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Abstract

A novel method is described for obtaining superior classification per-
formance over a variable range of classification costs. By analysis of a
set of existing classifiers using a receiver operating characteristic (ROC)
curve, a set of new realisable classifiers may be obtained by a principled
random combination of two of the existing classifiers. These classifiers lie
on the convex hull that contains the original ROC points for the existing
classifiers. This hull is the maximum realisable ROC (M RROC).

A theorem for this method is derived and proved from an observation
about ROC data, and experimental results verify that a superior classifi-
cation system may be constructed using only the existing classifiers and
the information of the original ROC data. This new system is shown
to produce the M RROC, and as such provides a powerful technique for
improving classification systems in problem domains within which classifi-
cation costs may not be known a priori [Lovell et al., 1997b, Lovell et al.,
1997al.



1 Introduction

A large fraction of decision support systems, particularly those used in medical
diagnostics, are two-class pattern classification systems. Once a set of features
and the functions form of the classifier have been chosen, the classifier is designed
to optimise some cost function. When the costs of the different types of errors
can be specified exactly, the optimum classifier may be designed to minimise
the expected risk [Duda and Hart, 1973]. The particular feature set and the
functional form chosen then define how well the performance of the classifier
approaches the Bayes’ performance.

In many real world applications, however, that cost of different types of errors
is often not known at the time of designing the classifier. One also finds appli-
cations where the costs might change over time. Further, some costs cannot be
specified quantitatively. In such situations we resort to specifying the classifier
in the form of an adjustable and a receiver operating characteristic (ROC) curve
obtained by setting the threshold to various possible values. An example of such
an ROC curve is shown in Figure 1. In the example, the classifier must classify

True positive rate
o o o o o o o o
N w » (9] (2] ~ o o
T T T T T T T T

o
o
T

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False positive rate

Figure 1: An ROC curve for a medical diagnostic test for abnormal thyroid
condition. The true positive rate corresponds to the probability that a sick patient
will be diagnosed as sick, the false positive to the probability that a healthy
patient will be diagnosed as ill.

a patient’s condition as either adverse or benign. The data in the example was
obtained from the UCI Machine Learning repository, and represents the results
of a number of diagnostic tests for abnormal thyroid conditions. A linear clas-
sifier was used, producing a continuous output, and a threshold is placed upon
the output to determine the final classification. Two rates can be calculated for



any series of classifications: the true positive and false negative rates. When an
adverse case is correctly classified as adverse, a true positive has occurred, and a
false negative when a benign case is incorrectly classified as adverse. By varying
the level of the threshold, different degrees of true positive and false positive rates
can be achieved, producing the ROC.

The ROC curve has been shown to be a useful mechanism in comparing the
performance of different classifiers [Bradley, 1996, DeLong et al., 1988, Hanley
and McNeil, 1983, Lovell et al., 1997b, Halpern et al., 1996, Provost and Fawcett,
1997, Swets and Pickett, 1982]. The area under the ROC (AUROC) curve is
also known as the Wilcoxon statistic [DeLong et al., 1988, Hand, 1997, Hanley
and McNeil, 1982, Hanley and McNeil, 1983]. Lovell :et al, for example, use this
statistic as a criterion for feature selection in a large obstetrics problem involving
48 features and 700, 000 cases.

AUROC, however, is a gross simplification of the information conveyed by a
ROC, as noted in [Hand, 1997]. The costs of different operating points need to be
taken into consideration. Hand further suggests this to be an important factor
when the ROC curves of the classification systems that are being considered
cross. Such an example is illustrated in Figure 2
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Figure 2: The ROC curves of two classification systems cross.

This paper is about combining classifiers to achieve desirable operating points
that do not fall on any of the ROC curves of the available classification systems.
More specifically, we show that a convex hull may be formed, encapsulating the
‘best’ operating points of many classification systems. We provide a theorem to
show that an operating point on the convex hull is realisable in practice. We also
on an artificially constructed data set, and on the real world thyroid diagnosis
data.



2 Realisable classifiers

2.1 An observation about points in ROC' space

We think of an ROC' curve as representing curve joining a set of points in an
ROC space. A point (fp,,tp.) represents an existing classifier ¢, that classifier
producing false positives with a probability Pr(false positive = fp.), and true
positive with probability Pr(true positive = tp.).

Take two classifiers, ¢, and ¢, each with distinct false positive and true pos-
itive rates. These two classifiers are the end points of a straight line in ROC
space, Lqy. The line Ly, defines a set of classifiers, i.e. point (fp.,,tp.,) € Lap
represents the classifier that would produce those true positive and false positive
rates.

We observe in this paper, that, given only ¢, and c;, one may realise the
output of classifier ¢, by randomly choosing between the output of ¢, and c.
The probability of choosing the output of ¢, over that of ¢, is determined by the
distance along L, between c, and c,'.

Theorem 1 The realisable classifier. Two existing classifiers, ¢, and ¢y, produce
true positive and false positive rates (tpa, fp.) and (tpy, fpy) respectively for a
series of m inputs x1..x,,. In a 2 dimensional plot of false positive rate against
true positive (ROC space), call the straight line linking (fpa,tp.) and (fpy, tps)
L.

Any point (fp,,tp;) on Ly, corresponds to the point that would be produced
by a classifier r. Call the set of classifiers corresponding to n points on Ly,
R = {Tl,..,T'n}.

Given ¢, and cy, the output of a realisable classifier, r; € R, for any input z;,
s a random variable that assumes the output of one or other of ¢, and c, with
probability

Pr(rt) =al)) = o=

Pr(ri(-) = c(-)) = 1= Pr(r(-) = a()),
where fp,, is the false positive rate of r;.

The proof of Theorem 1 is straightforward. To construct the output of a
realisable classifier r;with false positive rate fp,,, randomly select between the
outputs of ¢, and ¢, with the given probability. The expected false positive rate
produced by doing so is

Elfpl = Pr(ri() = c() * fps + Pr(ri(-) = ca(-)) * fPa

!There exists a parallel to this in classical statistical hypothesis testing [Ferguson, 1967].
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Figure 3: An example of a realisable classifier. The point r; on the line joining
¢, and ¢, may be realised by the application of Theorem 1

Jpri = fpa SPr; = [Pa
= Tt T ) e
_ fpb(fpri — fpa) + fpa(fpm — fpa) — fpa(fpb - fpa)
fPy — fpa
— (fpb - fpa)(fpm — fpa) + fpa(fpb - fpa)
fpy — fpa
= fp, Q.E.D.

And similarly for the true positive rate.

Figure 3 illustrates an example of a realisable classifier. The realisable clas-
sifier r;, with false positive rate fp,, = 0.4, lies on the line between classifiers
¢, and c¢,, with false positive rates fp, = 0.3, and fp, = 0.5 respectively. To
realise the output of r;, calculate the probabilities for selecting the outputs of the
existing classifiers using Theorem 1,

=0 = Szl
~04-03
= 0503
= 0.5

Prin() =e()) = 1= Pr(n() = a()
= 0.5.

To obtain the classification output of 7; on a set of unseen cases, x = {z1, .., 2,},



the classifications of ¢, and ¢, would be calculated

co(x) — {(x1 = Adverse), (zo = Adverse), (r3 = Benign), .., (x, = Adverse)}
cp(x) — {(x1 = Benign), (zo = Adverse), (x5 = Adverse), .., (z,, = Benign)}.

Using the probabilities calculated above, the output of r; is then determined by
randomly selecting one of the outputs, like so:

ri(x) — {ca(z1),c(22), Cal(T3), -y co(Tn)}
ri(x) — {(x1 = Adverse), (zo = Adverse), (z3 = Benign), .., (z,, = Benign)}.

2.2 The maximum realisable ROC

We can now realise all classifiers that lie on straight line segments with end points
formed by existing classifiers. What advantage can be gained by this? Take the
example illustrated in Figure 3. This is the ROC produced using a linear model
on the 1 dimensional classification problem shown in Figure 4. The steps in the
ROC occur because the linear model cannot capture the multi modal nature of
the data.

We currently have a set of classifiers provided by the linear model, corre-
sponding to the range of false positive rates from 0 to 1. The current ROC' curve
is produced by this set, and can be used to select the best available classifier for
a particular false positive rate. It is possible, however, to obtain a new set of
classifiers that will give better performance in terms of true positive rates than
those provided by the linear model.

Calculate a convex hull [O’Rourke, 1995] such that it contains all the points
on the current ROC. The vertex points of the convex hull will be points cor-
responding to existing classifiers generated by the linear model. The facets of
the hull are line segments with an existing classifier at each end point. We know
from Theorem 1 that all the points on these lines represent realisable classifiers.
It is immediately obvious that a realisable classifier r, with false positive rate
fpr, lying on a facet of this hull will have a greater true positive rate than the
classifier with false positive rate fp, found on the original ROC.

Given a classification algorithm such as the linear model, and the ROC curve
produced by this, then the convex hull enclosing this ROC' represents a set of
realisable classifiers that will at all times be either equal or superior to those of
the linear model, and that are generated by a subset of the original classifiers.
The convex hull describes the maximum realisable ROC (M RROC') given the
available existing classifiers.
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Figure 4: Top: an example of 2 class multi modal data. This data will present
problems to linear classification systems. Bottom: the ROC curve produced by
varying the threshold on the output of a linear model of the multi modal data
shown. The ROC has a step like appearance because the linear model fails to
capture the nature of the data.

3 Experimental results

3.1 Artificial data

Multi modal data was generated for the 1 dimensional, 2 class classification prob-
lem of Figure 4. A linear model was trained using 5000 training examples. By
varying the threshold used on the output of the model when presented with 5000
test cases, the ROC' curve of Figure 3 was obtained. The true positive rate was
the rate of correct classifications of class 1, the false positive rate was the rate of
cases of class 2 being incorrectly classified as belonging to class 1..

Using the ghull software [Barber et al., 1996] the convex hull containing all
the points in the ROC was obtained. Each vertex in the hull represented an
existing classifier. Each of these existing classifiers was defined by the threshold
used, on the output of the linear model, to yield a final classification for each
test case. The hypothesis to being tested was that all the points on the facets
of the convex hull, corresponding to classifiers that were not currently available,
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Figure 5: The convex hull containing the ROC of a linear model is found. This
hull is the M RROC of the set of realisable classifiers produced from the set of
existing linear classifiers

could be realised by application of Theorem 1 of this paper to the set of vertex
classifiers. The M RROC indicates the expected performance, over the complete
range of false positive rates, that one might hope to achieve using this approach.
Figure 5 plots the M RROC over the ROC of the linear model on the test data.

To validate the hypothesis that the characteristic curve indicated by the
MRROC could actually be obtained, a third data set of 5000 validation cases
was generated. This validation data was processed by the linear model. The
thresholds corresponding to the existing classifiers in the convex hull were each
applied to the outputs of the linear model, producing a number of sets of classi-
fications. For any point on a facet of the hull, a classification for an individual
validation case could be obtained by randomly selecting one of the classifications
made by the two existing classifiers at the end points of the facet. As described
above, this methodology leads to the realisation of the set of classifiers on the
facets of the hull.

Figure 6 plots the characteristic curve given the set of realisable classifiers
indicated with the M RROC against the ROC' of the linear model, on the valida-
tion data set. It can clearly be seen that the set of realisable classifiers produce
an ROC' consistent with the M RROC', and superior to the ROC' of the linear
model. The M RROC' appears slightly jagged. This is entirely consistent with
the nature of the classifiers used to form it. The classifiers are random variables,
whose central tendency will be to lie on the M RROC.
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Figure 6: The M RROC plotted for an unseen data set. The M RROC is consis-
tent with that predicated.

3.2 Thyroid data

A medical data set describing patients with abnormal thyroid conditions was
obtained from the UCI machine learning repository. The data was originally do-
nated by P. Turney, containing 7200 instances, and had three classes, hyperthy-
roid, hypothyroid, and normal. Each instance had 21 features. For the purpose of
this experiment, the hyperthyroid and hypothyroid classes were merged to form
the class Adverse, and the normal classes kept to form the class Benign. The
data was randomly split into three data sets, Train, with 3800 instances, Test,
with 1700 instances, and Unseen, with 1700 instances.

Two classification systems were made, System 1 and System 2. In each case
a simple linear model was trained using a single feature to describe the data.
Feature 18 was used for System 1, and feature 19 for System 2. Both systems were
tested using the Test data. Figure 7 shows the ROC curves for both classification
systems using the results on the Test data to calculate the true and false positive
rates.

Figure 8 shows the M RROC' predicted by the convex hull containing the
ROC points for both systems on the Test data. The vertex points on the hull
corresponded, as described in this paper, to existing classifiers. It was required
to validate the hypothesis that all the points on the facets of the convex hull were
realisable classifiers (by Theorem 1) could be achieved in practice, resulting in
the MRROC.

The Unseen data set was presented to both System 1 and System 2, and
Theorem 1 applied to find the output of the realisable classifiers on the hull.
The ROC curves for both of the original systems, and for the set of realisable
classifiers on the hull are plotted for the Unseen data in Figure 9. It can be



seen that the ROC produced by application of Theorem 1 is consistent with the
predicted M RROC, validating the hypothesis.
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Figure 7: The ROC curves for both classification systems using the thyroid Test
data.

4 Conclusions

This technique for producing enhanced performance given a set of existing classi-
fiers and the ROC formed by them may have profound implications for designers
of classification systems in domains where classification costs may not be known
a priori, or may change with time. A principled method for combined multi-
ple classifiers chosen from the ROC curves of different classification systems has
been described in this paper. It has been shown theoretically that an enhanced
performance curve, the M RROC can be achieved by application of the realis-
able classifier theorem, and empirical results provided, on both artificial and real
world data, to validate this hypothesis. Given two ROC' curves that cross, the
M RROC produced using both will be superior to either alone, and may realise
classifiers that were previously unavailable.

The power of this technique is highlighted by the experiment on artificial
data, described above. Given the multi modal nature of the data and the linear
classifier used, the realisable classifiers lying on the facets of the convex hull
represent classification performance that is not possible with the original linear
classifier. The gain in performance is not at the expense of clarity or simplicity,
nor does it require some degree of expert knowledge to be teased out of the
system. The gain is obtained by a clear, simple and principled analysis of the
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Figure 8: The convex hull over both original ROC' curves. This is the predicted
MRROC.

currently available system (via the ROC), and the utilisation of the information
acquired by that analysis.

The experiment using thyroid diagnosis data indicates that this method is
both applicable and feasible in real world applications.

It is planned to apply this technique to a number of existing medical diagno-
sis problems, such as those reported in [Lovell et al., 1997b, Lovell et al., 1997a,
Melvin, 1996], and to examine the applicability of this methodology to feature
selection problems, in the hope that this may produce novel techniques for se-
lecting multiple feature sets across a range of costs. This method will be used to
predict the M RROC for the liver transplant rejection data described in [Melvin,
1996, and will be included in the blind trial of the various diagnosis systems
being considered. It is expected that the M RROC' will produce a superior diag-
nosis system than any of the individuals systems alone, thereby justifying its use
in real world problem domains.
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