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Abstract

Three dimensional ultrasound imaging with a freehand probe! allows a flexible approach to medical
visualisation and diagnosis. Given the imperfect accuracy of proprioceptive devices used to log the position
and tilt of the probe, it is important to utilise the position constraints provided by image evidence. This
is also important if we wish to consider the visualisation of structures which move significantly during
acquisition, such as a heart or foetus. We present here an initial approach to more robust segmentation
and shape recovery in a particularly noisy modality. We consider 2D segmentation based on edge evidence,
using first an active contour, then finding an optimal segmentation using simulated annealing.

Correspondence between contours in adjacent frames can only be solved in general cases by use of a
3D prior model. Dynamic physics-based mesh models as used by Pentland [20] and Nastar [17], allow
for shape modelling, and over-constrained 3D shape recovery can then be performed using the intrinsic
vibration modes of the model.

1 Motivation

One of the skills of the clinical ultrasonographer is the ability to interpret two-dimensional slices through
complex three-dimensional structures. However, the presentation of true three-dimensional information
(even after rendering or slicing to produce a viewable two-dimensional image) is of definite benefit to other
practitioners (e.g. surgeons) who may need to use the data. It is also of likely benefit to the ultrasonogra-
pher in easing the interpretation of particularly ambiguous or complex structures.

The most important clinical application of segmentation in three dimensional imaging is the ability to
accurately estimate volumes for various anatomical structures (e.g. prostate, thyroid or lesion volumes),
whether in the planning of treatment, or when estimating treatment effectiveness. Automatic techniques
for segmentation have the very significant advantage of repeatability over traditional hand-segmentation
approaches, and eliminate the problems of inter-operator variation.

A second benefit of automatic segmentation is that it allows much less computationally intensive ap-
proaches to three-dimensional visualisation. The number of operations required to map a comparatively
small number of control points describing a segmentation curve into three dimensions is significantly lower
than that required to map every pixel within each acquired image. A third benefit that may be derived
from such a segmentation, even in the event that one does map all of the original image data into three
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dimensions, is that the superposition of the segmentation data on the rendered image data can make in-
terpretation of this data easier.

A number of problems arise from the flexibility of the freehand approach, the most important of which
is the accuracy of position data returned by the proprioceptive device attached to the probe [11]. Errors
in magnetic proprioception can be caused by the presence of large metallic objects, by passing near the
origin of the probe’s coordinate system, or by random noise in position data returned by the probe.

Other problems specific to our setup arise from the use of video tape to record images during scanning,
and the audio track to log position information. Logging errors give rise to spurious frame positions,
emphasising the need for feedback confirmation using image evidence. We are currently implementing a
system which allows direct logging of image and position data to workstation memory.

2 Review

Approaches to 2D boundary detection in ultrasound images are briefly reviewed by Feng et al [8] who
apply fuzzy reasoning techniques to left ventricular boundary detection. The referenced approaches utilise
assorted optimisation methods, and general or application-specific heuristics in segmenting structures based
on edge information.

Friedland and Adam [9] apply Simulated Annealing (SA) as an optimisation technique [10, 25] to find
an appropriate segmentation based on edge evidence and continuity considerations. We apply this for-
mulation, using a general initial contour and modified energy functionals. We also examine segmentation
using a closed “active contour”? formulation [13].

In simple cases, the segmented boundaries can be linked between adjacent frames using simple heuristics
of volume minimisation or continuity [4, 14, 18] or computing a 3D Delaunay triangulation between adjacent
contours [3]. Correspondence between contours in adjacent frames can only be solved in general cases by
use of a 3D prior model of the structure under investigation, since there are frequently a number of plausible
permutations when more than one contour exists in a scan window (Figure 1).

Figure 1: Possible erroneous interpolation

2An active contour both searches and segments during its evolution.



This approach frees us from the constraints in our sequential 2D segmentation that
e we acquire most of the structure’s closed boundary within the scan window,

e the imaged structure has simple topology with simple and well-behaved branching behaviour,

e during the scan pass a single direction is used.

Further advantages in using a 3D prior model are that

e for volume (as opposed to surface) models, structural information from internal boundaries can be
incorporated to limit torsional degrees of freedom in contour correspondence,

e boundary initialisations are no longer derived from adjacent frames; this would otherwise be unsat-
isfactory if frames are undersampled compared to boundary variation,

e positional constraints established within a frame can be propagated throughout the entire structure
in a consistent way.

The 2D “active contour” can be extended into 3D as an “active balloon”. Cohen and Cohen [5], and
MclInerney and Terzopoulos [15] utilise an inflating active balloon to segment medical structures. The addi-
tional constraint of surface normal direction given by a 3D edge, makes a 3D edge segmentation attractive.
Given that 2D edges in ultrasound are unreliable however, 3D edges will be even more so, unless (preferably
3D) texture discriminators are incorporated. Applying SA in 3D segmentation would be computationally
expensive, and would be very much dependant on a good initialisation to give a small search region within
which annealing occurs.

We use 3D mesh models whose dynamics can be solved using the Finite Element Method (FEM).
Nastar and Ayache [17] have applied such deformable models in segmentation and tracking in ultrasound
and magnetic resonance images. Pentland et al [19, 20], and Metaxas and Terzopoulos [16] have applied
superquadric meshes to 3D model fitting and tracking, as well as other applications.

We aim to use the intrinsic vibration modes of the dynamic model as an ordered set of deformations,
a number of which can be used to over-constrain the shape recovery procedure, given the number of
correspondences between model and data. This global segmentation can then be fine tuned locally within
each 2D slice, since the limited set of deformations used cannot encompass all local variations. In any case,
our image data is acquired along a set of scan planes, and does not constitute a true volumetric image.

3 2D Segmentation

2D images acquired from the ultrasound scanner have been interpolated from polar scans into cartesian
form by internal circuitry®. The uncertainty in each pixel value therefore varies over the image, and the
scale-space and preprocessing operations that are described below ought to take this into account. We
would ideally be able to operate directly on the radial data from the probe, but since we cannot yet do so,
we work under the assumption that our data is uniformly sampled in cartesian form.

3 An unknown amount of image preprocessing also occurs in scanner, digitiser and VCR circuitry.



Figure 2: (a) original (b) anisotropic diffusion (c) high-pass filter (d) histogram equalisation

We preprocess the images to facilitate boundary detection. The use of anisotropic diffusion followed by
high-pass filtering and histogram equalisation, has been found to be effective in promoting edge features [7],
provided appropriate scale and filter parameters have been established (Figure 2).

3.1 Active contour

We implement four functions weighted relative to each other, which constitute the internal and external
“forces” acting upon the active contour (Figure 3). One function describes the attraction to local edges®,
another minimises the local curvature at the current control point. This second function tends to maintain
a circular contour in the absence of other information, but we can incorporate a more specific bias if a
prior model is available (see section 4).

Figure 3: Active contour with radial forces acting on control points

The third function “inflates” the contour so that it seeks outward from its initial placement, and allows
coarse control over the noisy local minima which the contour should ignore. The final function biases the
contour in favour of a configuration similar to that in the previous frame. This function is made redundant
if we implement a prior model as noted above.

The disadvantage of this formulation is that the contour must be initialised sufficiently close to the
required boundary. Weight parameters defining the relative importance of each “force” need to be set so
that the correct choice is made as the contour evolves over a number of possible candidate boundaries.
These parameters will vary from image to image, making this an awkward basis for a semi-automated
segmentation procedure.

*They serve to deform the active contour by assigning radial displacements to each control point on the contour. They are
not true forces since no record is kept of accumulated momentum.
A global isotropic edge map of the image is built during anisotropic diffusion.



3.2 Simulated annealing

SA is an optimisation technique that guarantees convergence to a global minimum provided an appropriate
cooling schedule [25] is adhered to. In practice, faster schedules need to be used for tractable computation,
and since the ideal cooling schedule is only a sufficient condition, global optima can still be achieved.

We use a closed contour as before, but reformulate the “forces” from section 3.1 as Gibbs functions.
This defines a Markov dependency over adjacent control point triplets, allowing the use of SA to optimise
over a search range defined on both sides of the initial contour. See Friedland and Adam [9] for a more
detailed explanation.

Such a formulation is attractive since it enables prior knowledge to be explicitly stated in probability
distributions, and allows flexibility in the form of additional constraints or discriminators imposed on the
segmentation process. For example, the probability distribution of intensity levels around each control
point® is used by Cootes et al in an active contour [6] which restricts deformation modes to the most
statistically likely ones, derived by principal components analysis (PCA) of a sample of typical boundaries.
The use of 3D deformable meshes in the next section allows physics-based mesh constraints to be imposed
on the position of each mesh node (control point). Texture measures can also be incorporated as boundary
discriminators.

Figure 4 shows a sequence of detected boundaries from scans of a pig’s heart suspended in a low noise
background. The sequence has been truncated at both ends where the segmentation process does not
discriminate fatty tissue from the actual heart boundary.

Figure 4: Detecting boundaries in image sequence of pig’s heart

For reconstruction purposes, contours in adjacent frames are connected by first corresponding control
points from one contour to another. This set of correspondences is then refined by optimising over an
energy function comprising curvature match, radial distance between corresponding points and smoothness
between adjacent correspondences. Figure 5 shows a surface reconstruction of the pig’s heart.

4 3D Segmentation

During manual segmentation, we find that the consultant can sometimes do so based very much on
expected position. Figure 6(a) from a thyroid scan has hardly any texture or edge segmentation cues
defining the thyroid”.

6 «Point Set Distribution”
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(a) (b)

Figure 6: (a) frame from thyroid scan; (b) thyroid surface model (with carotid on right)

The consultant has a mental model of the structure being imaged, and targets possible modes of varia-
tion from model to image, allowing a rough visualisation from the sequence of 2D ultrasound images. This
is achieved by matching landmarks between model and image, and orientating the model by rigid-body
translation and rotation, as well as performing large-scale (i.e. roughly whole body) deformations of the
model. Finer segmentation in the absence of further landmark correspondences is then achieved by de-
forming the model locally until boundaries “match” in some sense.

We use 3D mesh models consisting of nodal masses connected by links with damping and linear elas-
ticity. The dynamic equations for such a model can be diagonalised, so that nodal quantities (e.g. dis-
placements, forces) in cartesian space, are transformed into modal quantities varying along a set of basis
functions representing the vibration modes of the mesh model. This is known as a modal decomposition [1].

These dynamic equations can be solved using the finite element method (FEM), which defines interpola-
tion functions over the domain of each constituent element of the mesh model. Compared to the technique
of finite differences, which discretises the mesh and poses sampling problems since it cannot allow for forces
to act anywhere other than at the discretisation nodes, FEM can model continuous parameters such as
mass, stiffness, and displacement, over the entire model.



The low-frequency® vibration modes tend to represent whole-body deformations of the model such as
“bending”, “pinching”, “tapering”, as well as the six rigid-body translation and rotation modes in 3D. See
Pentland in [20, 21] for further examples. Reasons are also given in [20] why high-frequency modes can
be discarded in favour of low-frequency ones, if we wish to restrict the number of degrees of freedom the
model has in deformation.

In the absence of a statistical sample, without which we cannot derive a mean model and its statistically
important deformation modes using principal components analysis (PCA) [6], the low-frequency vibration
modes intrinsic to a mesh model form an interesting alternative set of deformations. We are currently
conducting experiments which aim to show that a significant amount of the variance in the sample popu-
lation can be accounted for using the low-frequency vibration modes of a mesh model of the structure in
question [24]. The advantage of being able to derive such a set of deformations from a mesh model, is that
we are no longer required to acquire, segment and normalise a statistical sample for PCA. This leads to a
significantly greater generality of application, since we only need to build a reasonable mesh approximation
to the structure in question®.

4.1 Model construction

Boissonat and Geiger [3] present a method for interpolating between contours in adjacent parallel planes
using Delaunay triangulation. Boissonat et al [2] provide a triangulation algorithm which can do this
with any number of arbitrarily orientated planes, leading to an efficient method of constructing mesh
models from manually segmented contours in 3D ultrasound or MRI. We are currently applying a general
3D Delaunay triangulation algorithm!® to construct the convex hull of the segmented points, after which
smoothing is applied to create a reasonable prior model (Figure 6(b)) [12]. An alternative approach would
be to use geometric primitives such as ellipsoids and cylinders to construct a model. Such a model can
then be deformed to form a reasonable approximation for use as a prior model (see Footnote 9).

We will also need the ability to build mesh models from segmented volume images or artificially con-
structed volume models. Schroeder and Shephard [22, 23] apply octree decomposition and 3D Delaunay
triangulation to fully automated mesh generation. We are working on a variation of this algorithm which
results in a well-formed mesh of either surface triangles or volumetric tetrahedra.

4.2 Segmentation

We are currently investigating the design of a graphical user interface which gives the clinician a volume
rendered view of a set of acquired 2D slices. This system would allow the clinician to establish correspon-
dences between the volume image and a mesh model. This set of correspondences can then over-constrain®!
an initial shape recovery procedure by allowing fewer deformation modes than correspondences, leading to

a method of volume estimation!?.

8Low temporal frequency during dynamic simulation.

9Low order modes are determined by the low-order moments of inertia, and vary little between compact objects with
roughly the same overall shape [20].

'%This does not exploit the fact that segmented points lie on planes, and tends to be computationally inefficient.

"1 Obviating the need for smoothness or symmetry heuristics.

2Using Gauss’ theorem and numerical integration [24].



Given this initial segmentation, we can refine it by applying 2D segmentation methods along each of
the acquired 2D slices, initialising the segmenting contour(s) as the cross sectional boundary of the 3D
model intersected with each scan plane. This is a more computationally tractable approach than a true
3D segmentation, and a more valid one since we acquire image data along a set of scan planes and do not
have a true volumetric image.

5 Conclusion

We have presented 2D segmentation algorithms which are driven by edge cues alone. These will need
to be extended to include texture cues for better and more robust performance in a modality which is
characterised by significant noise problems in both imaging and proprioception. The algorithms are highly
parallelisable, and the SA algorithm in particular allows for flexible incorporation of segmentation cues
and constraints. We also aim to incorporate 3D position constraints by using prior models of the structure
being imaged, allowing a measure of robustness against particularly noisy local patches (e.g. Figure 6(a))
which provide no segmentation cues.
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