r = aAb; r#0; r >= 1) s += r&l;
return s;

}

FUNCTOR(short,leq,(int a, int b))
{ return a < b; }

FUNCTOR(short,gt,(short a, short b))
{ return a > b; }

extern "C" void mainCore(int argc, char *argv(])
{

const n_bits = N_BITS;

const n_locations = args::size;

const k_radius = 9;

const n_outputs = n_bits;

const n.ters = 16;

DacMatrix<short> Weights( n_outputs, n_locations );
DacVector<BigNum<N_BITS> > Locations( n_locations );
DacVector<short> Outputs( n_outputs );

Vector<BigNum<N_BITS> > inputs(n_iters), outputs(n_iters);
Vector<short> output(N_BITS);

// Initialise structures
inputs = outputs = Locations = Random;
Weights = Zero;

// Conuvert the weights and locations into persistent objects.
persist(Locations);
persist(Weights);

DacVector<short> Active_locs;

// store 16 inputs;

for (int x=0; x<n_iters; x++) {

Activelocs < mapf(
mapf(Locations,ham,inputs(x),Resolve<int>()),
leq,k_radius,Resolve<short>()

);

// make up the output vector
for (int y=0; y<NBITS; y++) output(y) = inputs(x)[y];
Outputs = output * short(2) - short(1);

// Perform the evaluation
Weights += Outputs * ~Active_locs;

}
// retrieve 16 outputs
for (x = 0; x< nditers; x++) {
BigNum<N_BITS> input=inputs(x);
Outputs = Weights
*
mapf(
mapf(Locations ham,input,Resolve<int>()),
leq,k_radius,Resolve<short>()

);

input = Zero;

for (int y=0; y < N_BITS; y++) {

}

input += (BigNum<N_BITS>((Outputs(y)>071:0)) < y);

Figure 5.27: The D&C Kanerva implementation
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Log2(Partition/1500) Processors

Figure 5.28: Performance results for depth-first Kanerva evaluation

since task placement is fixed. The load balance that was correct for the first D&C pass
is often not good at all for the second and subsequent D&C passes. The obvious reason
for this is that the computing power available on each node is not constant. Since each
processor is a UNIXTM workstation, and is being used by other system and user processes,
the computational load on the processor is constantly varying. By increasing the process’
priorities we can get better, smoother performance shown in figure 5.29.

The other thing of note is that communication between workstations is slow relative
to the processor speed*. This means that the cost of offloading work is much greater for
workstation clusters than it is for transputer arrays. If offloading work is expensive then
the system’s ability to load-balance will be impaired. This is because only large grain tasks
can be profitably offloaded, so that a small computational window on a remote processor
cannot be utilized.

These factors force us to look for better ways of matching the computation we have
to do to the computational power available. The factor in our favour is that the task in
question has very balanced computational characteristics.

5.9.1 Improving performance

One possible way to look for performance improvement, is to give persistent objects
the ability to migrate. This means that instead of fixing task-to-processor allocation, so
that cached objects are guaranteed to be available, we allow objects to be fetched from
remote processors if the local processor doesn’t have the right object. By doing this the

*The communication is also relatively unpredictable for the reasons given above.
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Log2(Partition/1500) Processors

Figure 5.29: Performance results for depth-first Kanerva evaluation

load-balancing could be kept dynamic, hopefully maximising processor utilization. What
discourages us from this approach is the low inter-processor communication bandwidth.
The varying nature of processor availability would mean that objects will have to mi-
grate quite regularly. Since this migration would be slow, we would expect poor overall
performance from the system.

5.9.1.1 Dynamic partitioning

Another possible approach is to vary the partition dynamically. Since the partition ap-
pears to be crucial to good performance it would be advisable to try to use its optimal
value. Thus the schedule could be fixed as before, but, as the partition is varied objects
could be allowed to migrate. Since increasing the partition is equivalent to increasing the
computational grain-size, this would effectively prune the fixed schedule of unprofitable
offloads. Alternatively, we could try several different fixed schedules and select the best of
them. Unfortunately, exploring options in this fashion rather defeats the aim of the exer-
cise which is good run-time performance. The only situation in which we might envisage
improved run-time performance is for multiple Kanerva storages. In this instance it might
be possible to find an optimal partition [91] in a number of cycles much less than the total.
If this is the case then the performance gain for the remaining cycles might outweigh the
performance loss for the exploration cycles.

5.9.1.2 Matched grains

The easiest approach, however, is to allocate matched grains to processors. Thus for N
processors we would generate N grains and schedule those N all at once. On average the
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Log2(Partition/1500) Processors

Figure 5.30: Performance results for breadth-first / depth-first Kanerva evaluation

computation will make reasonable use of computing resources since the actual problem
is so balanced. For the case where processors have different capabilities, the scheduler
could be switched to normal, dynamic operation after an initial allocation of tasks. It is
this method that we will try. Actually implementing this sort of task allocation is trivial
since that is actually what the breadth-first evaluation of section 3.3.2.2 does. However,
instead of specifying a depth to descend to, we calculate the depth based on the number
of processors available. This depth is given by logaNp,ocs. Evaluating the resultant nodes
using depth-first evaluation yields the subsequent dynamic schedule that we require.

The results are shown in figure 5.30. We can see that the speedups are much more
consistent than those for purely depth-first expansion. We note also that good performance
is obtained for larger partitions where essentially only breadth-first expansion is used.
It is puzzling that we get good performance for small partitions with large numbers of
processors. We might explain that it is due to a more uniform load balance, but this does
not explain why performance is good also for large partitions. The most likely explanation
is that we are seeing the results of the combination of two types of scheduling. For large
partitions breadth-first dominates, for small partitions depth-first is also significant.

It is interesting to see what performance is like for breadth-first only. The results
are given in figure 5.31. As we can see, performance is worse than that of the hybrid
scheduling, although this may be due to the loads at the time of the machines involved.

5.10 Dynamic expression optimization

In implementing the Kanerva model using a delayed-evaluation D&C system, we have
tried to design and use generally applicable system components. However, we have also
made use of our knowledge of the computational characteristics of the model, in order
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Log2(Partition/1500) Processors

Figure 5.31: Performance results for breadth-first Kanerva evaluation

to make the implementation efficient. It would be ridiculous if the implementation were
to not try partitioning the location unit vector. But what of other problems? How can
we make sure that the system makes at least some reference to the amount of parallelism
available in different partitioning strategies? Fortunately, the balanced nature of algebraic
problems like this means that we can approximate quite easily the amount of computation
available.

As a start, we can simply make sure that we partition along the longer dimension
of matrices. This will not always yield an optimal solution, however, we are only really
concerned to catch the case where the dimensions are very disparate, as in the Kanerva
model. A more complex approach is to try and minimize the number of distributed
operations. If we minimize this quantity then we are effectively maximising the amount
of distribution, assuming that the total number of operations is constant. Of course,
determining the correct partition in this way only applies for a single D&C pass. The
problem is more complicated if the computation requires two or more D&C passes, and
the ‘break point’® varies depending on the partition. In this case it might be necessary to
minimize the sum of D&C pass totals.

5.10.1 Back-propagation revisited

As an example let us revisit the back-propagation of section 2.3. With our original system
we were unable to implement this algorithm due to the multitude of different D&C types
required. We will try this algorithm again, using the scheme built up for the Kanerva

5The point at which one D&C pass terminates and another begins.
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model, to see what, if any, changes need to be made. Obviously this is a largely academic
exercise since implementing the algorithm in this way is not going to be highly efficient.

template <class T> class zTpTemplate : public zEnvelope {
public:
zTpTemplate(const Dac& d) : zEnvelope(d) { }

protected:
Dac evaluate() const {
return Container(
~(ptr_cast<zContainer<T> >(e_letter.evaluate())—data())

1

}

Dac change_type(const Partition p) const;

{
Dac x;
if (p & P_horizontal) x = zEnvelope::change_type(P_vertical);
else if (p & P_vertical)x = zEnvelope::change_type(P_horizontal);
else x = zEnvelope::change_type(p);
return x;

}

const Partition partition() const;

{
Partition p = zEnvelope::partition();
if (p & P_horizontal) p = Partition((p|P_vertical) & ~P_horizontal);
else if (p & P_vertical)p = Partition((p|P_horizontal) & ~P _vertical);
return p;

}

Figure 5.32: A transposing D&C class

The figure shows a DEC class for transposing its contained object.
The template formal is the actual type of the object to be transposed.
The transpose operation is done in evaluate() after the operand has
been evaluated. Note thal change_type() and partition() invert
the partitions they operale on.

The first obvious problem is that transposes are not being dealt with intelligently
enough. The Kanerva model only requires a single transpose operation, and thus was dealt
with specifically inside the vector-vector operator*. For the back-propagation equations
a variety of transposes are required. Treating each separately as a special case is by
definition not generic in application. The answer is to create an envelope class which
transposes its letter in evaluate(). This is essentially the same as the functionality of
z0pTemplate<L,R>, except this is for a unary operation. It would be possible to create
a general, type-field based class for unary operations. However, the actual usefulness of
such a class is not as clear-cut as it was for binary operations.

The transpose class is shown in figure 5.32. The main thing to note is that the letter’s
partition is inverted, and the returned object from change_type() is the opposite of that
which was requested.
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5.10.1.1 Improving type manipulation

The other problems are all to do with type manipulation. In section 5.7.2 we looked at a
simple algorithm for determining the required partition for a pair of D&C objects. There
are two problems with this:

e If there is no obvious partition then an arbitrary choice is made. This may not be
the best choice.

e If there are partition incompatibilities in the object hierarchy then evaluation will

fail.

For the Kanerva model an “arbitrary” choice was made that happened to coincide with
the optimal partitioning strategy. However, this is of no use in general. The second item
means that it is impossible to evaluate complicated expressions.

To address the first of these issues we modify type_coerce(), so that if there is no ob-
vious partition, it will try different partitions to see which yields an object with the largest
size(). Recall that size() is often used to determine whether an object is simple() or
not. Thus an object with larger size() will, on the whole, have greater inherent paral-
lelism. Thus size() is a good metric for estimating the computational effort involved in
evaluating an object. Note that this quantity is not sufficient for absolute computation
comparisons, and would not be sufficient for intelligent scheduling [86]. See figure 5.33.

To address the second issue we introduce a function sanitize() which scans a D&C
object looking for zCompounds in its make-up. We surmise that type incompatibilities
will only occur in zCompounds. Simple container relationships will have only one logical
partition, but compound relationships have two, one for each letter. If these two are
different then we have a type incompatibility that means the object cannot be evaluated
in a single D&C pass. Having found a compound relationship, we recurse down the
letters, applying sanitize() to each. If the object is still not sane then we evaluate the
left letter. Then, if still not sane we evaluate the right letter. The recursion then unwinds.
It is interesting to note that we are essentially divide-and-conquering across the object
hierarchy rather than across the problem. See figure 5.34. This scheme is similar to that
postulated in section 2.2.4.1.

With these changes program 5.35 compiles and runs correctly. The system correctly
determines how to partition the data and evaluates expressions when it needs to. When
the Kanerva model is run using this regime, the system again correctly picks the parti-
tion offering the greatest parallelism (partitioning along the location units). Note that
by selecting different intermediate results the correct results are always obtained but per-
formance can be worsened or improved. If appropriate intermediate results are made
persistent then still further gains can be made. This is essentially the situation we want to
be in; where the system always manages to evaluate a problem as best it can, but where
a programmer can give hints about better strategies.

5.11 Summary

We have described and developed a D&C class hierarchy for implementing algebraic ex-
pressions using delayed evaluation, and have shown that this implementation yields good
performance on workstation clusters. We have addressed a number of issues relating to
the specifics of this kind of implementation, and done so in a portable and modular way.
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void type_coerce(Dac& 1, Dac& r)

{
/*
* If the partition is undefined, find the one which yields mazimum size
*/
if ((1==0 || 1.partition()) && !r.partition()) {
int s=0, t=0;
m = P_vertical;
s = r.change_type(P_vertical).size();
t = r.change_type(P_horizontal).size();
if (t > s) {
m = P_horizontal;
s = t;
}
if (1£0) {
t = L.change_type(P_vertical).size();
if (t >s){
m = P_vertical;
s = t;
}
t = Lchange_type(P_horizontal).size();
if (t >s) {
m = P_horizontal;
s = t;
}
}
}
/*
* decompose the left object if necessary
*/
if (1£0) {
1 = Lchange_type(m);
if (!sane(l)) 1 = sanitize(l);
}
r = r.change_type(m);
/*
x decompose the right object if necessary
*/
if (!sane(r)) r = sanitize(r);
}

Figure 5.33: Dynamic partition allocation

The figure demonstrates how DEC operand partitions can be selected
intelligently. Successive partitioning strategies are tried, and the one
that yields mazimum parallelism (largest size() ) is selected.
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Dac sanitize(const Dac& d)

{

zCompound xc=ptr_probe<zCompound>(d);

if (c) {
/*
x recurse
*/
if (Isane(c—left)) c—left = sanitize(c—left);
if (!sane(c—right)) c—right = sanitize(c—right);
/*
* Both letters are sane but the  current object isn’t. Therefore
*x evaluate until sanity is obtained.

*/
if (Isane(d)) {
c—left = c—left.change_type(c—left.partition());
c—left = c—left.run();
if (!sane(d)) {
c—right = c—right.change_type(c—right.partition());
c—right = c—right.run();
if (!sane(d)) error() < "sanitization failure" < fatal;
}
}
}
else error() < "no compounds to sanitize" < fatal;
return d;
}

Figure 5.34: Sanity checking of D&C objects

The figure demonstrates how compound DEC objects can be forced to
have aligned partitions. The compound is scanned for incompatible
partition pairs. If one is found then the operands are evaluated and

scanning continues.
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FUNCTOR(double,Fsigmoid,(double d))
{

}

FUNCTOR(double,Fdsigmoid,(double d))
{

}

const [=16;
const J=32;
const K=12;

return (1.0 / (1.0 4+ exp(-d)));

return ( (1.0 / (1.0 + exp(-d))) * (1.0 - (1.0 / (L0 + exp(-d)))) );

extern "C" void mainCore()

{
DacVector<double> S_j, Sk, 0_j, 0k, d_k, t k(K), O_i(I);
DacMatrix<double> W_ij(I,1), W_jk(J,K);
W.ij = W_jk = t k = O = Random,;
S« ~Wij x O // feed forward equations
O < mapf(S.j, Fsigmoid);
Sk = (~W_jk * O_j);
O_k = mapf(S_k,Fsigmoid);
// feed backward of error equations
dk = ((tk - Ok) & mapf(S_k, Fdsigmoid));
Wik += O % ~d.k:
Wij += (04 * ~((W_jk * dk) & mapf(S_j, Fdsigmoid)));
}

Figure 5.35: Vertical D&C back-propagation

The figure shows a DEC implementation of the back-propagation al-
gorithm using the classes designed for the Kanerva implementation.
As can be seen, DEC and parallelism are not evident at all. Note
that expressions are intelligently given good partitioning strategies,
but that this is all transparent to the user.
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We conclude that delayed evaluation, in conjunction with the techniques that we have
described, is a viable implementation strategy for particular classes of parallel problem.
We have demonstrated this by applying these techniques to two problems; Kanerva’s
memory model and the back-propagation algorithm.



Chapter 6

Conclusions and future work

By uniting we stand, by dividing we fall. John Dickinson

In this chapter we summarize the contribution and thrust of this thesis. We also
examine some future possibilities for the system.

6.1 Summary

A parallel system for implementing D&C problems has been described.

Various aspects of this system have been examined, most notably the associated library,
and various problems have been implemented demonstrating the system’s ability to achieve
useful speedups on real world problems.

The implementing technology we have used has been that of object-orientation. A
mapping is made between D&C problems and objects. Having discussed the implemen-
tation, it is clear that this technology is not only a useful and viable tool in this context,
but that D&C is essentially object-oriented in nature. We assert that although D&C can
be described in a process-oriented way, it is more naturally described in object-oriented
terms. This is because D&C is invariably concerned with state as well as function. In fact
in a parallel context it is usually the abundance of data that leads to long serial execution
times. When we talk about the partitioning of parallel problems this invariably means a
partitioning of data, and this draws us away from a simple process-oriented description of
problems.

Although parallel data-flow languages make a similar assertion (and our description of
object-oriented D&C within the actor model in section 3.1.5 is reminiscent of data-flow),
object-oriented D&C is not data-flow for complex problems. Different D&C objects have
different data and process.

However, our system is not just object-oriented data-flow as used by the UFO project
[93, 94]. We have shown how the system exhibits object-oriented features that enable the
overall issues of complexity to be tackled:

Hierarchical. One of the main advantages of the object-oriented D&C system is its
hierarchical structure. This means that complex D&C objects can be built from
smaller sub-units. The complexity of the objects is reflected by the complexity of
the problems, and enabling the former to be constructed easily similarly aids the
latter.
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We have constructed systems to compute the Kanerva model and back-propagation
algorithm using such a hierarchical approach. We have also demonstrated how de-
layed evaluation can be used to maintain efficiency in these systems.

Abstraction and polymorphism. Abstraction focuses on the essential characteristics
of entities. The system enables a programmer to focus on the D&C aspects of a
problem, without regard to evaluation, by presenting entity abstractions encapsu-
lating the solution of standard problems in a D&C fashion. The system enables
the evaluation machine to run and schedule D&C problems, without regard to their
implementation, by presenting action abstractions [14] which encapsulate all D&C
problems. The action abstractions are only possible through polymorphism which
enables each D&C object to present the same abstract interface to the evaluator.

Since the evaluator sees all D&C objects in the same way it can evaluate them, using
a stack, in an efficient, both in time and space, and generalized fashion. For the same
reasons other parallel processing issues, like scheduling and load-balancing, can be
addressed in a generic and efficient fashion. The abstractions allow us to really tackle
the problems of concern.

Polymorphism is also key to parallel delayed evaluation. It is only because each
D&C object has a generic interface that aggregate representations can be treated as
a single object. And it is only because of this uniformity of interface that methods
can be recursively called for aggregate objects.

Encapsulation. Each D&C object encapsulates only state and function that is relevant
to its evaluation. Intra-component linkages are much stronger than inter-component
linkages, as is required for a stable complex system [14]. The logical separation and
encapsulation of D&C program units leads to a more modular system, with a greater
chance of operational success. Encapsulation means that individual components can
be updated and improved without system failure.

Modularity. The run-time system itself is constructed in a highly modular way, again
using object-oriented techniques. This means that the run-time system itself is likely
to continue to work well and to be improved easily in the future.

We have presented various classes that tackle general issues of D&C evaluation. Classes
that enable objects to be evaluated concurrently. Classes that provide iteration. Classes
that cause D&C objects to persist, and so on. Each class puts a little more flexibility
and power in the hands of the programmer. The provision of these classes emphasises the
point that object-oriented D&C is only one side of the coin. It is the provision of suitable
D&C libraries that is also a major strength of the system. The run-time system and basic
D&C classes are an implementing technology only, it is the library classes that turn this
technology into a useful tool.

Finally, all of these features have been provided without writing a new compiler. This
is a point which must not be underestimated. Object-oriented technology is rich in meta-
features. Much of the ethos behind object-oriented programiming is that new features can
be seamlessly provided using the base technology. By adhering to existing standards the
system is guaranteed a safe ride through language enhancements, something that cannot
be said for a derived language. Where programming tediousness has begun to creep in we
have provided a CASE tool for addressing this issue.
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We can conclude therefore that object-oriented D&C provides a viable way of achieving
parallel performance. Any conclusions about the usability of the system are necessarily
subjective, however, our experience leads us to believe that object-oriented D&C provides
a convenient and powerful way of expressing, and implementing, parallel programs.

6.2 Contribution

This thesis has taken a new look at the well-known D&C paradigm for parallel processing.

The fundamental concept of the thesis is the encapsulation of D&C problems in objects.
This encapsulation allows problems to be evaluated in a generic way.

A stack-based algorithm has been devised for evaluating D&C objects, that draws on
conventional computational evaluation. The stack approach allows object evaluations to
be nested, and is efficient in both space and time.

The composition of aggregate D&C objects has been demonstrated, and it has been
shown how these aggregates can be evaluated efficiently, and used to implement algebraic
expressions in parallel.

A mathematical model of D&C has been examined and has been used to demonstrate
how problem size scaling is important in D&C programs, just as it is for conventional
parallel programs.

The fundamental physical contribution of this work is the Beeblebrox system which
provides the described run-time system as well as a rich variety of D&C classes. The
system can be ftp’d from svr-ftp.eng.cam.ac.uk.

6.3 Future work

We have demonstrated the soundness and viability of D&C objects as a concept. Since
the whole system revolves around this idea, it is unlikely that future work would require
modification of the basic concept. However, there are two areas where major additions
could be made.

The first is obviously the Beeblebrox library. We have described a rich set of Bee-
blebrox classes, but the number of possibilities is virtually boundless. More fundamental
D&C classes could be provided using different underlying data structures such as trees.
Additionally, the delayed evaluation subsystem that was used to implement the Kanerva
and back-propagation algorithms could be extended to cover further matrix and vector
operations. There is also great scope for further optimization of these expressions at
run-time so that maximum computation is achieved by every D&C pass.

The second area is that of general run-time efficiency. The scheduler we have employed
has proved sufficient for our needs, but there is scope for more intelligent scheduling based
on the estimated gain from offloading work. It should be possible to characterize each D&C
object with a metric giving its particular computation / communication requirements. This
metric could then be used by an intelligent scheduler.

Additionally, there is scope for improving persistent D&C object performance. Persis-
tent objects could be allowed to migrate and again some intelligence could be employed
as to when this is a beneficial process.

Finally, D&C partitions could be made dynamic allowing improved performance over
time.



Appendix A

Using accepted language
extensions

C++ is a changing language. The X3J16 ANSI committee was set up to standardize the
language. As a result of this standardization effort a number of new extensions to the
language have been proposed and accepted. Many of these extensions are already present
in other object-oriented implementations, and their presence would greatly simplify and
enhance the design of the D&C system as it now stands. Unfortunately, the standards
committee is not expected to have a draft ready until September 94, with an actual
standard coming in ’95 or ’96. Fully conformant compilers can be expected sometime
after this. However, it is useful to survey these features and see where they might help.

A.1 Co-variance of virtual return types

In the language’s current implementation virtual functions must return the same type for
all implementations in an inheritance lattice. This means that if we want to return an
object of the current class’ type it needs to be of the base-class’ type. Co-variance of
return types allows virtual functions to return a derived type of the type that the base
class function returned. It is possible that this feature might be useful in reducing the
need for dynamic casting of D&C objects.

A.2 Run-time type information

Stroustrup [102] has demonstrated a way of providing run-time type information in C++
classes. This feature has now been incorporated into the language standard and will be
provided in future compilers. Essentially RTTI is similar to the type identification provided
in our D&C classes, however when it is implemented by compiler providers the tedium of
setting up RTTI will be eliminated. The term describes exactly what it does: it provides
type identification for classes that can be accessed at run-time. This is important for the
case where a base class (like our Dac class) is used to generically pass information around,
but where the actual type of the object needs to be known when any real processing is to
be performed on it. Getting the real object from its interface specification goes hand in
hand with RTTI and is called type narrowing.
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A.2.1 Down-casting

As explained in section A.2 it is often desirable to obtain an actual object from its visible
interface - usually a base class. However, we cannot just naively cast the base class interface
to a derived class. We have to be sure that the object we are casting is really of the type
we desire. Then we need to correctly process objects that are in complicated inheritance
lattices. We have done this in the past using ptr_cast<T>, however, ANSI C++ will
provide this feature automatically in the function dynamic_cast<T>. dynamic_cast<T>
is little different from ptr_cast<T> except that the template formal is actually a pointer
or reference, giving more flexible type selection. Additionally dynamic_cast<T> will be a
compiler feature rather than implemented in the language itself.

A.3 Summary

Fortunately none of these features involve namespace collisions with D&C features. Thus,
although it would be advantageous to use these features, there is no reason why the system
as it stands cannot be used with an ANSI conformant compiler.
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Hardware and software
architecture

The D&C system described in this thesis is only the final layer in a complex system. In
this appendix we describe the underlying hardware and software that was used.

B.1 Trollius™

The cornerstone of the D&C system is the Trollius”™ operating system [79, 17]. Trollius™™
originated as a transputer operating system for managing process control and message
passing. The aim of the Trollius project was to implement UNIX?M_like functionality for
transputer-based hardware. Trollius” ™ transparently provided multi-hop routing, process
control, multi-processor file I /O and a whole package of tools.

The other enormous advantage with Trollius? ™is that it provides a uniform message-
passing interface across different hardware and software architectures. So programs can
be compiled for transputers or workstation networks. This provides a convenient way
of debugging programs intended for transputers, since the user-friendliness of UNIXTM
can be used for development and then programs can be run, unaltered, on transputer
hardware.

For transputer-based hardware Trollius”™ is the operating system. For UNIX™M based

machines, Trollius”™is an additional operating system layer.

B.2 Transputer hardware

The parallel hardware used for the experiments in this thesis was a 64-processor, T800
transputer machine. The transputer network was interconnected by configurable link chips
that allowed almost all of the combinations possible with the transputer’s 4 communication
links. The transputer network was connected to a Sun 4/330 workstation via a polling
8-bit link adaptor card. The bandwidth of this card proved rather limiting for some of the
experiments in this thesis, and it perhaps would have been useful to try using the 2 Mb
dual-port memory that is also provided on the card. Figure B.1 shows schematically the
setup used.
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Figure B.1: Transputer farm architecture

B.3 The C++4 compiler

The T800 transputer has a rather strange stack-based hardware architecture [57]. Assuch
there is no native C++ compiler for the chip, and a C++ to C translator must be used
instead. The compiler used for the purposes of this thesis was the USL “cfront” v3.0.2
compiler. The compiler actually had to be ported slightly to work with the transputer
C compiler, but this was not too difficult. A full port was possible, largely due to the
flexibility of TrolliusTM7 so that all the standard C4+4 classes were available. The same
compiler was used for workstation network implementations.

The USL compiler supports many new C+4+ features including templates, but not
exception handling and RTTI. It is hoped that the GNU C++ compiler can be supported
in the future, but at the time of writing it did not have the necessary features to make
this possible.

B.4 Implementation issues

In this final section we discuss some issues peculiar to a workstation based implementation.
On the whole, the workstation implementation is identical to that for transputers, thanks
to the generic interface presented by the Trollius™™ operating system. However, there are
a number of low-level issues that need to be addressed.
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B.4.1 Shared memory management in workstation clusters

In section 3.4.3 we described a memory manager for the D&C system. This component
managed blocks in shared memory, so that processes could share D&C structures, most
notably the execution stack. When using UNIX™™ computer clusters, we have a problem
since this type of computer has a per-process protected address space. In order to make
data available to more than one process we need to use SVR4 shared memory features,
which are available on most UNIX™™ workstations. This facility allows blocks of shared
memory to be allocated and mapped into processes’ address space. We can then manage
these blocks using a suitable algorithm.

A similar scheme to that given by [63] was used, except that the global operator new
was overridden with the shared memory system, rather than individual classes’ free store
allocators. By mapping shared memory blocks contiguously we can imitate the behaviour
of sbrk(), which normally changes the size of a process’ address space. If we have an
sbrk() equivalent then we can use a conventional memory manager to manipulate the
memory blocks. In our case we used the freely available GNU malloc system. Since we
have overridden global new, we can arrange for the buddy system of section 3.4.3 to allocate
its blocks using this operator.

The system is complicated by the need for mutual exclusion of memory accesses. How-
ever, this can be provided using SVR4 semaphores. Since we are in a object-oriented
environment it is trivial to encapsulate these in a general monitor class. This means that
the transputer equivalents can be used on transputers, while still maintaining a uniform
interface. In fact very little conditional compilation is needed in switching between target
hardware. Most system specific behaviour is encapsulated within modules, and selecting
the appropriate memory management is simply a matter of linking in the appropriate
libraries.

B.4.1.1 Buddy system extensions

Some UNIX architectures do not allow shared memory segments to be mapped contigu-
ously, this is also true of transputer-based TrolliusT™ . Instead they are mapped at posi-
tions determined by the system. In this case we have a requirement to manage large blocks
of non-contiguous memory. Most normal memory managers are inappropriate since they
manage one large contiguous address space (section B.4.1). However, the buddy system
of section 3.4.3 is ideal. This system manages a large block and allocates other blocks as
needed. In the system we described, all the largest blocks are the same size. However,
this is no good for general memory management, since we might require a single allocation
larger than the largest block. In this case we modify the system, so that when additional
blocks are required they are constrained to be of a size no less than the original large
block, but can be large enough to satisfy the allocation requirement.

This creates a problem, since it means that the system will be managing blocks of
different sizes. When freeing a block we must know the size of its parent, otherwise we
might try and coalesce the parent with a non-existent block. In order to do this we keep
a record of memory blocks we have allocated and store the index of the appropriate block
in an allocation’s header record.
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Beeblebrox manual pages

NAME

Dac-mode - Beeblebrox formatting functions for emacs

SYNOPSIS

M-x dac-mode

DESCRIPTION

Dac-mode is an emacs lisp mode that provides a series of functions for augmenting C++
class definitions so that they are usable by the Beeblebrox run-time system. Dac-mode
takes a damage limiting approach and will only add required functions that have no
prototypes. If a function prototype exists then dac-mode will make no attempt to add
a function definition or modify an existing one. The buffer that must be parsed is that
containing class declarations. Dac-mode assumes that the corresponding source file has
the same name but with an extension of ”dac-source-ext”. This defaults to ”C”.
dac-mode only works with cc-mode.el and will install command keystrokes into the
c++-mode-map keymap. To set up dac-mode simply load the library and type M-x

dac-mode.

COMMANDS

C-cdf
C-cdc
C-cd a

C-cd m

C-cdp
C-cdd

C-cd/
C-cd +
C-cd?

format the buffer divide-and-conquer style.
format the class which point is in.
format the class which point is in as an
abstract class. prefix arg makes it inline.
format the class which point is in as a most
derived class requiring make() and a default
constructor. prefix arg makes it inline.
parse the class which point is in.
insert a comment delimiter to identify the
class members that need to be transmitted for
object coherency.
insert a divide() stub.
insert a combine() stub.
insert a simple() stub.
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C-cd = insert an evaluate() stub.

NAME

dac - command line parser for Beeblebrox programs

SYNOPSIS

dac  [-rhcPdDv] [-V:icn] [-n <nice>] [-o <file>] [-p <part>] [-b <buff>]
[-w <slowness>] <nodes>

DESCRIPTION

dac is the command line parser for Beeblebrox programs. Arguments are automatically
taken from main() and interpreted. Remaining arguments are passed on to mainCore().
The following switches are provided:

-h Help message.

-P Pause for a key-press.

-r This node is the origin.

-C Cube-up the problem for evaluation.
-Ve Virtual-circuits on.

-Vn Virtual-neighbours on.

-d Debugging mode (no parallel processes).
-D No Trollius support (implies -d).

-v Verbose mode. Very verbose with -d.
-n <nice> <priority> to run process at.

-w <slow> Delay in seconds for each D&C operation.
-p <size> <size> partition.

-s <size> <size> problem.

-b <size> <size> buffer.

-o <file> Output timing results to <file>.
Nodes taking part in the evaluation must also be specified as the last argument
n<list>, eg., n0-3,5,0xa,12-15.

NAME

Dac - mother of all divide-and-conquer classes.

SYNOPSIS
Dac( );
Dac(DacRep*)
Dac(const DacRep&)

run() const;
recurse() const;
breadth(int) const;
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DESCRIPTION

Dac forms the base class for all D&C objects. It is an envelope class in the style of James
O. Coplien’s ” Advanced C++”. As an envelope * this class can be copied, assigned,
stacked, returned etc. with a minimum of overhead. Protection is provided to make
sure DacReps get made into Dacs automatically. The primary function of a Dac is
to be run and this can be accomplished depth-first (run() and recurse ()) or breadth-

first (breadth()). recurse() provides a simple non-parallel evaluation which is useful for
debugging.

IMPLEMENTATION NOTES

Dac uses the envelope / letter idiom given in Coplien ch. 5. In this case the letter is
derived from the envelope. This means that the envelope can be used to construct letters
easily, and also gives a cleaner interface. It throws up a few questions though:

(1) How does the mix-in idea fit into this? ANS: virtually derive Dac Rep from Dac
saving on an abstract base class. The mix-ins then fit in nicely. To separate these classes
still further an intermediate class is added with everything declared pure virtual. This
prevents Dac functionality from being called accidentally.

(2) How is the letter base kept abstract while allowing envelopes with null letters?
ANS: all letter functions are called by envelope functions in a klein bottle type way, Dacs

can be instantiated without letters. Letters can be defined as abstract in DacPure.

PUBLIC INTERFACE

class Dac : public Buddy {

public:
Dac() ;

Dac(const DacRep&);
Dac(DacRep* 1) ;
Dac(const Dacks d);
Dac(ibstream& i) ;

virtual "Dac();
const Dac&
DacRep*
const boolean
const boolean
const boolean

operator= (const Dac& d);
operator= (DacRep* d);
operator==(const DacRep* d) const ;
operator!=(const DacRep* d) const ;
simple() const;

Dac divide(Dac& 1, Dac& r) const;
Dac evaluate() const;

Dac combine(const Dac&s d) const;
const int size() const;

void size(const int);

Dac make() const;

Dac make_copy(const Dac&) const;
void copy (const DacRep*);

const Partition
static const Partition

partition() const;
mask (const Partition p) ;

Dac change_type(const Partition) const;
public:

Dac run(const boolean=true) const;

Dac recurse() const;

Dac breadth(int=0, const boolean=true) const;

const DacRep*

rep() const
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int node() const;
const TypeString& type() const;
void* get_this_ptr(int type=0, int probe=0) const;
void xlate(DacRep* d=0);
public:
static DacStack  *p, *q;
static Zschd *schd;
public: /* protected but for compiler bug */
union {
DacRep *d_rep;

DacRep *next;
};
int d_size;

Dac(DacRep*, BaseConstructor);
DacRep*  peel() ;

NAME

DacList - a divide-and-conquer list of divide-and-conquer objects.

SYNOPSIS

DacList(const Dac&);

DacList(const Dac&, const Dac&);

DacList DacList::operator+(const Dac&) const
DacList DacList::operator,(const Dac&) const

DESCRIPTION

A DacList is a special type of D&C list. Each element of the list is in fact a D&C object,
and is therefore a candidate for parallel execution. The list is divided and combined in
the same way as a zList<T>. However, evaluate() is special in that it arranges for each
list element to be run() itself. This is quite a good way of evaluating multiple D&C
objects in parallel. The other way to do this is by using a DacPar. However, there is a
subtle distinction between the two. A DacPar runs objects as soon as they are available.
This means that the farm workers will be totally preoccupied with evaluating the first
object. With a DacList, however, the D&C objects are distributed before they are run.
This results in better load balancing of the system.
The operators 4+ and , are provided for concatenating DacLists together.

PUBLIC INTERFACE

class DacList : public zList<Dac>,
public zCombineList<Dac>
{

public:
DacList();
DacList(const Dac&);
DacList(const Dac& a, const Dac& b);
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DacList(const DacList&);

const DacList& operator= (const DacList& d) ;
const Dac& operator= (const Dac& d);
DacList append(const Dac& d) ;

DacList operator, (const Dac& d) const ;
DacList operator+ (const Dac& d) const ;

Dac  dac(size_t n) ;

“DacList();

DacMatrix(3)

NAME

DacManip - a D&C wrapper class for combining manipulators

SYNOPSIS

DacManip(const zManipulator&, const zManipulator&, const zManipulator&, const

zMan

ipulator&, const Dac&);

DacManip(const zManipulator&, const zManipulator&, const zManipulator&, const

Dac&

DacManip(const zManipulator&, const zManipulator&, const Dac&);

);

DacManip(const zManipulator&, const Dac&);

DESCRIPTION

This D&C wrapper enables zManipulators to be combined in a sensible fashion. The
constructor detects which manipulator is which and creates a compound object using all
of them in the right order. The last argument is the D&C object to be manipulated.

SEE ALSO

zEvaluateManip(3), zCombineManip(3), zSimpleManip(3), zDivideManip(3).

PUBLIC INTERFACE

class DacManip : public Dac {

public:

DacManip() ;

DacManip(const Dac& d) ;

DacManip(const zManipulator&, const zManipulator&,
const zManipulator&, const zManipulator&z,
const Dac&r);

DacManip(const zManipulator&, const zManipulator&,
const zManipulator&, const Dac&);

DacManip(const zManipulator&, const zManipulator&,
const Dac&r);

DacManip(const zManipulator&, const Dac&);

“DacManip();
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NAME

DacMatrix<T> - a D&C matrix class wrapper.

SYNOPSIS

DacMatrix(const int, const int);
DacMatrix(const Matrix<T>&);

DESCRIPTION

The DacMatriz class allows standard matrix operations to be performed, * in parallel,
using divide-and-conquer. Many standard matrix operations are provided, although some
operations are only partially robust. The package uses delayed evaluation to build up
an evaluation tree at run-time. This tree is subsequently modified to determine * how
data is going to be partitioned - in the case of matrices, row-wise or column-wise. This
transformation is achieved using the change_type() function, after an appropriate type has
been determined for the resulting expression. For instance a matrix * vector operation can
be partitioned row-wise with the resulting sub-vector units being concatenated together.
Alternatively, the partitioning can be column-wise in which case the resultant vectors
must be added together. Which makes a better choice is dependent upon the size of the
operands in question, and their context in the evaluation structure as a whole.

A DacMatriz can be used almost interchangeably with Matrixs, although there are
some caveats in their use. In addition, DacMatrixs can be created from Matrixs as well
as in more conventional ways.

A DacMatriz is strictly a wrapper, as is a Dac. It serves merely to arrange actual
D&C objects in a suitable format for processing. As such it means that the internals of
evaluation can be kept well away from the user interface.

PUBLIC INTERFACE

TEMPL class DacMatrix : public Dac {
public:

DacMatrix() ;
DacMatrix(const int, const int);
DacMatrix(DacRep* 1) ;
DacMatrix(const Matrix<T>& m);
DacMatrix(const DacMatrix<T>& m) ;
“DacMatrix();
DacMatrix(DacRep& 1) ;
const abstractType& operator= (const abstractType&);
const DacMatrix<T>& operator= (const DacMatrix<T>&) ;
DacMatrix<T> operator* () const;
const DacMatrix<T>& operator<<(const DacMatrix<T>&) ;
DacMatrix<T> operator™ () const;
const DacMatrix<T>& operator+=(const DacMatrix<T>& d) ;
const DacMatrix<T>& operator-=(const DacMatrix<T>& d) ;
DacMatrix<T> operator- (const DacMatrix<T>& d) const;
DacMatrix<T> operator+ (const DacMatrix<T>& d) const;
DacRep* op(const DacMatrix<T>&, const Operation) const;
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const DacMatrix<T>&  op_eq(const DacMatrix<T>&, const Operation);
DacVector<T>  operator* (const DacVector<T>&) const;
DacMatrix<T>  operator* (const DacMatrix<T>&) const;

b

NAME

DacPar - parallel execution D&C object wrapper

SYNOPSIS

DacPar(const Dac&);
DacPar(const DacRep&);
DacPar(DacRep*);

DESCRIPTION

A DacPar provides a wrapper for DacRep derived objects in the same way that Dac does.
However, instantiation of a DacRep object causes the letter part to be pushed onto the
evaluation stack and a record kept of the relevant envelope. When one comes to access
the letter the envelopes are updated with the evaluated letters. In a parallel * execution
environment most letters should already have been evaluated and any remaining ones are
evaluated through the use of run(). This means that several independent D&C objects
can be evaluated concurrently.

In allowing letters to be pushed onto the execution stack we have to consider a number
of possible scenarios in order to ascertain whether all evaluations will complete correctly:

(1) Another object is run() before all DacPars have been evaluated. In this case
evaluation will complete correcly as run() save’s the current level of the execution stack.
No objects can be added to the stack while this run() takes place as it waits for completion
before proceeding.

(2) DacPars are evaluated internally by a D&C object. In this case a run() is in
progress, however only objects with a DacStack::parallel key will be evaluated, thus con-
fusion on the stack is eliminated. Any run() invoked by DacPar evaluation will be a
recursed call and the stack state will be saved.

(3) Some combination of (1) & (2). Since DacPars are evaluated only when there are
parallel objects at the top of the stack any interleaving of (1) & (2) will unwind correctly.

PUBLIC INTERFACE

class DacPar : public Dac {
public:
DacPar() ;
DacPar(const Dac& d) ;
DacPar(const DacRep& d) ;
DacPar(DacRep* d) ;
“DacPar();
const Dac& operator=(const Dac& d) ;
const DacRep* rep() const;
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NAME
DacPure - abstract base class for D&C letters

SYNOPSIS

Use as a virtual base for mix-ins.

DESCRIPTION

This class serves to make the primary D&C functions pure again so that users are forced
to define them or use mix-ins. This cannot be done in DacRep as it leads to ambiguous
usage with the dominance mechanism unable to tell which function to use.

All mix-ins should virtual’ly inherit this class. The C++ compiler will then arrange
for the right functions to be called when accessed through the DacPure interface.

DacPure inherits from Dac privately so that objects derived from DacPure and, more
importantly, DacRep *cannot* be up cast to a Dac as this would be disastrous from a
reference counted / evaluation point-of-view. Instead a constructor is provided in Dac -
‘Dac(DacRep&)’ - which wraps the DacRep up to avoid such a disaster.

PUBLIC INTERFACE

class DacPure : private Dac {

public:
virtual Dac run(const boolean=true) const=0;
virtual Dac recurse() const=0;
virtual Dac breadth(int=0, const boolean=true) const=0;
virtual Dac make() const;
virtual void copy (const DacRep*);
virtual void* get_this_ptr(int=0,int=0) const;
virtual int node() const=0;
public:
Dac::next;
Dac::d_rep;
Dac::d_size;
Dac::mask;
public:

Buddy::operator new;
Buddy::operator delete;

}J

NAME

DacRep - base class for all letter classes.
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SYNOPSIS

DacRep(const int size);
DacRep(Exemplar);
Use as a base class for all D&C letter classes.

DESCRIPTION

All D&C classes which perform actual evaluation should be derived from this class.
DacReps are managed by Dacs to minimise overheads in copying.

Classes which need to be type narrowed using ptr_cast<T>, or classes which are
used in a concrete fashion, should define an exemplar and an exemplar constructor the
argument of which is passed back to DacReps exemplar constructor. All this and more
is performed automatically by dac-mode.el for GNU emacs.

PUBLIC INTERFACE

class DacRep : virtual public DacPure {

public:
DacRep(const int i);
DacRep(ibstreamé&s);
DacRep(const TypeString& e) ;
“"DacRep();
const int size() const;
void size(const int);
Dac run(const boolean=true) const;
Dac recurse() const;
Dac breadth(int=0, const boolean=true) const;
int node() const;
obstreamé&z spawn (obstreamdz, const boolean tok=true) const;
public:
static int inst_count;
static void chk(const DacRep*);
friend void chk list();
public:
static struct ExemplarManager ;
friend class ExemplarManager;

b

NAME

Dinvert - an inversion manipulator

SYNOPSIS

Dinvert(const Dac&);
Dac Dinvert::change_type(const Partition) const;
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DESCRIPTION

Dinvert treats its letter specially for type manipulation. partition() returns the inverse
of the letter’s partition and change_type() changes the type to the inverse of that which
was requested. change_type() is ablative - it no longer has Dinvert information.

PUBLIC INTERFACE

class Dinvert : public zEnvelope {
public:
Dinvert(const Dac& d) ;
“Dinvert();

NAME

car, cdr, cons, () - lisp like functions for Dac objects

SYNOPSIS

Dac  car(const Dac&)

Dac  cdr(const Dack)

Dac  cons(const Dac&, const Dac&)

Dac  operator, (const Dac&, const Dac&)
Dac  operator+ (const Dac&, const Dac&)

DESCRIPTION

These functions provide lisp-like functionality for manipulating compound Dac objects.
car() and cdr() obtain the left and right members of a compound. cons, ‘+’ and “;” create
a compound from two Dac objects.

SEE ALSO
zCompound(3).

NAME

zArray<T> - D&C array class

SYNOPSIS

An abstract base class.
provides: Dac  zArray<T>:divide(Dac&, Dac&) const;
requires: Dac  zArray<T>:make() const;
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DESCRIPTION

A zArray <T> has a single member of type BuiltinArray<T>, which it arranges to be
split up by the divide() function. zArray <T> is virtual’ly derived from a zContainer<BuiltinArray<T>>
which provides a mix-in interface for accessing the array structure. Thus, it can be used
in conjunction with a zMapArray<T> for iterating over the elements of the array.
zArray <T> does not have a built in combine function as this would disallow mixing
in the functionality.

PUBLIC INTERFACE

TEMPL class zArray : virtual public zContainer<BuiltinArray<T> > {

b

NAME

zCombine, zSimple, zUnit, zEvaluate, zDivide.

SYNOPSIS

Mixin with classes requiring a generic operation.

DESCRIPTION

These classes are mix-ins to blank out the various primary functions which a derived
class has no need of. They are for convenience only and better performance is achieved
by explicitly defining these functions in derived classes. Note the the operation of zUnit
is already provided by default in DacRep.

PUBLIC INTERFACE

class zCombine : virtual public DacPure
{
public:
zCombine() ;
“zCombine();

b

NAME

zCombineArray<T> - a D&C mix-in array combiner.

SYNOPSIS

A mix-in class.
provides: Dac zCombArray::combine(const Dac&) const;
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DESCRIPTION

A zCombineArray <T> provides a combine function that concatenates two zContainer<BuiltinArray<T>>s
together. Tt relies on the operator| provided by Array<T>. This functionality is crucial

for array related divide-and-conquer evaluations. Unfortunately, the current implemen-

tation merely creates a new array and copies the previous two in. This has performance

penalties which could be avoided if some way to construct arrays contiguously was found.

PUBLIC INTERFACE

TEMPL class zCombineArray : virtual public zContainer<BuiltinArray<T> > {

b

NAME

7zCombiner - general mix-in D&C combining class

SYNOPSIS

requires: Dac zCombiner::combine(const Dac&) const;

DESCRIPTION

zCombiner is a generic combining class. All operations have been done up until this class
is used, thus there is no need of simple(), divide() evaluate(). zCombiner is mixed in with
a class providing the combine() fucntion and is primarily used for returning Dac object
results.

PUBLIC INTERFACE

class zCombiner : public DacRep
{
public:
zCombiner() ;
“zCombiner();

b

NAME

zCompound - a D&C container class for two D&C letters.

SYNOPSIS

zCompound(const Dac&, const Dac&);
provides: Dac zCompound::divide(Dac&, Dac&) const;
Dac zCompound::combine(const Dac&) const;
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Dac zCompound::evaluate() const;
const boolean zCompound::simple() const;

DESCRIPTION

zCompound is a class which combines two D&C objects to form a compound D&C object.
In zCompound all the primary D&C functions are delegated to the zCompound’s members
‘left’ and ‘right’. Compound objects can be made from normal D&C objects through the
use of the operator+. Note that compound zCompounds can be formed by making ‘left’
or ‘right’” a

zCompound as manipulated by DacMatrix(3) and DacVector(3).

SEE ALSO
car(3), DacMatrix(3), DacVector(3).

PUBLIC INTERFACE

class zCompound : public DacRep
{
public:
zCompound();
zCompound(const Dac&, const Dac&);
“zCompound();

NAME

zContainer<T> - a general D&C container for standard classes.

SYNOPSIS

zContainer<Class>(const Class&);

DESCRIPTION

zContainer is a general template container class that implements object 1/O for the
contained object. It may well be more efficient to use the contained class directly, but
this is provided for aesthetics. zContainer is used extensively by derived operation classes

like zVector(3).

PUBLIC INTERFACE

TEMPL class zContainer : public zNull {
public:
typedef zContainer<T> Container_t;
zContainer(const T& t) ;
zContainer(const Dac&);
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zContainer();

“zContainer();

virtual T data() const;
void init(const T& x) ;

NAME

zDelayHorizontalMatrix<T> - a horizontally divided delayed assignment D&C matrix
class.

SYNOPSIS

As zDelayMatrix<T> but providing:
Dac  zDelayHorizontalMatrix<T>::divide(const Dac&, const Dac&) const;

DESCRIPTION

A zDelayHorizontalMatriz <T> provides a delayed assignment matrix class like a zZDelayMatrix<T>,
except that the class can actually be instantiated. The class is defined to partition hori-

zontally in divide(). zDelayHorizontalMatriz <T>s are usually created by change_type()

applied to a zDelayMatrix<T>.

SEE ALSO
zDelayMatrix(3).

PUBLIC INTERFACE

TEMPL class zDelayHorizontalMatrix : public zDelayMatrix<T> {
public:
zDelayHorizontalMatrix(const char* f) ;
zDelayHorizontalMatrix(const int r, const int ¢, const abstractType& a) ;
( .

zDelayHorizontalMatrix(const int r, const int ¢) ;
“zDelayHorizontalMatrix();

b

NAME

zDelayMatrix<T> - a delayed assignment D&C matrix class.

SYNOPSIS

Used as a base class for zDelayVerticalMatrix<T> etc.
zDelayMatrix(const char*);

zDelayMatrix(const int rows, const int columns);

zDelayMatrix(const int rows, const int columns, const abstractType&);

Jul 5, 1994 193



BEEBLEBROX CLASS LIBRARY zDelay Vector(3)

provides: Dac  zDelayMatrix<T>::evaluate() const;
Dac  zDelayMatrix<T>::change_type() const;

DESCRIPTION

A zDelayMatriz <T> contains a matrix size and initialization description which is realized
when evaluate() is called. A

zDelayMatriz <T> can be initialised from a file name, or with size arguments. It can
also be initialized with size arguments and an abstractType. zDelayMatriz <T> only
provides the functionality for initialization and realization. In order to divide the class
in a meaningful way, subclasses must be defined with this functionality. See zDelayVer-
ticalMatrix(3) and zDelayHorizontalMatrix(3).

zDelayMatriz <T> provides a change_type() function that allows derived classes to
be generated according to a partitioning requirement. See DacMatrix(3) for examples.

PUBLIC INTERFACE

TEMPL class zDelayMatrix : public zNull {
public:
zDelayMatrix(const char*);
zDelayMatrix(const int r, const int ¢, const abstractType& a) ;
zDelayMatrix(const int r=0, const int ¢=0) ;
“zDelayMatrix();

b

NAME

zDelayVector<T> - a delayed assignment D&C vector class.

SYNOPSIS

zDelayVector(const char*);

zDelayVector(const int elems);

zDelayVector(const int elems, const abstract Type&);

provides: Dac zDelayVector<T>::evaluate() const;

Dac zDelayVector<T>::divide(const Dac&, const Dac&) const;

DESCRIPTION

A zDelayVector <T> contains a vector size and initialization description which is realized
when evaluate() is called. A

zDelayVector <T> can be initialised from a file name, or with size arguments. It
can also be initialised with size arguments and an abstractType. zDelayVector <T>
divides its vector up in much the same way as zVector<T> does - although the vector
doesn’t actually exist untill evaluate is called. zDelayVector <T>s can be generated by
DdelayVector<T>s which are used bu the DacVector(3) wrapper.
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SEE ALSO
DacVector(3).

PUBLIC INTERFACE

TEMPL class zDelayVector : public DacRep, private zCombine {
public:
zDelayVector(const char*);
zDelayVector(const int i, const abstractType& a) ;
zDelayVector(const int i=0) ;
“zDelay Vector();

NAME
zDelayVerticalMatrix<T> - a vertically divided delayed assignment D&C matrix class.

SYNOPSIS

As zDelayMatrix<T> but providing:
Dac  zDelayVerticalMatrix<T>::divide(const Dac&, const Dac&) const;

DESCRIPTION

A zDelayVertical Matriz <T> provides a delayed assignment matrix class like a zDelayMatrix<T>,
except that the class can actually be instantiated. The class is defined to partition ver-

tically in divide(). zDelayVerticalMatriz <T>s are usually created by change_type()
applied to a zDelayMatrix<T>.

SEE ALSO
zDelayMatrix(3).

PUBLIC INTERFACE

TEMPL class zDelayVerticalMatrix : public zDelayMatrix<T> {
public:
zDelayVerticalMatrix(const char* f) ;
zDelayVerticalMatrix(const int r, const int ¢, const abstractType& a) ;
( ‘

zDelayVerticalMatrix(const int r, const int c) ;
“zDelay VerticalMatrix();

b

NAME
zEnvelope - a concrete D&C wrapper class for D&C objects.
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SYNOPSIS

zEnvelope(const Dac&r);

provides: Dac zCompound::divide(Dac&, Dac&) const;
Dac zCompound::combine(const Dac&) const;

Dac zCompound::evaluate() const;

const boolean zCompound::simple() const;

DESCRIPTION

zEnvelope is a class which holds a single D&C object. All the primary D&C functions are
delegated to this letter. Since the primary functions are all inline, this doesn’t prove to
much of an efficiency problem. zEnvelopes are used extensively for dynamic inheritance.

PUBLIC INTERFACE

class zEnvelope : public DacRep
{
public:
zEnvelope(const int=0);
zEnvelope(const Dac&);
“zEnvelope();

NAME

zEvTemplate<T> - a parameterized evaluation manipulator.

SYNOPSIS

zEvTemplate<T>(const Dac&);
provides: Dac zEvTemplate<T>::evaluate() const;

DESCRIPTION

A template D&C zEnvelope that transforms its letter to its formal parameter upon eval-
uation.

SEE ALSO
zEvWrap(3).

PUBLIC INTERFACE

TEMPL class zEvTemplate : public zEnvelope {
public:
zEvTemplate(const Dac& d) ;
“zEvTemplate();
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NAME

zEvaluateManip, zDivideManip, zCombineManip, zSimpleManip - D&C manipulators for
dynamic inheritance.

SYNOPSIS

DEFEVAL(name) {...}

zEvaluateManip(void(*) (Dac&,const Dac&));

Dac  zEvaluateManip::create(const Dac&) const;
DEFDIV(name) { ..}
zDivideManip(Dac(*)(const Dac&,Dac&,Dac&));
Dac  zDivideManip::create(const Dac&) const;
DEFCOMB(name) { ...}

zCombineManip(void (*)(Dac&,const Dac&,const Dac&));
Dac  zCombineManip::create(const Dac&) const;
DEFSIMP (name) { ...}

zSimpleManip(const boolean(*)());

Dac  zSimpleManip::create(const Dac&s) const;

DESCRIPTION

PUBLI

These D&C classes enable class hierarchies to be built up with dynamic inheritance. Each
class works by having a D&C letter to which all functions, except the one being defined,
are forwarded. The normal use of these objects is through the macros DEFEVAL(),
DEFDIV(), DEFCOMB(), DEFSIMP(). These macros provide parameters labelled re-
sult, self, left and right depending on the function. An object of the required type is
automatically created and labelled <name>. This object can be used to create more ob-
jects of the same type. It is generally used by DacManip(3). Function definitions should
use ptr_probe<T> for accessing members of result etc. This is because objects may be
nested arbitrarily deeply, and the user will not be able to tell at which level objects may
be found.

These classes are good for rapid prototyping of functionality, however, they may not
be as efficient as a properly defined D&C object.

C INTERFACE

class zEvaluateManip : public zManipulator
{
public:
zEvaluateManip(const PFD dp) ;
zEvaluateManip(const PFD dp, const Dac& d) ;
“zEvaluateManip();
Dac create(const Dac& d) const ;
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NAME

zEvaluateWrap - a polymorphic D&C evaluation manipulator.

SYNOPSIS

zEvaluateWrap(const Dac& w, const Dac& d);
provides: Dac zEvaluateWrap::evaluate() const;

DESCRIPTION

A zEvaluate Wrap wraps the return value of its argument d.evaluate() in its argument w.
This functionality is the polymorphic equivalent of zEvaluateTemplate(3). The wrapper
is reference counted since only one is required per processor. The wrapper itself is not
actually used, it merely manufactures the required object. change_type() is arranged to
operate on the wrapper as well as the letter.

PUBLIC INTERFACE

class zEvaluateWrap : public zEnvelope
{
public:
zEvaluateWrap(const Dac& w, const Dac& d) ;
“zEvaluateWrap();

b

NAME

zGraphic - a D&C visualization class.

SYNOPSIS

zGraphic(const Dac&);

DESCRIPTION

A zGraphic is a zEnvelope which contains its construction argument and delegates all
primary functions to this argument. However, at the same time zGraphic arranges for
the current execution state to be displayed in the form of a tree. divide() expands this
tree and combine() prunes it.

Each processor has a window in which nodes are displayed. Nodes are represented
by black boxes. When a node is spawned to another processor, the box becomes hollow.
When the node is returned, the box is made solid once more. Remote nodes are positioned
according to their position in the overall tree. This makes it easier to determine where a
node has been spawned to.

Since there is no physical tree it is impossible for zGraphic to react to expose events.
The window must be visible all of the time for the tree to be displayed correctly. Execution
can be paused by clicking mouse button 2 in a window.
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PUBLIC INTERFACE

class zGraphic : public zEnvelope
{
public:
zGraphic();
zGraphic(const Dac&);
“zGraphic();
b

NAME

zHorizontalMatrix<T> - a horizontal D& C matrix class.

SYNOPSIS

zHorizontalMatrix(const Matrix<T>&);

zHorizontalMatrix(const char*);

provides: Dac zHorizontalMatrix<T>::divide(Dac&, Dac&) const;
Dac zHorizontalMatrix<T>::combine(Dac&) const;

DESCRIPTION

A zHorizontalMatriz <T> has a single member of type Matrix<T>, which it arranges
to be split up by the divide() function.

zHorizontalMatriz <T> is derived from a zMatrix<T> which provides a mix-in in-
terface for accessing the matrix structure. An exemplar is provided for dynamic casting
with ptr_cast<T> Note that several possible division strategies are possible for matrices,
these should be provided by mix-in type classes

PUBLIC INTERFACE

TEMPL class zHorizontalMatrix : public zMatrix<T> {
public:
zHorizontalMatrix(const Matrix<T>& a) ;
zHorizontalMatrix(const Dac& d);
zHorizontalMatrix(const char* fn);
“zHorizontalMatrix();
public:
static const Dac  exemplar;

b

NAME

zlterator - a D&C parallel iteration class.
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SYNOPSIS

Abstract base class.

provides: Dac zlterator::iterate(int from, int to);
requires: Dac zlterator::mapfunc(int) const=0;
DESCRIPTION

A zlterator enables parallel iteration using D&C. mapfunc(), which must be defined in
derived classes, is executed for each value in the range FROM to TO. evaluate() returns
a Dac object, the type of which is determined by the return value of mapfunc().

PUBLIC INTERFACE

class zlterator : public DacRep, public zUnit {

public:
zlterator(int sa=0, int stop=0) ;
“zlterator();
Dac iterate(int, int);

b

NAME

zMapArray<T> - a mix-in D&C class for iterating over an zArray<T>.

SYNOPSIS

Mix-in with classes of the zArray<T> family.

provides: Dac zMapArray<T>::evaluate() const;
requires: Dac zMapArray<T>::mapfunc(const T&)=0
DESCRIPTION

This class can be used to iterate over the elements of a zArray(3) of any type. It requires
derived classes to define the virtual function mapfunc(), which it arranges to be called
for all elements of the zArray<T>. No evaluate() function is necessary and mapfunc()
must return a Dac object like evaluate() would have done.

PUBLIC INTERFACE

TEMPL class zMapArray : virtual public zContainer<BuiltinArray<T> >

{
b
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NAME

zMapf<T ,F>, mapf() - map over a vector’s elements applying a function.

SYNOPSIS

));

zMapf<F,T>(const DacVector<T>& v, const F(*)
(*)(T,T), T)

(T
zMapf<F,T>(const DacVector<T>& v, const F(*)(T
DacVector<T> mapf(const DacVector<T>& d, T (*
(
(
(

DacVector<T> mapf(const DacVector<T>& d, T (*

DacVector<R> mapf(const DacVector<T>& d, R (*
DacVector<R> mapf(const DacVector<T>& d, R (*
provides: Dac zMapf<T,F>::evaluate() const;

), Resolve<R>)

p)
p)
p)
p) , T, Resolve<R>);

(T
(T,T), T);
(T
(T,T

DESCRIPTION

zMapf <T,F> provides a mechanism for applying a function, in parallel, to all the ele-
ments of a zVector<T>. The function applied can take 0 or 1 arguments, and can return
an arbitrary type. Global template functions are provided for easy construction of zMapf
<T,F>’s from zVector<T>’s. If the resultant zVector<T> is of a different type to the
evaluated

zMapf <T ,F> then a type resolving parameter must be included when using the
global functions. The template formals T and F represent the type of the vector being
mapped, and the type of the vector returned, respectively.

Note that all functions used must be delared as Functors so that their definitions can
be found portably.

COMMENTARY

The problem with this class is the handling of functions with differing numbers of argu-
ments. The requirement is to be able to use standard functions so <stdarg.h> cannot
be used. As a compromise we hold the number of arguments we need. If we made this
a template formal then the code should be compiled a lot more optimally. Another con-
sideration must be that the actual information held is common to every instantiation by
the D&C machine - thus reference counting would take out a lot of the tedium.

SEE ALSO
DacVector(3).

PUBLIC INTERFACE

template <class T, class F> class zMapf : public zEnvelope {
public:
zMapf(const DacVector<T>& v, const PFT p);
zMapf(const DacVector<T>& v, const PFTT p, T a);
“zMapf();
b
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NAME

zMatrix<T> - generic D&C matrix class.

SYNOPSIS

A delayed evaluation base class.
provides: Dac zMatrix<T>::change_type() const;

DESCRIPTION

This class purely exists for change_type() to work properly - it should never actually be
evaluated. Tt is used extensively by DacMatrix(3) for instantiating D&C matrix objects
the partition of which is determined later. A zMatriz <T> will change to either a
zHorizontalMatrix(3) or a zVerticalMatrix(3).

PUBLIC INTERFACE

TEMPL class zMatrix : public zContainer<Matrix<T> > {

b

NAME
zNull - a NOP D&C class.

SYNOPSIS

zNull(const int=1);
zNull(const Dac&);
NullDac;

DESCRIPTION

zNullis a concrete D&C class that doesn’t actually do anything. It is most useful where a
D&C class needs to be returned from a function but for which the value will be ignored. It
is also useful as a base class for classes that merely provide additional storage. zNull can
be dynamically cast to, transmitted, received and used in most places where a D&C class
is required. A constructor from a Dac is provided so that a Dac class may be converted
into nothing. A NullDac is a zNull allocated in heap with a Dac wrapper.

PUBLIC INTERFACE

class zNull : public DacRep
{
public:
zNull(const int =1);
zNull(const Dac&);
zNull(const TypeString&s);
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“zNull();
b

zPartition(3)

NAME

7zOpTemplate<,,R> - a concrete D&C general operation class.

SYNOPSIS

zOpTemplate<L,R>(const Dac&, const Dac&, const Operation);
provides: operators +,-,* +=,-=,*= in evaluate.

DESCRIPTION

20pTemplate <L,R> is a Dac class which provides D&C equivalents for the operators
+,-,*¥,4=,-=,*=. The template formals are the operands for the required operation. This
class can be used in conjunction with zEvaluateTemplate(3) to change the return type of
the evaluation. In general this is required as evaluate simply returns a zContainer<L>
by default. So for example a zEvaluateTemplate<zVerticalMatrix<T> > might be used

to concatenate resultant zContainer<Matrix<T> >s into a result.

Note that for de-

layed data types it may be necessary to use a zEvaluateTemplate<zNull>. zOpTemplate

<L,R>s are used extensively by DacMatrix(3)s and DacVector(3)s.

SEE ALSO
DacMatrix(3), DacVector(3).

PUBLIC INTERFACE

class zOpTemplate : public zZCompound {
public:
zOpTemplate() ;
7zOpTemplate(const Dac& 1, const Dac& r, const Operation);
“z0pTemplate();

b

NAME

zPartition - a partition manipulation D&C mix-in class.

SYNOPSIS

zPartition(int);
provides: const boolean zPartition::simple() const;
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DESCRIPTION

zPartition arranges for its construction argument to be used as the partition for D&C
evaluation of the object it is a part of. The partition defaults to args::partition which can
be provided on the command-line. The partition data is transmitted, so it only needs to
* be set on the origin processor.

PUBLIC INTERFACE

class zPartition : virtual public DacPure
{
public:
zPartition(int p=args;;
“zPartition();

b

NAME
zPersistent - a persistent D&C wrapper.

SYNOPSIS

zPersistent (const Dac& d);
const Dac& persist(Dac&);
const Dac& flush(Dac&);

DESCRIPTION

A zPersistent makes its D&C argument d persistent. Persistence is implemented by
caching persistent D&C objects in a hash table when evaluate() is called for the first
time. The D&C object is then replaced with a null object. When evaluate() is called
again the required D&C object is retrieved from the hash table. Notice that evaluate()
is usually called when D&C objects have been distributed, and so the persistent objects
will be distributed as well. Persistent, virtual D&C objects are a good way of preventing
very large evaluations on the root processor.

zPersistent objects require special handling by the D&C scheduler so that scheduled
objects are always scheduled consistently. Note that this may well imply a performance
penalty. Persistent objects are registered on the root node for the first call of divide().

PUBLIC INTERFACE

class zPersistent : public zEnvelope {
public:
zPersistent() ;
zPersistent(const Dac& d) ;
“zPersistent();
void real() ;
void flush() ;

void init(unsigned int o, int b) ;
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const Partition  lookup_partition() const;
public:
static Dac exemplar;
b

NAME

zQuicksort<T> - a D&C quicksort class.

SYNOPSIS

zQuicksort(const BuiltinArray<T>&);
provides: Dac zQuicksort<T>::divide(Dac& 1, Dac& r) const;
Dac zQuicksort<T>::evaluate() const;

DESCRIPTION

A zQuicksort <T> is a D&C object for quicksorting a zArray(3). The efficiency of the
implementation is limited by the the efficiency of zCombArray<T>.

PUBLIC INTERFACE

TEMPL class zQuicksort : public zArray<T>, public zCombineArray<T>
{
public:
zQuicksort(const BuiltinArray<T>& a)
const Dac& operator=(const Dac& d) ;

b

NAME

zSum<T> - a D&C object summator.

SYNOPSIS

zSum(const T&);
provides: Dac zSum<T>::combine(const Dac&) const;

DESCRIPTION

zSum is a D&C containet class which sums its member in combine(). The member comes
from zSum <T>’s superclass, zContainer<T>. This assumes that its member actually
has a + operator.
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PUBLIC INTERFACE

TEMPL class zSum : public zContainer<T>
{
public:
zSum (const T& t) ;
zSum(const Dac& d) ;
“zSum();
public:
static const Dac  exemplar;
h

NAME

7 Template, zCombineTemplate, zEvaluateTemplate - a generic D&C hierarchy.

SYNOPSIS

zTemplate<Class>(const Class&);

DESCRIPTION

These classes provide a class hierarchy for performing general D&C on a standard C++
class. This class is used as the formal parameter for these parameterized classes. Most
functionality is provided in the base class zBaseTemplate (an alias to zContainer). The
other classes give an outline structure, the user must provide specializations for the func-
tions divide() and combine(). Note that only g++ will handle general template special-
izations which are more useful in this instance.

The derived classes zCombineTemplate and zEvaluateTemplate are designed to be
used as mix-in classes.

PUBLIC INTERFACE

TEMPL class zTemplate : virtual public zBaseTemplate<T> {
public:
zTemplate(const T& x) ;
zTemplate(const zTemplate<T>&) ;
“zTemplate();
T* operator-> () ;

NAME

7zTpTemplate<T> - a transpose D&C class.
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SYNOPSIS

zTpTemplate(const Dac&r);
provides: Dac zTpTemplate<T>::evaluate() const;

DESCRIPTION

zTpTemplate <T> arranges for its member to be transposed and returned in a container
when evaluate()ed. Tt is used in conjunction with DacMatrix<T> and DacVector<T>.
The template formal is the type of the object to be transposed.

2TpTemplate <T> treats its letter specially for type manipulation. partition() returns
the inverse of the letter’s partition and change_type() changes the type to the inverse of
that which was requested.

SEE ALSO
DacMatrix(3), DacVector(3).

PUBLIC INTERFACE

TEMPL class zTpTemplate : public zEnvelope {
public:
zTpTemplate(const Dacks d) ;
“zTpTemplate();
public:
static Dac exemplar;
b

NAME

zVector<T> - a D&C vector class.

SYNOPSIS

zVector(const Vector<T>&);

provides: Dac zVector<T>::evaluate() const ;
Dac zVector<T>::divide(Dac& 1, Dac& r) const;
Dac zVector<T>::combine(const Dac& r) const;

DESCRIPTION

A zVector <T> provides containership for Vector<T> objects. It also provides D&C
functions for splitting and combining

zVector <T> objects. It is very similar to zArray(3) in operation but is specifically
for maths oriented processing.

SEE ALSO
zArray(3).
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PUBLIC INTERFACE

TEMPL class zVector : /* virtual */ public zContainer<Vector<T> >
{
public:
zVector() ;
zVector(const Vector<T>& v) ;
zVector(const Dac&);
“zVector();
static const Dac exemplar;

NAME

zVerticalMatrix<T> - a D&C matrix class that partitions vertically.

SYNOPSIS

zVerticalMatrix(const Matrix<T>&);
zVerticalMatrix(const char* fn);

DESCRIPTION

A zVerticalMatriz <T> has a single member of type Matrix<T>, which it arranges to
be split up columnwise by the divide() function. zVerticalMatriz <T> is derived from
a zMatrix<T> which provides a mix-in interface for accessing the matrix structure. An
exemplar is provided for dynamic casting with ptr_cast<T>. A zVerticalMatriz will
recombine columnwise although generally evaluate() returns an object of differing type,
as defined by the programmer.

For matrix operations see DacMatrix(3). zVerticalMatrix’s are normally generated
indirectly by the change_type() function from DacMatrix<T>s or DacVector<T>s.

PUBLIC INTERFACE

TEMPL class zVerticalMatrix : public zMatrix<T> {

public:
zVerticalMatrix(const Matrix<T>& m);
zVerticalMatrix(const Dac& d);
zVerticalMatrix(const char* fn);
“zVerticalMatrix();

public:
static const Dac  exemplar;

b

NAME

zVirtual Array<T> - a D&C delayed evaluation array class.
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SYNOPSIS

An abstract base class containing a virtual array.

provides: Dac zVirtual Array<T>::divide(Dac&, Dac&) const;
requires: Dac zVirtual Array<T>::make() const;
DESCRIPTION

A zVirtualArray <T> is derived from zArray<T> and so inherits the functionality of
that class. However, it differs from the zArray<T> * class in that the array data is not
instantiated until the array() function is called. In the meantime, a filename, position
and size are used to represent the array.

SEE ALSO
zArray(3).

PUBLIC INTERFACE

TEMPL class zVirtualArray : public zArray<T> {
public:
BuiltinArray<T> realise();
BuiltinArray<T> data() const;

b
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