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Abstract

This dissertation concerns the development of statistical language models for use in automatic

speech recognition systems. Natural language, which is a complex and variable phenomenon,

has been shown to be modelled best using statistical language models. Large training corpora

(comprising around one hundred million words) are employed as examples of real language

usage to determine the parameters of the statistical models. The models are then used to assign

probabilities to word sequences according to how likely each sequence is.

The focus of the experimental work in the dissertation is on techniques for modelling the

Russian and English languages. An analysis is also made of the characteristics of a well-known

English corpus and a specially collected and processed Russian corpus. Much research has been

done on statistical modelling of English and the techniques are already well developed, however,

when the same techniques are applied to Russian, they fare less well. The large number of

unique words in the Russian language, which is a result of the high number of inflected word

forms, is identified as the primary reason for this performance degradation. This characteristic

of Russian (and many other languages besides) significantly increases the effects of data sparsity

and means that model parameters are generally less well estimated. Nevertheless, data sparsity

issues are not only confined to modelling of highly-inflected languages hence this dissertation

also examines the use of modelling techniques for English.

The well established word
�

-gram language modelling technique uses
�

-tuples of words

to capture local syntactic and semantic dependencies in a language. Such a model, however,

suffers greatly from the effects of data sparsity. After examining the performance of word
�

-

gram models on both corpora, the
�

-gram framework is extended to use classes of words as the

modelling units. The ability of the class model to generalise to unseen word sequences is shown

to reduce the effects of data sparsity and improve the robustness of models. The ‘conventional’

two-sided class model is examined together with the one-sided class model which has received

little mention in the literature. Both class models employ data-driven clustering algorithms to

determine the word classes automatically. The clustering algorithm which is developed for the

one-sided class model performs the clustering operation significantly faster than the algorithm

for the two-sided class model. The performance of both types of class
�

-gram models on the

Russian data is found to be better than on the English data and also better than the Russian

word
�

-gram models. The one-sided class model is shown to offer a competitive alternative

to both the two-sided class model and the word model, especially where the classification of a

large vocabulary into a large number of classes is required.

A novel variation on the
�

-gram modelling theme is also examined in the dissertation where,

instead of using words or classes, the modelling units are chosen to be sub-word units. In this

dissertation, these sub-word units are referred to as particles. The particle
�

-gram modelling

scheme is motivated by the morphology of words which is more evident in the orthography of

Russian words than in English words. A linguistics-based affix stripping algorithm is investi-

gated together with two data-driven algorithms. The data-driven algorithms optimise the set of

particles and word decompositions automatically by maximising the likelihood of the training
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data using a particle bigram model. The resulting particles from each algorithm are employed

in particle
�

-gram models where the probability of a word is given by the product of the word’s

component particle
�

-gram probabilities. The performance of the particle
�

-gram models is

evaluated for both languages, and combinations of word and particle
�

-gram models are shown

to give improved performance for both English and Russian. The improvements obtained with

the particle modelling approach for English are found to be comparable to those obtained with

the one-sided class models.
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Notation

�
An event (e.g. a word trigram or word in some context)

��� ���
The number of times event

�
occurs in a sample��� ���

The actual probability of event
�

���� ���
An estimate of

��� ���
	�


Discount coefficient applied to an event that occurs � times
 
 Number of events that occur � times
� ��������� � Back-off weight for the context

�������
�

A word�����������������
A word sequence starting with word

���
and ending with word

� �
! �

The history of words (
�"�#�������$���������

) preceding word
� �

%
The set of vocabulary words

�'&
The vocabulary size

�'(
Number of words in training corpus)
Number of unique word bigrams in training corpus for fixed vocabulary

* A word equivalence class+
Class mapping (word classification) function

�',
The number of word equivalence classes

- State or history equivalence class.
State mapping or history classification function

/ A particle0
Word decomposition function

�21
The total number of particles in training corpus3
The set of particles4���� �
The number of components (generally particles) in a word

�
5 ��� �

The number of characters in a word
�

6
Entropy�7�
Perplexity484
Log-likelihood9
Interpolation or thresholding parameter
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Introduction

The work in this dissertation concerns statistical language modelling of Russian and English for

automatic speech recognition. In this introduction, the field of language modelling is first briefly

described followed by an overview of statistical speech recognition. The relationship of the lan-

guage model to the other components in a speech recognition system is also described. The

reasons for choosing to investigate Russian and English are then given together with an exami-

nation of the fundamental differences between the two languages. The final section outlines the

scope and the language modelling approaches that are developed throughout the dissertation.

1.1 Language modelling

Two obvious ways in which humans communicate with one another are through writing and

speaking. Both activities involve the production and recognition of sequences of words and

language modelling concerns the development of techniques and structures to model these word

sequences.

Language models have found application in various fields including speech recognition, ma-

chine translation and spelling correction. Depending on the application, the task of the language

model may be to determine whether a particular sequence of words is correct or valid in some

sense: if a sequence satisfies a set of rules then it is allowed and if it does not, it is rejected.

Such rule-based approaches have had limited use, especially where large vocabularies are in-

volved, since rules are necessarily inflexible and the sequences of words produced by humans

are often ungrammatical. The task of the language model may also be to determine how likely

a particular sequence of words is and assign it some probability. This is the concern of the work

in this dissertation together with the development and evaluation of statistical, as opposed to

rule-based, models of language.

The development of statistical language models requires a vast quantity of example word

sequences to make the probability estimates of sequences representative of the language in

general. Fortunately, machine readable text corpora containing hundreds of millions of words are

now readily available for many languages. How representative each corpus is of actual language

usage, will depend on the domain from which the data was collected. For example, business

9
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newspapers will be representative of the style and content of written business journalism and

are unlikely to be representative of conversational speech. It is clear however that real examples

of language usage will be more useful and representative than a set of rules which describe some

examples and inevitably fail for many other examples.

1.2 Statistical speech recognition

Speech recognition has been compared to the action of a “voice” typewriter (Jelinek, 1997) i.e.

the automatic (unaided) conversion of spoken speech into written text. This process, which is

performed with relative ease by humans, represents a formidable task to the designers of such

systems. Large vocabulary1, connected speech recognition systems generally aim to determine

the most likely word sequence
��

, from the huge number of possible sequence hypotheses
�

given a sequence of observed acoustic features � . Acoustic preprocessing is used to extract

the features � from the speech waveform. The acoustic model of a recogniser matches word

sequences with similar acoustic properties to the observed input while the task of the language

model is to determine the likelihood of each hypothesised sequence. One way in which the

recognition process can be represented is by finding that word sequence
��

which maximises

the probability of the sequence given the acoustics �

��������	��
���( � ��� � � � � (1.1)

The conditional probability of the word sequence given the acoustics may be rearranged using

Bayes’ rule to give

����� � � � � ����� � ��� � ��� �
��� � �

�
(1.2)

Since
��� � � is independent of

�
the most likely word sequence may then be determined by

��������	��
���( � ��� � � � � ��� � �
(1.3)

The acoustic model of the speech recogniser computes
��� � ��� �

while
� ��� �

is handled by the

language model.

Recognition involves a search process to determine the hypothesis which maximises the func-

tion given by Equation (1.1). The search process combines information from several different

knowledge sources: the language model, the acoustic model and a pronunciation dictionary.

A number of decoding strategies (Ney and Ortmanns, 1999) are currently popular including

Viterbi beam search, stack decoding and multi-pass strategies that refine hypotheses using pro-

gressively more complex models for each pass. Since the possible search space is so vast, all

decoding methods are forced to restrict the number of active hypotheses allowed at any time.

1Currently, 65,000 words is considered a “large” vocabulary.



Introduction 11

This inevitably makes the search sub-optimal but the trade-off between recognition accuracy,

speed and the computer memory requirements of the recogniser is always present.

1.2.1 Acoustic preprocessing

The signal processing front-end of a speech recogniser is responsible for the extraction of the

features from the speech waveform. The acoustic signal is converted into a parametric represen-

tation which is generally at a lower information rate than the original signal. Further processing

and pattern matching schemes can then be applied to the encoded representation. Most feature

extraction methods involve an analysis of the short term spectral characteristics of the waveform.

A commonly used set of features for representing the local spectral properties of the signal is the

cepstral coefficients and their temporal derivatives.

1.2.2 The acoustic model

In a large vocabulary recogniser the acoustic models usually represent phone units. Word mod-

els may then be generated using a dictionary of word pronunciations. Hidden Markov mod-

els (Rabiner, 1989) represent the most widely used technique in contemporary speech recog-

nition systems for building acoustic models, although other techniques, for example recurrent

neural networks (Robinson and Fallside, 1991), have also been used successfully.

For building systems based on hidden Markov models, the training data usually comprises a

set of parameterised acoustic sequences for which there is generally only a word-level transcrip-

tion. A pronunciation dictionary may then be used to obtain a phonetic transcription from the

word-level transcription. The standard, maximum likelihood training process involves the opti-

misation of the component phone models’ parameters
��� � ��� �

so as to increase the likelihood

of the acoustic training data. Alternative sub-word models to phone models include demisylla-

bles and syllables. Word models are obtained in a similar manner, in each case through concate-

nation of component sub-word models as specified by the pronunciation dictionary. Context-

dependent models both for word-internal and cross-word contexts for modelling coarticulation

effects have also proved necessary to achieve good recognition performance.

1.2.3 The language model

The task of the language model in a large vocabulary recogniser is to estimate the probability

of each hypothesised sequence of words:
����� �

. This probability is used to guide the search

towards linguistically probable sequences of words by assigning them higher probabilities than

are assigned to unlikely sequences of words. The language model must ensure that no sequence

of words is impossible, but that some sequences are more likely than others. The language

model helps to differentiate between acoustically similar words or word sequences according to

how likely the competing sequences are.

During recognition, requests are made to the language model for the probability of a word

given a hypothesised sequence, or path, of previous words. The language model score is com-

bined with the acoustic score for the current word to determine how probable the hypothesised
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sequence of words is. Some search strategies require that the context of previous words used

in predicting the current word be restricted. Separate paths must be maintained for distinct

hypotheses hence pruning of paths is essential to prevent the search becoming computationally

unmanageable.

Before going on to consider the types of structural dependencies between words that will be

used in the experiments in this dissertation, the motivation behind the modelling of the Russian

and English languages will be examined.

1.3 Russian vs. English

No other language has received quite as much attention as English has in terms of the total

research effort expended by the speech recognition community. Over the past decade, however,

more attention has started to be paid to the recognition of other languages although commercial

factors have generally influenced the direction of this research. Russian has received compara-

tively little attention and the first experimental large vocabulary speech recogniser for Russian

was developed only recently at IBM (Kanevsky et al., 1996). Russian is one of several languages

in the Slavic family and possesses significant properties which make it stand out as a potentially

problematic language for recognition. These characteristics are shared to varying degrees by

many other languages, not just the Slavic ones. It is therefore hoped, that methods which are

applied successfully to Russian could also serve well for other languages.

It is worth beginning by making some preliminary observations about the nature of the Rus-

sian language. Russian words often exhibit clearer morphological patterns than can be found in

English words. If a simplified model of a Russian verb is examined (Caflisch, 1995), the presence

of several constituent parts can be determined: a root which can be thought of as responsible

for the nuclear meaning of the verb, attached to which may be zero or more derivational pre-

fix(es) and zero or one suffix, which together form a stem. The stem often acquires an entirely

new lexical meaning with the presence of these affixes. An inflection (inflectional suffix), which

is appended to the stem, determines the grammatical case, gender, number etc. of the word.

All the points in the word where the constituent parts are joined can be considered morpheme

boundaries. Obviously, this is an idealised example, although the “synthetic” nature of Russian is

also clearly visible in Russian nouns, adjectives and participles. An example of the constituents

of a typical adjective are shown in Figure 1.1 for the Russian word “suitable”.

����� ����� �	� 
��

suffixprefix root inflection

word stem

Figure 1.1 Constituents of the Russian adjective meaning “suitable”.
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Naturally, many English words also have a clear morphological structure although it is safe

to say that it is much less productive than in Russian. In general, it is limited to the plural

of nouns and third-person of verbs which are often formed by appending an “s” to the word

stem. The prefixing of the morpheme “un” to word stems, while common, could not be said

to be very productive. English compensates for having less grammatical information encoded

within a word, by imposing strict constraints on the relative order of words in a sentence. In the

sentence, “The boy kicks the ball.”, it is only clear who is doing what to whom from the order

in which the words are written. In Russian, on the other hand, the subject and object of the

sentence can only be determined by each word’s inflection and by agreement with the verb, not

from the order of the words themselves. In fact, the above sentence translated into Russian,

could be expressed with six2 different permutations of the words without loss of meaning:

boy kicks ball

ball kicks boy

kicks boy ball

kicks ball boy

boy ball kicks

ball boy kicks

However, it is the case that some word orderings are preferred stylistically to others, and dif-

ferent emphasis is placed on words depending on their position in the sentence. In (Yokoyama,

1985), it is hypothesised that Russian word ordering is sensitive to: the fundamental ordering of

words (if it exists at all), discourse factors (e.g. anaphora), the lexical and semantic complexity

of words, and intonation.

A final remark on punctuation is necessary. Most speech recognition systems do not include

punctuation in their output unless it is spoken explicitly (referred to as verbalised punctuation).

However, in Russian, the presence or absence of commas could well be a case of life or death,

as in the following example, attributed to Nicholas II, of a decree on the petition of a criminal

sentenced to death: “kaznit’(,) nelzya(,) pomilovat’!3”. The condemned man is sentenced to

death if the comma appears after the first word, and pardoned if it is placed after the second

word. The intention of a speaker may be made clearer from pauses and intonation in speech

but is ambiguous in the absence of punctuation when written. Nonetheless, in the experiments

contained in this dissertation, all punctuation, except for sentence boundary information, is

removed from texts and is not used for modelling purposes.

1.4 Scope of the dissertation

All the models used in the experimental work in this dissertation centre around capturing lan-

guage dependencies which occur in
�

-tuples of some particular modelling unit. Commonly, the

modelling unit is the word and dependencies between words are modelled by
�

-tuples of words

2There is no definite or indefinite article per se in Russian.
3 ���������
	�����������
����������������� �!	���� "�� ��$#&% translates as: “Execute(,) impossible(,) reprieve!” (Ginzburg, 1989).
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as in the ubiquitous word
�

-gram model. The work in this dissertation also considers depen-

dencies between
�

-tuples of word classes and
�

-tuples of sub-word units which are referred to

as
�

-tuples of particles in this dissertation. In language modelling, data sparsity is a recurrent

theme—there is never enough data with which to estimate the parameters of a model sufficiently

well. The aim of using different modelling units is to reduce the effects of data sparsity while

preserving the usefulness of units in capturing language dependencies.

1.4.1 Modelling � -tuples of word classes

The use of classes of words to capture language dependencies is an example of combining units

which have a similar functional use so as to make the probability estimate of an event more

robust. There are generally fewer word equivalence classes than vocabulary words and so the

probability estimate of the class-based events should be better estimated. Importantly, word
�

-tuples that did not occur in the training data, but that do appear in new data, may be well

modelled by a class
�

-tuple. The class model is then said to be able to generalise better to

previously unseen sequences. The ability to generalise is obtained with a sacrifice in the model’s

ability to predict a particular event precisely i.e. there is a corresponding loss of specificity.

Chapters 4 and 5 consider class-based language modelling in detail and investigate two different

forms of class models. In particular, algorithms for generating the word classes automatically

are examined.

1.4.2 Modelling � -tuples of particles

The highly productive morphology of the Russian language suggests the use of modelling Russian

using units which are constituents of the words themselves. In this dissertation, such units are

referred to as particles. The contention here is that modelling dependencies in Russian at the

word level is not optimal since much of the information about a word’s role in a sentence is

locked up within the word itself and not determined by its position relative to other words. By

decomposing words into smaller units, the aim is to unlock some of this information and to

use the units to capture more informative language dependencies. Chapter 6 considers several

methods for decomposing words automatically into particles. Probabilities for word events are

then obtained using particles as the units for capturing dependencies in the language. Although

this technique is motivated by characteristics of the Russian language, the particle modelling

approach is applied to both Russian and English in this dissertation.

1.5 Organisation of the dissertation

This introduction has outlined how the language model fits in with the other components of

a speech recogniser and has explained the motivation behind investigating the language mod-

elling of Russian and English. Chapter 2 presents a detailed introduction to statistical language

modelling with special emphasis on the techniques relevant to the experimental work in the
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dissertation. An investigation of the salient characteristics of the Russian and English language

corpora that are used for the modelling experiments in this dissertation is made in Chapter 3.

Techniques for capturing language dependencies using word classes are examined in Chapters 4

and 5, and modelling of language using sub-word, particle units is then considered in Chapter 6.

Conclusions and projected further work are presented in Chapter 7.
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Statistical language modelling

The need for a language model in large vocabulary speech recognisers has already been outlined,

together with the relationship of the language model to the other components of a contempo-

rary speech recognition system. In this chapter, a comprehensive introduction to the theory

of statistical language modelling is given. The first section describes the metric used to assess

language model performance and the second section gives an overview of the characteristics

and effectiveness of several language models that have been employed in speech recognition

systems. The third and fourth sections look at the problems encountered in robustly estimating

model parameters when there is insufficient training data, and examine several techniques that

are used to overcome these problems. In the final section several frameworks are described for

combining different language models.

2.1 Language model evaluation

The defining test of language model performance is to incorporate it in a speech recognition

system and to perform a full recognition experiment. Only during recognition will the interaction

of the language model with the acoustic model become apparent. Although the performance of

the language model in the speech recogniser is ultimately crucial, it is generally impractical to

evaluate language models in this manner due to the large amount of computation required.

Moreover, the complexity of the recognition task often does not provide a sufficiently objective

measure of language model performance. Some means is required, therefore, of evaluating

language models as quickly and as objectively as possible. This should be done in isolation from

the acoustics, in such a way that it will correspond to the performance of the language model

when it is used in the speech recogniser. An information theoretic measure of language model

performance which satisfies these requirements will be discussed next.

2.1.1 Entropy and perplexity

The probability that a language model assigns to some test text, which did not form part of

the data used to train the model, gives an indication of how well that model predicts or models

16
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unseen data. The higher the average probability that a language model assigns to some test text,

the better that model can be said to be at predicting the text. Ideally, the language model would

capture the underlying probability distributions between the dependencies in a language, if

indeed such distributions can be said to exist. In practice, the use of different model formulations

which capture different language dependencies, and the use of different data to train a model

will generate different probability estimates for the text.

From the point of view of information theory, the language model can be treated as an

information source. This information source produces sequences of tokens
�2�#�������$�����

with

probability
����� ��������� ����� �

. When the source outputs a token it removes the uncertainty about

the identity of the token. For this discussion, the source is a language model which imparts

information about the language for use in the recognition search. The greater the uncertainty

about the next token, the greater the information that the language model is said to have.

The tokens that are produced may, for example, be words, word sequences, collections of

words (word classes) or even parts of words (sub-word units). Since the tokens are most often

words, this discussion will refer to a source that only produces words. Each sequence of words� � ����������� �
can be thought of as the realisation of a random process

�
, where each

� �
is chosen

from a vocabulary
%

of size
��&

. The per-word entropy
6

of this source is defined as the average

expected value of the logarithm1 of the probability that the realisation of
�

is
� �#�������$�����

,

6 � ����� 
����� 	 
��������� ����� � ������� ��� � ��� (2.1)

� ����� 
����� 	 �������������� ��� ��������������� ����� � ����� � ��������������������� � � (2.2)

The summation is over all possible sequences of words, however, if the source is ergodic2

then the entropy of the source is equivalent to

6 ��� �!� 
�"��� 	 ������� ����� � ������� ��� � � � (2.3)

and the entropy can be computed using an infinitely long sequence of words that is generated

by the source. Obviously, the computation cannot be performed for an infinitely long sequence

of words so  will be finite but should be sufficiently long. The estimated per-word entropy is

then

�6 �#� 	

����� � ���������������$����� � �

(2.4)

The per-word entropy of the language model is a measure of the average difficulty or uncer-

tainty that the speech recogniser experiences in determining a word from the same source. The

1The binary logarithm is used here for consistency with the following definitions and entropy is therefore mea-

sured in bits.
2A source is said to be ergodic if its statistical characteristics can be determined over a sufficiently long sequence

temporally, instead of from an ensemble of sequences.
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underlying structure of a language and its statistics are never usually known, hence estimates of

the probabilities of the word sequences
����������������$����� �

are used instead. The estimated entropy�6
must then be greater than or equal to the entropy

6
,

6�� �6 �
(2.5)

because the probability estimates of the sequences can never be better than the actual proba-

bilities of the word sequences. Another interpretation (Jelinek, 1997) is that the entropy of the

source is a measure of the misestimation of the underlying probabilities
����� �

, by the language

model probabilities
������ �

6�� � 	
 �� � ��������� ��� ����� � ������� ��� � � ����� �

������ � ����������� � � �
(2.6)

The perplexity (Bahl et al., 1983)
�7�

of a language model, which is directly related to the

entropy, is defined as

�7� �����	 � ���������������� ����� � � �� �
(2.7)

which can be thought of as the average branching factor of the language model—the equivalent

average number of equally probable words that follow any given word. The difficulty of the

recognition task can now be interpreted as that of a source which chooses words independently

of each other and with equal probability from a vocabulary of size
� �

.

It should be noted that neither entropy nor perplexity take into account the acoustic diffi-

culty of recognising a word. It is possible that a language model that differentiates between

acoustically similar words (homophones) or word sequences, may result in a lower word error

rate than a model that has a lower perplexity. Moreover, perplexity does not highlight varia-

tions across a corpus and it has been suggested that a more informative method would use a

histogram over local probabilities (Ney et al., 1994). An in-depth analysis of the relationship

between recognition accuracy and perplexity is given in (Clarkson, 1999).

2.2 Statistical language models

In the previous section it was shown that the language model is evaluated according to the

probability that it assigns to the sequence of words,
�����7��������������� �

. There are many different

ways in which the probability of a sequence of words can be generated, however it should be

clear that it is impractical to generate, let alone store, the probabilities for all possible sequences

of any number of words.

The chain rule of probabilities can be used to decompose the joint probability of the word

sequence into a product of conditional probabilities
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� ��� � �������$��� � � � ����� � � �
�
�
��� � � ��� � � � � ������� ��� ����� � � (2.8)

The probability of each successive word is conditioned on all the preceding words, which

will be referred to as the word history. The sequential manner in which words are predicted is

particularly appropriate to the way in which the search for the most probable word sequence

is performed in the speech recogniser. However, the number of parameters which are required

to be estimated in such a model is still excessive. Some means of reducing the number of

parameters is necessary through an appropriate choice of the type of language “events” which

are to be modelled.

It must be made clear that the purpose of the language model in a speech recogniser is to

apportion probabilities among all possible future events given a history of hypothesised words.

It is not the aim of the language model to extract meaning from word sequences or uncover the

underlying structure of language and inevitably it is only the “surface” probability distributions

that may be modelled. Despite it seeming that the language models presented in this section are

divorced from a rigorous linguistic interpretation, grammatical concepts have often guided their

design.

Before examining how the types of conditioning events may be selected, the concept of

Markov chains and its relationship to language modelling will first be introduced.

2.2.1 Markov chains

Markov chains3 and hidden Markov models (HMMs) have already been mentioned in Section

1.2.2 in relation to the acoustic model of a speech recogniser. They also provide a useful math-

ematical tool for interpreting the action of language models and as such, will be referred to in

several places in this dissertation. Only the notation and relevance of the techniques to language

modelling will be considered here. For a detailed description of the mathematical properties of

Markov models, parameter estimation techniques and search algorithms, the reader is referred

to (Rabiner, 1989; Jelinek, 1990).

Many language models can be fully described using a Markov chain interpretation of their

operation. The Markov chain can be thought of as a finite state process in which each state of the

model corresponds to an observable event. The transition from one state to the next in a first-

order Markov chain is only dependent on the previous state and not on any of the states prior

to the previous state. The transition between states -�� -�� is specified by the state transition

function � � - � � - � , where each state - corresponds to an observable event. The observations can

therefore be related directly to the state sequence.

The hidden Markov model is an extension of the Markov chain in which the observation

is a probabilistic function of the state. The underlying stochastic process determining the state

3It is somewhat appropriate that A.A.Markov, the Russian who developed the concept, used it to model sequences

of vowels and consonants in Pushkin’s poem “Eugene Onegin” (Jelinek, 1990).
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sequence is hidden from the observer and can only be observed through another set of stochastic

processes that produce the observation sequence (Rabiner, 1989). Hidden Markov models are

useful for describing language models in which more than one state may be active at any time.

In a language model the observable outputs are usually words chosen from some vocabulary.

A state in the Markov chain interpretation of language models typically corresponds to a word

history or a mapping of the word history.

2.2.2 History equivalence classes

The difficulty of obtaining probability estimates for every conceivable word history in Equation

(2.8) has already been mentioned. One solution is to classify word histories into equivalence

classes. Given a word history
! � � ������������� ����� ��� �

for word
� �

at position � , the task of language

modelling is described in (Jelinek, 1997) as one of finding the best history classification function. ������������� ����� ��� �

.�� ���#�������$��������� � - � � . �����#�������$��������� � � (2.9)

The classification of a word history should be sufficiently refined so as to be a useful predictor

of the next word, and the classes - should occur frequently enough to allow them to be reliably

estimated.

There are many ways in which the history classification function
.

can be defined, the most

obvious of which is a simple truncation of the word history to the last (
� � 	

) words. This

corresponds to the very effective and widely used
�

-gram model. The definition of equivalence

here is that all histories which end in the same (
� � 	

) words are identical from a language

modelling point of view. Thus, two word histories � � ������� � ��� and � � ������� � � � are equivalent in a

word
�

-gram model if � � ���
	�� �������$� � � � � � ����	�� ������� � � � . This idea can be applied to
�

-grams

of word classes in which each word in the history is mapped to a word class. Then, the definition

of equivalence is that all histories which end in the same (
� � 	

) classes are equivalent.

A more general interpretation of Equation (2.9) involves the mapping of whole word his-

tories into equivalence classes which will be examined further in Section 2.2.6.1. The history

classification function would then be chosen so as to maximise the number of words in the con-

ditioning word history while ensuring that the classification is productive enough to produce

reliable probability estimates. Such a model may be interpreted as the tying of word histories

and pooling of their combined statistics. This model, however, has the drawback of needing

to store a potentially large history classification function to map word sequences into history

equivalence classes.

2.2.3 Word-based � -gram models

As discussed above, if the history classification function maps an entire word history into the last

(
� � 	

) words, the model is referred to as a word-based
�

-gram language model (shortened to
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word
�

-gram model). Truncating the word history in this way reduces the number of parame-

ters so they can be more reliably estimated, while still preserving the usefulness for predicting

the current word. However, even for the trigram model (
� ���

) the number of free parameters

in the model is enormous—with a vocabulary of 65,000 words, there are potentially
� ����� 	�� �	�

parameters to estimate. There will never be enough data to estimate all these parameters even

if the resulting model could ever be stored or the probability estimates retrieved. Methods for

estimating these parameters reliably are considered in Section 2.3.

The trigram model may lead to unintuitive equivalence classes and may not disambiguate

sequences which are grammatically incorrect. The following two word histories

TWO TALL YOUNG STUDENT WENT YESTERDAY TO
�����

TWO TALL YOUNG STUDENT WENT TO
�����

are considered entirely different by the word trigram model, even though from the point of

view of predicting the next word, the two histories are very similar. In addition, each triplet of

words in the above sentences is entirely plausible and each trigram estimate is probably quite

high. Hence the partial sentences, which are obviously both ungrammatical, are unlikely to be

assigned appropriately small probabilities by the trigram model.

Despite these obvious drawbacks, bigram and trigram language models are still the most

effective and widely used language models in contemporary speech recognition systems. Their

effectiveness lies in the way in which the model parameters can be efficiently estimated and

stored, and the simplicity with which they can be incorporated into the search process. The

range of the
�

-gram model is, by definition, restricted; only local linguistic constraints are

captured by the model. However, these relationships are generally powerful enough to guide

the recognition search better than many more complicated models.

2.2.4 Class-based � -gram models

A class-based
�

-gram language model uses
�

-tuples of word equivalence classes to capture

language dependencies in a text4. Since words are grouped into a number of classes which

is smaller than the size of the vocabulary, there are fewer free parameters to estimate. Class-

based models tend to be more compact than word models and the parameters more robustly

estimated. The ability to generalise to unseen word sequences in the training data is generally

better, however this is obtained with a tradeoff in the class model’s ability to predict words

precisely.

A deterministic word equivalence class mapping
+

(hereafter referred to simply as a deter-

ministic class mapping) can be defined as follows:

+ � � � + ��� � �
(2.10)

4An equivalence class of all unknown words is often used in word 
 -gram modelling: words which have no

vocabulary entry are mapped to an unknown word symbol. The unknown word class is therefore the complement of

all the words that are in the vocabulary, and is used to model the collective statistics of all unknown words.
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Given the above class mapping, several different class-based
�

-gram models can be con-

structed for computing
������� � �����������$����� ��� �

, for example

��� ����� � + ����� � � �#��� � + ����� � � + ���������
	�� � �������$� + ����� ��� � � �
(2.11)

��� ����� � + ����� � � � ��� � + ����� � � ��������	��#������� ����� ��� � �
(2.12)

������� � + ���������
	�� � �������$� + ����� ��� � � �
(2.13)

A state mapping (history equivalence class) similar to that given by Equation (2.9) may also

be incorporated into the class modelling scheme

� � ��� � � + ��� � � � ��� � � + ��� � � � . ��� � ���
	�� �������$��� ����� � � �
(2.14)

A probabilistic class mapping maps words into a number of classes each with a certain prob-

ability. Such mappings can take into account the fact that some words have multiple parts of

speech, for example the word light can have up to four different parts of speech: noun, verb,

adjective or adverb. Such a model results in the generation of multiple histories due to all the

different realisations which result from the multiple class mappings of a word. In accordance

with Bayes’ formula, when a non-deterministic class mapping function is used, the prediction of

the current word
� �

requires a summation over the probabilities of all the possible realisations

of the word history producing
� �

(Ney et al., 1994)

� ��� � � � � ������� ��� ����� � � ��� � � ��� � � * � � ��� � � � * � - � � � � - � � � ���
	�� �������$��� ����� ��� � (2.15)

It should be noted that Equation (2.15) reduces to Equation (2.14) in the case of deterministic

class and state mappings.

Several methods have been used successfully in the literature for determining the class map-

ping function. These methods can be divided into two types: linguistic and data-driven. An

obvious linguistic approach assigns words to classes according to the word’s grammatical part

of speech (POS) (Ney et al., 1994; Niesler and Woodland, 1996a). Such a model is only able to

capture syntactic relationships between words since there is no semantic information encoded

in parts-of-speech definitions. Another variation used in (Placeway et al., 1993) assigns words

with similar semantic properties to the same class, for example, names of months form one class

and names of ships another. The data-driven approach has been used successfully in (Kneser and

Ney, 1993) where words are assigned to classes using a greedy algorithm that clusters words so

as to minimise the training set perplexity. In contrast to the POS classification, both semantic

and syntactic relationships are captured by these classes. A variation on this theme, presented

in (Jardino and Adda, 1994), uses simulated annealing to minimise the training set perplexity.

These approaches will be considered in more detail in Chapter 4.

Class models are often combined with word
�

-gram models using linear interpolation. Such

combinations exploit the class model’s ability to generalise, with the more specific predictive
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characteristics of the word model. Non-linear combinations of word and class
�

-gram models

have been proposed in (Niesler and Woodland, 1996b) and (Blasig, 1999) by incorporating the

class model into the backing-off scheme which will be described in Section 2.3.2.1.

A class model based on word classifications obtained using latent semantic analysis is pre-

sented in (Bellegarda et al., 1996). Relationships between the occurrence of words in individual

documents are first obtained and then clustered according to some similarity criterion. As a

consequence, the dependencies in this model are mainly semantic in nature and longer in range

than the above class
�

-gram models.

2.2.5 Morphological models

The application of morphology to the statistical language modelling of French is presented in (El-

Beze and Derouault, 1990). The motivation behind incorporating morphology in the language

models for highly-inflected languages like French is to compensate for the increased data sparsity

arising from the large vocabulary sizes that are necessary—word
�

-gram models tend to be less

well trained if the vocabulary is very large.

The model in (El-Beze and Derouault, 1990) combines a class trigram component that uses a

probabilistic class mapping with a trigram of word lemmas5 component. The classes include 30

classes for content words (nouns, adjectives etc.) combining a mixture of syntactic and semantic

definitions, and 72 classes for function words (pronouns, prepositions, conjunctions etc.). The

model is described by the following:

������� � �����������$��������� � � � �
�

��� * � � * ��� � � * ����� � � 9 � � � ��� � 	 � 9 � � ��� � � (2.16)

with

� � � ������� � * � � (2.17)
� � � ���

�

����4�� � 4 ����� ��4����
	 � ������� � * � ��4�� � �

where * � is a possible POS of
� �

and
48�

is a possible lemma of
� �

. In addition,
� * � � � � * ����� �

are the POSs of the last two observed words, whereas
��4 � ��� ��4 ���
	 �

are the lemmas of the last

two content words that were encountered, which may not necessarily have been the last two

observed words. The interpolation coefficients
9 � � are dependent on * � and are optimised for

POSs of content words while
9 � � � 	 for POSs of function words. The summations in the above

formula account for words belonging to multiple POS classes and possessing multiple lemmas.

The model is a variation on the conventional word
�

-gram model in which the events are

instead defined as
�

-grams of classes and lemmas so the model parameters can be estimated in

an identical manner to word
�

-gram models.

Variations on the above model, including different model combinations, are presented in

(Cerf-Dannon and El-Beze, 1991) where recognition results are also given. A treatment of the

5A lemma refers to the root-form of a word e.g. the infinitival form of a verb.
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combination of a word
�

-gram and the morphological model is given in (Maltese and Mancini,

1992).

2.2.6 Higher-order � -gram models

Two models are presented here which involve an alternative approach to defining the history

classification function. The first method automatically determines the classification of
�

-gram

contexts and the second method uses a binary tree growing procedure to classify contexts by

asking questions about attributes of the word history.

2.2.6.1 Context clustering

In (Ueberla, 1995) the clustering of word histories (contexts) is considered. In the terminology

of Markov models this is equivalent to a state tying operation in which the states are (
� � 	

)-

tuples of words; Ueberla refers to this model as having context-equivalent states. The clustered

histories can be employed in the following model:

����� � � � � �������$��� ����� � � � � ��� � � + ��� � � � � � � � + ��� � � � . ��� ����� ������� ��� ����� � � �
(2.18)

This model is referred to as two-sided (non-symmetric) (Ney et al., 1994): a state classifica-

tion is used as the conditioning event for predicting the current word’s classification, from which

the current word is then predicted. It is non-symmetric because the state and word classification

functions are different.

The clustering algorithm that Ueberla uses is very similar to the greedy algorithm mentioned

in Section 2.2.4 for word clustering and which will be described in more detail in Chapter 4.

The two main differences are that Ueberla’s algorithm simultaneously clusters words into word

classes and contexts into context-equivalent classes. An heuristic to improve the clustering speed

is also applied. The set of words to be clustered is the vocabulary
%

and the set of contexts
% �

where  is the number of words in the context.

The algorithm proceeds by moving each word in turn (each context in turn) to a set of

candidate word classes (context classes) and leaves the word (context) in the class (context

class) for which the increase in likelihood of the training data is the greatest. The heuristic

speed improvement that is applied computes a list of � candidate classes into which a word
�

is most likely to be clustered. This means that the best class might not be among the candidate

classes, however, the results show that the increase in clustering speed far outweighs the small

loss of accuracy. The heuristic speedup for a unigram context is as follows: for each context class
-�� . , a list of the � context classes - � which most frequently co-occur with - is maintained

i.e. the � highest entries in
� � - � - � � (a symmetric situation applies for

+
). For a word

�
which

is being moved, a list of the � classes which most frequently co-occur with
�

is constructed in a

similar manner. The number of classes which appear in both these lists gives a score indicating

how similar the distributions of
�

and - are. The candidate classes are chosen to be the �
highest scoring classes. Certain other heuristic improvements are also made, for example the �
co-occurring classes are only updated after a certain number of words have been moved.
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Experimental results are reported in (Ueberla, 1995) for bigram and trigram clustering,

i.e. single words and bigrams are clustered using
.

. Only the most frequent 500,000 bigrams are

clustered into 7000 context classes for the trigram model, and the 20k vocabulary is clustered

into 1000 classes. The clustered bigram model is shown to consistently outperform a back-

off word bigram model when there are less than two million words of training data available.

The clustered trigram model only outperforms the clustered bigram model when trained on the

largest, forty million word training set. In (Ueberla and Gransden, 1996) results are reported

for a variation of the context clustering algorithm which initially moves groups of contexts si-

multaneously and progressively refines the groups that are clustered until individual contexts

are moved. The groups of contexts share common sub-contexts and are moved, as before, into

the class for which the increase in training set likelihood is greatest.

2.2.6.2 Tree-based models

In (Bahl et al., 1989), an intuitively attractive approach is presented to the clustering of word

histories using binary decision trees. At each node in the tree, a yes/no question is posed about

a particular word in the history. This results in one of two branches successively being taken

until a leaf node is reached. When a leaf node is reached, the context has been classified. Each

leaf node is associated with a probability distribution with which to compute the probability of

a word in that context.

It is readily accepted that the definition of
�

-gram equivalence classes is naive since histories

which end in the same (
� � 	

) words are deemed equivalent. Word (
� � 	

)-gram contexts which

differ, may in fact be functionally identical from a language modelling point of view as was

highlighted in Section 2.2.3. This results in unnecessary data fragmentation and less reliable

estimation of probabilities. Using a binary decision tree to classify word histories is an attempt

to circumvent these problems by making a more effective classification of the word history and

by incorporating more information about the history into that classification.

Tree construction begins at the root node and requires a “good” question to be determined

about some aspect of the history. When the question has been chosen, the data is split into

two parts according to whether the answer is yes or no for the particular piece of data. These

two branches result in two more nodes for which questions have to be determined, and so the

tree growing process continues until some stopping criterion is met. Any form of question is

allowed about any of the words in the history, consequently the search space is potentially huge.

Questions may, for example, take the form of: “Is the last (second to last) word such-and-such?”,

in which case an
�

-gram model could be built in the tree framework given enough questions

about the identity of the preceding (
� � 	

) words. Trees could also be constructed by very

patient linguisticians, however a data driven, greedy approach is instead employed at each node

to find the optimal question from a set of questions.

Determining the optimal question at a particular node does not take subsequent nodes into

consideration i.e. question selection is greedy and only locally optimal. Bahl et al. describe a

method for allowing the use of composite binary questions using a pylon of questions (succes-

sive yes/no questions-and-answers). Allowing this results in reduced data fragmentation and
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also permits questions of the form: “is the previous word an adjective and this one an adverb?”.

However, the additional computation involved significantly increases the complexity and con-

struction time of the trees. Data sparsity still remains an issue at the leaves of the tree, and

the distributions must be smoothed with lower-order distributions for which the parameters are

chosen by maximising the likelihood of some held-out data.

Bahl et al. report results for a tree that was constructed to predict the
� 	

st word from a history

of 20 words. The tree, which was incompletely grown, performed better than a word trigram

model. An even greater reduction in perplexity was obtained by interpolating the tree model

with the trigram model. This indicates that the different history classifications in the tree model

capture different dependencies between words which complement those of the word trigram

model. It is also pointed out that, if sufficient numbers of parallel processors are available, tree-

growing need not take an excessive amount of time since the optimal question to be determined

for each node is independent of the data and questions at other nodes.

2.2.7 Word-pair association models

The essence of modelling word-pair relationships is the incorporation of longer-term dependen-

cies than are provided for in the conventional
�

-gram model. It was noted above that
�

-gram

models for English tend to capture only local syntactic and semantic constraints. In addition,

there is no dependence on the location of an event in the corpus for an
�

-gram model, since

the probability distribution of words for a given context is constant irrespective of where that

context occurs in the corpus. Models of word-pair associations extend the range over which de-

pendencies can be captured. The dependencies tend to be semantic in nature and allow changes

in topic or style to be tracked dynamically and for the probability distributions to be adjusted

accordingly. A simple
�

-gram word-pair model can be described by

������� � ������� 	��#�������$��������� � �
� ���

�� ���
9 � � ����� � ����� � � � (2.19)

where
� � ���
� ��� 9 � � 	

and
� � � ��� ��� � � 	

and � ��� ��� ��� �	� �
. This model6 forms the basis

of the word triggers and cache models presented next.

2.2.7.1 Word trigger models

The word triggers approach to language modelling develops associations between pairs of words

in which a trigger word boosts the probability of a set of target words with which it is associ-

ated (Lau et al., 1993). The weights
9 � in Equation (2.19) may be chosen to make the contri-

bution of each predecessor word dependent on the distance from
���

.

The method used to select useful pairs is of great importance since the search space of pos-

sibilities is huge (a large proportion of
�
�&
). The average mutual information measure has been

6A special case of the above model in which only the ( 
 ������ 
 � ) dependency is used has been referred to as a

distance-2 bigram model in the literature.
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used successfully in (Rosenfeld, 1994) and (GuoDong and KimTeng, 1999) to select trigger pairs

( � � � )
) according to the expected benefit � � provides in predicting

)
,

� ��� � � � � ) � � ��� � � ��) � ����� � � � � ��) ���� � � � ����) �
� � � � � � ) � ����� ��� � � � ) ���� � � � � � ) �

�

��� � � ��) � ����� ��� � � ��) ���� � � � ����) �
� ��� � � � ) � �!��� ��� � � � ) ���� � � � ��� ) �

�
(2.20)

Self-triggers, in which a word triggers itself, have been shown to be particularly powerful

and robust, while triggers with the same root have also proved useful. In particular, strong

associations were found between a noun and its possessive form and the singular and plural

forms of a noun (Rosenfeld, 1994).

Class triggers have also been investigated in (Rosenfeld, 1994). Classes are obtained using

a linguistic tool to map words to their lemma in an attempt to combine the effects of same-root

triggers into one class. In (Niesler and Woodland, 1997) a class
�

-gram model is used and the

class membership probability of a target word is adapted according to the previous occurrence

of its associated word and class triggers in the text.

The above model form is not the only way in which trigger-target dependencies can be

incorporated. Trigger models have also been built using the maximum entropy approach (see

Section 2.5.4) to combine both word trigger and word
�

-gram constraints into one model.

2.2.7.2 Cache-based models

The self-triggers mentioned above share several similarities with the cache model first developed

in (Kuhn and De Mori, 1990) where the name was coined from its use in computer science.

Cache language models boost the future probabilities of events (commonly unigrams, bigrams

etc.) according to how many times they have been previously observed in the history. It has been

shown that there is a tendency for some words to be repeated locally in a text more often than

would be predicted by a conventional
�

-gram model. It is this phenomenon that is captured

by the cache model. Cache models may also be considered as a method of model adaptation

since the probabilities of words are adjusted in favour of words that have already appeared in

the current discourse.

In experiments conducted in (Kuhn and De Mori, 1990; Kuhn and De Mori, 1992) 200-word

caches were maintained for 19 part-of-speech classes and used to adjust the class membership

probability component in the multiple-class membership model of Equation (2.15)

� ����� � ��� ������� ��������� � � � � ��� ����� � * � � � � � * � + ������� � � � + ��������� � � (2.21)

where

��� ����� � * � � 9 � � ��� ����� ����� � * � � � 	 � 9 � � � ���	� � � ����� � * � � (2.22)
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The cache model probabilities can be computed directly from the occurrence frequency of words

in the � words maintained by the cache for class *

� ��� ����� ����� � * � �
� ���7� * �
�

�
(2.23)

There is no summation over possible realisations of classes of words in the history since

the model relies on assigning the most probable word class to each word. The word is then

inserted into the appropriate cache for that class. The above model can easily be combined

with a conventional word
�

-gram model using linear interpolation: the interpolation weights9 �
are chosen for each class so as to optimise some held-out text and are not themselves adjusted

dynamically during recognition.

Cache models have been shown to significantly reduce the perplexity on a text especially

where the general language model is itself poorly trained. However, the improvement in per-

plexity is not consistently reproduced in terms of recognition results (Woodland et al., 1998).

This may be explained by the fact that a word will only increase the probability of itself occur-

ring again in the future if it was correctly recognised in the first place by the general model. If it

was correctly recognised, then it is likely that it will be correctly recognised again in the future

and thus the cache is unlikely to help.

Since the cache is generally restricted to only a few hundred words there is very little data

with which to estimate
�

-gram probabilities for
��� 	

so unigram caches are common although

higher-order
�

-grams have also been evaluated in (Jelinek et al., 1991). A cache model in which

the effect of the predecessor word decreases exponentially with the distance from the current

word is treated in (Clarkson and Robinson, 1997).

2.2.8 Mixture-based models

Mixture-based models combine several component language models, each of which is specific

to a particular style or topic. The simplest method of combining
�

models
� 	

is to interpolate

them linearly

������� � ���#�������$��������� � �
�

�	 ��� 9 	������������ � ���#�������$��������� � � (2.24)

and to adjust the
9 	

dynamically, according to which component language models correspond

best to the current discourse.

The
�

components can be determined in a data-driven manner using a clustering algorithm

to classify texts which share a similar style or topic. In some cases a corpus may already have

topic tags defined. Texts may also be permitted to belong to more than one mixture component

which can reduce the effects of data fragmentation. One of the
�

models is usually a conven-

tional word
�

-gram which is built using all the available data; word
�

-gram models can then

be built individually for the other (
� � 	

) topic components.
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2.2.9 Probabilistic context-free grammars

A context free grammar assigns one or more syntactic structures to a sentence. The grammar

comprises a set of rewrite rules which map a non-terminal symbol onto one or more terminal

or non-terminal symbols. Non-terminal symbols usually correspond to grammatical definitions

such as parts of speech and terminal symbols are often the words of a language. The context-

free aspect of these grammars means that long-range dependencies (within-sentence) can be

captured and so they are not constrained to the immediately preceding context, as is the case

for
�

-gram models. An example of a structure applied to the sentence “the boy kicked the ball”

is given in Figure 2.1.

boy

NP

NOUN

ball

NOUNDET

NP

VERBDET

VP

S

the kicked the

Figure 2.1 Syntactic structure of the sentence “the boy kicked the ball”.

The non-terminal symbols are: sentence (S), noun-phrase (NP), verb-phrase (VP), determiner

(DET), noun and verb. The terminals are “the”, “boy” “kicked” and “ball”.

A probabilistic context-free grammar (PCFG) assigns probabilities to each of the rewrite rules

and thus a probability can be generated for each parse of a sentence. Summing over all possible

parses of a sentence gives a probability for the sentence. In this way a PCFG can be employed

as a language model. In cases where a sentence has multiple parses (referred to as syntactic

ambiguity) the parse with the highest probability can be chosen. This may also be useful for

extracting meaning from a sentence.

Probabilities for each rewrite rule can be estimated from a training text so as to optimise

the training text likelihood. Training algorithms exist for estimating the rule probabilities, how-

ever they tend to be computationally very demanding (Baker, 1979). The application of PCFGs

to language modelling has in general been restricted to small corpora and small vocabulary

sizes (Wright et al., 1992; Lloyd-Thomas et al., 1995). The incorporation of PCFGs into the

recognition process represents a further problem and most attempts have concentrated on  -best

rescoring of the recogniser output. A comprehensive treatment of the estimation algorithms and

PCFGs is given in (Lari and Young, 1990; Charniak, 1993; Stolcke, 1995).

The link grammar developed in (Sleator and Temperley, 1991) is a highly lexical context-free

grammar which produces a parse of a sentence by forming direct links between pairs of words

in the sentence. In addition, the link grammar has sufficient flexibility to encompass
�

-gram
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models by incorporating links between consecutive
�

-tuples of words. A probabilistic model of

link grammar has also been developed for which efficient training and parsing algorithms also

exist (Lafferty et al., 1992).

Another relatively recent contribution is the structured language model described in (Chelba

and Jelinek, 1999a). The structured model develops syntactic-like structure in a sentence in-

crementally by generating the probability for a word using all possible parses of the partial

sentence up to that word, given its part of speech and the exposed heads from the two previous

parses. Improvements both in terms of perplexity and word error rate (up to 1% absolute) were

obtained over conventional word trigram models on the Wall Street Journal and Switchboard

tasks (Chelba and Jelinek, 1999a; Chelba and Jelinek, 1999b; Jelinek and Chelba, 1999).

2.3 Robust parameter estimation

Having described a broad range of language modelling dependencies in the previous section,

the discussion will now turn to how the parameters which model these language events can

be estimated robustly. An event, in language modelling terms, refers to any of the kinds of

dependencies which are captured by a model e.g. for a word bigram model the events are all

the possible word pairs. When conditional bigram probabilities are discussed, the events are the

individual words that may follow a fixed predecessor word context.

Many of the possible events, for which a probability estimate is required, are not observed

during training. This is particularly true for word
�

-gram models where the training data

contains a very small fraction of the events for which probabilities must be determined. It

is imperative that no event be assigned a zero probability since this would result in infinite

perplexity and would mean that the event could never be predicted at recognition time.

Several techniques have been developed for tackling the problem of estimating probabilities

for unseen events and these will be discussed in relation to word
�

-gram models. Firstly, the

Good-Turing probability estimate is described followed by a range of discounting techniques

which reduce the count of observed events by some factor and assign the leftover probability

mass to unseen events. Secondly, two frameworks are described for combining the probability

estimates of events from different distributions. The final part of this section considers a method

which uses the available data both for model training and validation.

2.3.1 Probability estimation techniques

The maximum likelihood probability estimate for an event
�

that occurs � times in a sample of

size � is the same as the relative frequency

��� ��� � �
�
�

(2.25)

Events which do not appear in the sample are therefore assigned a zero probability by the

maximum likelihood estimator. Observed events are biased high and unobserved events are
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biased low. To correct this bias and assign probability to unseen events, it is suggested in (Katz,

1987) that the count of observed events should be discounted by a multiplicative factor
	 


,

referred to as a discount coefficient

��� � � � 	 
 � (2.26)

which results in a new probability estimate for an event that occurs � times

� 
 � � �
�
�

(2.27)

The Good-Turing probability estimate was first proposed in (Good, 1953) and two alternative

derivations of the estimate may be found in (Nadas, 1985). The basis of the estimate is the

symmetry requirement which states that two events which occur the same number of times in

a sample must have the same probability. Before beginning, it is therefore useful to define the

concept of count-counts  
 for the number of events which occur � times in a sample. The sample

size is then given by � � � 
 �  
 . In particular, the number of zeroton events  � and the number

of singleton events  � play an important role in many discounting schemes.

The Good-Turing estimate modifies the count of an event occurring � times to be

� � � � � � 	 �  
 	�� 

�

(2.28)

The estimate for the total probability of all unseen events is then

� � �  � �  �
�
�

(2.29)

The number of singletons in a sample is thus used as an estimate of the number of unseen

events. To satisfy the above estimate for the total probability of unseen events different discount

coefficients may then be defined

� � �  � � 	 � 	
� � 
�� �  
 � � � 	 
 � (2.30)

2.3.1.1 Good-Turing discounting

The Good-Turing estimate, that was introduced above, can also be used to modify the count of

an event that occurs � times, in which case the corresponding discount coefficient is

	 
 � � � � 	 �  
 	��� �  

�

(2.31)

However, if a data sample is particularly sparse, the Good-Turing estimate will break down

for � in cases where  
 � �
. Since the counts can be expected to be more sparse for large � ,
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Katz suggests that only events which occur � times or less should be discounted, where typically� ���
. Events that occur more than � times are assumed to be reliably estimated by their relative

frequencies, hence the discount coefficient is defined as

	�
 �
��� ����

 	��
	 ���� ���� � � � �

� 	��
	 ���  �� �� �

�
� 	��
	 ���  �� � 	 � � � �

	 � � � (2.32)

It is evident from Turing’s estimate that the relative values of the count-counts must satisfy

the relationship

 � � �  � � � �� ����� (2.33)

otherwise the resulting discounted counts will not be consistent with each other. In particular,
	 


will be negative if �
� 	��
	 � �  �� � � 	

and it is also necessary to ensure that
	 
 � �

for all � . For most

naturally occurring data these constraints are satisfied, however problems do occur for example

in class
�

-gram models when small numbers of classes are used.

2.3.1.2 Linear discounting

The idea behind linear discounting is that event counts should be discounted in proportion to the

count, hence
	 


is constant for all � (Ney et al., 1995). If the Good-Turing estimate for unseen

events is required to be satisfied the discount coefficient is set to

	 
 � 	 �  �
�
�

(2.34)

This has also been shown to optimise the leaving-one-out probability which will be discussed in

Section 2.3.3.

2.3.1.3 Absolute discounting

Absolute discounting subtracts a constant value � from each count, so its effect on higher counts

is less than on lower counts. The discount coefficient is defined as

	�
 � � � �
�

�
(2.35)

To satisfy the Good-Turing estimate for unseen event probabilities, the value of � is set to

� �  �
�
�

(2.36)

where
� � � 
  
 , the number of different events in the sample.

It has been shown in (Ney et al., 1994) that in order to maximise the leaving-one-out likeli-

hood of a text, an upper bound on the optimal value for � is

� �  �
 � � �  � � (2.37)
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2.3.1.4 Witten-Bell discounting

The Witten-Bell discounting scheme was developed in (Witten and Bell, 1991) and first applied

to language modelling in (Placeway et al., 1993). The three discounting methods described

above subtract probability mass from the observed events in a particular context whereas the

Witten-Bell scheme adds a small factor to the conditioning context to account for unseen words

in that context. The conditional probability of a word
�

in a particular context
!

is thus defined

as

������ � ! � � � � ! ��� �
� � ! � ��� � (2.38)

where
�

is the number of distinct events that occur in context
!
, i.e. the number of distinct words

that follow
!

in the corpus. It follows that the probability mass of previously unseen words in

the context
!

is given by:

���� � � ! � � �

� � ! � ��� (2.39)

which is distributed among the unseen events according to a lower-order distribution in a similar

manner to that used in the other discounting schemes.

A discount coefficient may also be defined for consistency with the other methods, in which

the dependency is now on the number of distinct events
�

in a particular context

	�
 ��� � � � � ! �
��� ! � ��� � (2.40)

The technique has been shown to perform as well as the Good-Turing method and is partic-

ularly robust to abnormalities in training data.

2.3.2 Frameworks for probability smoothing

All the discounting schemes that have been described effectively reduce the counts of observed

events in the sample and implicitly assign small non-integer counts to unobserved events. The

frameworks presented now for smoothing event probabilities affect the conditional probabilities

of events. The first scheme relies on the implementation of one of the above discounting schemes

while the second scheme does not require event counts to be discounted and instead combines

the relative frequency estimates of different events.

2.3.2.1 Backing-off

Katz introduced the backing-off scheme in conjunction with Good-Turing discounting in (Katz,

1987). In general, backing-off refers to using a probability estimate proportional to one from

a more general distribution when the estimate from the specific distribution is unreliable or

perhaps non-existent. Backing-off results in a decision being made about which distribution to

use and which not to use.
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In the case of an
�

-gram model, if the estimate for the
�

-gram is deemed unreliable, the

more general (
� � 	

)-gram distribution can be referred to. For example, the trigram offers a

greater refinement in predictive power over a bigram or unigram and the trigram distribution

would be used in cases where the trigram events have occurred frequently enough for their

estimates to be reliable. If this estimate is unreliable, the bigram distribution is used instead

(backed-off to) and if this is also unreliable then the unigram distribution will be used. Usually,

an estimate is deemed unreliable if it is not stored in the language model i.e. if the event count

is zero or if the event has been discarded (see Section 2.4).

The backing-off scheme will now be illustrated using the word trigram as an example. Given

an estimate for the probability of observed events
��

the total probability of unseen events
����

occurring in the context
����� � � ��������� �

is given by

�� � ��� ��� � ��� � ��� � � 	 � ���� � � � � �  � � � � � � �
	 � � ������ � � ��� � ��� ����� � �

(2.41)

The backing-off scheme distributes this probability mass among unobserved events according

to the more general distribution
�������� � ��� ��� �

�������� � ����� � ��������� � � ���� ������� � ��������� �
���� � � � � �  � � � � � � �

	 � � �� ��� � ������� � �
�������� � ������� � �

(2.42)

where the denominator ensures that the probabilities sum to one. For a scheme in which events

occurring more than � times are not discounted the three cases for generating the trigram prob-

ability estimate are given below:

�������� � ����� � ����� ��� � �
����� ����
�

� � � �  � � ��� � � � �
	�

� � � �  � � � � �
	 � ������� � ����� ��������� � � �

	 �

� � ���� � � � � � � � �
	 � � � � ���� � � � � � � � �

	�

� � � �  � � ��� �
	 	 � ��������� � ��������������� � � �

� ������� � ��������� � � �������� � ������� � � ������� � ����� ��������� � � �
(2.43)

where � ��� ��� � ����� ��� � is termed a back-off weight which is defined as

� ��� ��� � ��� � ��� � �
	 � ���� � � � � �  � � � � � � �

	 � � ������ � ����� � ��������� �
	 � ���� � � � ���� � � ��� � � �

	 � � ������ � ������� � �
(2.44)

and ensures that the constraint
� � ������ � ��� � � ��������� � � 	

is satisfied.

In Equation (2.44), the numerator expresses the left-over probability mass obtained from

discounting the counts of observed events and the denominator is a normalising factor that

expresses the total back-off probability. Smoothing is performed recursively with the unigram

probabilities being smoothed first since these are required for bigram smoothing and so on.

The advantages of the backing-off method lie in its computational efficiency since all the

back-off weights can be precomputed, and in the ease with which it can be incorporated into the

decoding process.
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2.3.2.2 Deleted interpolation

Another method for smoothing the relative frequency estimate of a conditioned event is to

combine the maximum likelihood estimates of different types of events linearly. In contrast

to backing-off where a decision is made about which distribution to use, this method combines

all the available distributions. For example, the trigram relative frequency estimates may be

smoothed by interpolating trigram, bigram and unigram relative frequency estimates

������� � ����� � ��������� � � 9 � ��������� � ��������������� �
� ����� � � ��������� � � 9 � � ��������������� �

����������� � � 9 � � ����� �
� (2.45)

where
9 	

are non-negative weights which satisfy
9 � � 9 � � 9 � � 	 . The

9 	
should be chosen so

as to maximise the probability of events in some held-out data (cross-validation set) which was

not used to obtain the event counts
����� � 7.

The method of deleted interpolation makes use of a hidden Markov model interpretation of

language models, to describe the above combination of estimates (Jelinek and Mercer, 1980).

The
9 	�� � 	 � � ������� � �

represent the probabilities of a transition into one of
�

states, each of

which is associated with a 1-gram, 2-gram,
�����

, or
�

-gram output distribution for estimating

the probability of
� �

. The
9 	

are defined globally which is inevitably a sub-optimal arrangement,

and are not dependent on the conditioning events since the search space would be too large.

The optimal
9 	

can be estimated using the forward-backward algorithm (Baum, 1972) or with

the help of calculus (Jelinek, 1997; Bahl et al., 1991).

2.3.3 Cross-validation

A common problem in any modelling task is the over-fitting of model parameters to the training

data. Data that was not used to train the model parameters can be used to validate the model and

minimise over-fitting. Cross validation for language modelling involves, in its simplest form, the

training of model parameters on some retained text and the optimisation of these parameters on

some generally smaller held-out text. Optimisation may take the form of making the probability

estimates more robust or perhaps making the model more compact without a loss of accuracy.

Event counts are obtained from the retained part and the optimal held-out probability esti-

mate
�� 
 of all events which occur exactly � times in the retained part is

�� 
 � � 
� 
�� 
 (2.46)

where �



is the number of occurrences in the held-out data of all events that appear exactly �
times in the retained part.

A rotation form of cross-validation partitions the text into
6

disjoint parts and successively

rotates the held-out portion of the data. The deleted estimate is then defined as

7If the same data is used for computing �
�

the trivial solution of � ��� �  �	� and ��
 �� is obtained.



Statistical language modelling 36

� 
 �
	
�
� ��� �

�

	
�
� ���

�

�
� ��� �

�
�

�
(2.47)

where �
�


(
! � 	 �������$��6

) is � 
 when the
!
th subset is the held-out (deleted) part.

The leaving-one-out method of cross-validation is a special case of deleted estimation in which

the text is partitioned into
6 � ��(

parts, where
� (

is the size of the corpus and each held-out

sample therefore constitutes only one word. Leaving-one-out makes maximum use of the avail-

able data since all samples are used as both training and test data. The Good-Turing probability

estimate is also obtained as a result within the leaving-one-out framework (Nadas, 1985).

2.4 Methods of language model pruning

The discussion so far has concentrated on methods for obtaining reliable probability estimates

of all the possible events which the language model captures. In particular, estimates are needed

for those events which did not occur during training. Probabilities for these events are estimated

using only the statistics for events which have been observed. Although the statistics for all

events that occurred might possibly be stored in the language model, it is often impractical with

large training sets to store the statistics for each event explicitly due to the size of the resulting

language model and the time required to search for specific events. This section will consider

three methods, which are motivated by different goals, for removing the explicit statistics of

observed events from a language model to produce more compact models.

2.4.1 Cutoffs

The simplest and most widely used method for making language models more compact removes

all those events which occur the same number of times or less than a specified cutoff value.

This method is also referred to as absolute frequency thresholding. For example, in the case of a

word trigram model, word bigrams and trigrams which occur only once are often discarded. This

generally results in a significant reduction in the size of the language model and only a small

degradation in the performance of the model. Singleton events often account for the largest part

of observed events in language modelling and even if the explicit statistics of events are removed,

the statistics of singleton events as a whole are still required by many of the discounting schemes

described earlier.

In general, when the explicit statistics of events are removed from a model, the performance

of the model worsens. However, depending on the way in which a corpus is partitioned into

training and test data, removing all singleton events has been shown to improve model perfor-

mance (see Section 3.3.4). This is particularly true if the data is “noisy” (e.g. if a corpus has

been inadequately preprocessed) or is not sufficiently homogeneous between training and test
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sets. Noisy events should ideally be infrequent since they contribute no useful information at

best, and at worst, only inaccurate information.

2.4.2 Variable length � -gram models

The idea behind the variable length
�

-gram model is to successively extend an existing context

if it is shown that doing so will improve the performance of the language model. In (Niesler and

Woodland, 1996a), the leaving-one-out log-likelihood of the model on the training data is used

as the performance criterion,

4 4 ����� �
�

� ����� �����8������� � ! � (2.48)

where
����� � � ! �

is the leaving-one-out probability estimate which is calculated by removing one

instance of the event
� ! ��� � �

from the training data. Alternatively, this can be represented as the

sum of the likelihood contributions from all the events in each context in the model,

484 ����� �
� �

�� ���
� �

� ����� � � ! ������� � ������8� ����� � ! � �
(2.49)

where
� 	 is the number of unique contexts stored in the language model,

��� ! ������� �
is the

number of times event
� �

occurs in context
! �

and
������� � ! � �

is the leaving-one-out probability

of the event
� �

.

If the extension of a context results in more than a specified increase in the leaving-one-

out likelihood, then the context is extended; if not, that particular context is not extended

and cannot subsequently be extended any further. Whenever a context is extended there is a

change in the overall likelihood of the data. This is due to the additional contribution from the

extended context
4 4 � � and the changed contribution of the original unextended context now

that its context has been extended
484 � � � . Since the original contribution to the likelihood was

that of the unextended context
484 � � , the change in likelihood

� 484 �����
is simply,

� 484 ����� � 484 � � � � 4 4 � � � 4 4 � � (2.50)

and an acceptance criterion with threshold parameter
9 �	�

can thus be defined as

� 484 ����� � � 9 �	� �#484 ����� �
(2.51)

Storing the contribution of each extended context that is retained in the model removes the

need to recompute its contribution if it is considered subsequently for further extension. In

addition, the contribution of the original context when it has been extended can be computed

efficiently by adjusting only the contributions of those events which occur in both the original

context and the extended context.
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2.4.3 Entropy-based pruning

The operation of the entropy-based pruning of language models (Stolcke, 1998) is similar to a

method described in (Seymore and Rosenfeld, 1996) and since the former method was shown

to give slightly better results it will be described here. Explicit probability estimates are removed

from the language model if it is shown that doing so results in an improvement of the language

model perplexity or a degradation that is deemed acceptable. For each context, every
�

-gram

event stored in an (
� � 	

)-gram context has its explicit probability estimate tentatively replaced

by the implicit (backed-off) (
� � 	

)-gram estimate,

� � ��� � ! � � � � � ! � ����� � ! � �
(2.52)

where
! � is the last (

� � �
) words in

!
.

The pruning algorithm aims to minimise the divergence between the original distribution����� � � �
and the pruned distribution

� � ��� � � � . Assuming that each
�

-gram has an independent

effect on the divergence, the relative entropy can be used to quantify this change

� ��� � � � � � ��� � � �
� ����� � ! ��� ������� � ����� � ! � � ����� ������� � ! ��� �

(2.53)

The removal of an explicit
�

-gram event
� ! ��� �

changes the back-off weight for that context and

therefore affects the contribution from all backed-off estimates,

� ��� � � � � � ��� ��� ! � �#����� � ! ��� ����� � � ��� � ! � � ����� ����� � ! ��� �

�� � � � � �
� � � � 	 � � ������� � ! ��� �!��� � � ����� � ! � � ����� ������� � ! ����� � (2.54)

Insertion of the backed-off estimates into the above equation removes the need for a summation

over all vocabulary words and allows the relative entropy to be computed efficiently,

� ��� � � � � � ��� ��� ! � �#����� � ! ��� ����� ����� � ! � � � ����� � � � ! � � �����8� ��� � ! ��� �
� �!��� � � ! � � � ����� � � ! ��� �� � � � � �

� � � � 	 � � ������� � ! ��� � (2.55)

The summation in the above equation is simply the probability mass of unseen events given

by Equation (2.41). The marginal history probabilities
��� ! �

can be obtained by multiplying

together the appropriate conditional probabilities
�����"������	�� � ��������������	 � � ��������	�� � � � �

and the

updated back-off weight � � � ! � is obtained by omitting the contribution from the pruned
�

-gram

in the numerator and denominator of Equation (2.44).

Since relative entropy is directly related to the intrinsic perplexity of the language model�7� ��� �	��
� �81 �
� � � 	������ 1 � ���

� 	
the change in perplexity between the original and the pruned

model is given by
��� �
1 ��� 1�� 	����

. Consequently a selection criterion can be defined so that explicit
�

-gram estimates are retained which, if they were to be removed, would increase the perplexity

by more than some threshold value.
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2.5 Methods of model combination

Many of the language models discussed above capture different language dependencies and the

question often arises of how these different information sources about the language may best be

combined. Four methods are considered here, the first two of which, linear interpolation and

backing-off, have already been mentioned in the context of probability smoothing. The other

two methods, log-linear interpolation and maximum entropy, have recently gained in popularity

with the availability of cheaper and more powerful computer processors.

2.5.1 Linear interpolation

Linear interpolation was described earlier in conjunction with smoothing probability distribu-

tions with more general distributions. The method can be used to combine probability dis-

tributions from
�

component models as was discussed for mixture-models and the deleted

interpolation method

������� � ���#�������$��������� � �
�

�	 ��� 9 	������ ����� � ���#�������$��������� � (2.56)

where
� �

	 ��� 9 	 � 	
. In general, the weights

9 	
are defined globally which restricts the number

of additional parameters that must be estimated. The weights can easily be determined using

an expectation-maximisation (E-M) algorithm (Dempster et al., 1977) to optimise the perplexity

on some held-out data.

The interpolated model is guaranteed to be no worse (in terms of perplexity) than any of its

component models for the data on which the weights are optimised. Component models which

are not useful are assigned a relatively small weight. Linear interpolation is a simple and often

effective method of model combination but tends not to make the best use of the strengths of

individual models. The globally weighted average of all the models means that the contribution

of each model is fixed, even though in a particular situation one model may be far more robust at

predicting a specific event than another model is. For example, in a trigram model if the trigram

has been observed many times during training it could be expected to be a good predictor and

its weight should be correspondingly high. However, if the trigram was only seen once or twice,

more emphasis should be given to the bigram model if that were to be better estimated.

The interpolation weights might ideally be made dependent on the context, however, the

extra number of parameters to be estimated would be a serious drawback. One alternative is to

form separate bins of weights which vary the contribution of different models depending on how

reliable the component probability estimates are. Contexts may be classified according to how

well estimated their component distributions are, and optimal interpolation weights can then be

determined for each class of contexts.
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2.5.2 Backing-off

Backing-off involves the selection of one distribution in preference to another. The method is

frequently employed in
�

-gram models, (see section 2.3.2.1) where by default the
�

-gram

distribution is questioned first and if this is not well estimated, the (
� � 	

)-gram distribution

is referred to and so on. More generally, information sources are ranked in order of the detail

or refinement of prediction they provide about an event. The most detailed information source

is questioned first and if the source provides insufficient information about the event the next

model in line is questioned. Ultimately, a specific choice is made about which distribution to use

from those available.

Backing-off has been applied successfully to combine models which capture different de-

pendencies, for example, in (Niesler and Woodland, 1996b) and (Blasig, 1999) a class
�

-gram

model is combined with a word
�

-gram model: if the word
�

-gram estimate is unreliable, a

back-off is performed to the class model and the class
�

-gram estimate used instead. Back-off

models are generally simple to generate and are compact.

2.5.3 Log-linear interpolation

Log-linear interpolation (Klakow, 1998) has been shown to be a more effective way of combining

models than linear interpolation while still maintaining the same number of parameters that

must be estimated.
�

component models are combined in the following manner:

� ��� � ! � � 	
�2� ! �

�
�
� ���
� � ��� � ! ��� � �

(2.57)

where
� � ! �

is a normalising constant that ensures
� � ����� � ! � � 	

for each
!
. There are no

explicit constraints on the interpolation parameters
9 �

which can be optimised on some held-

out data using an algorithm for multidimensional optimisation. Both the generalised iterative

scaling algorithm (Darroch and Ratcliff, 1972) and the downhill simplex method (Press et al.,

1992) have been used to obtain the
9 �

.

Log-linear interpolation has been applied to domain adaptation and combining bigram and

distance bigram models in (Klakow, 1998) where it was shown to give significant improvements

both in terms of perplexity and word error rate compared to models combined by linear inter-

polation.

2.5.4 Maximum entropy

Maximum entropy models have been applied successfully to language modelling in (Rosenfeld,

1994; Berger et al., 1996). The maximum entropy approach to language modelling combines

language dependencies in a fundamentally different way to the previously described methods:

instead of combining the models themselves, features from different models or information

sources are combined into one model. Each dependency
� ! ��� �

is associated with a feature
� � ! ��� �

which may be a real-valued or binary-valued function of
� ! ��� �

. For example, if
� ! ��� �
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were a word bigram and the single-word context
!

was followed by
�

in the training data then
� � ! ��� � � 	

, and 0 otherwise. Different features are required to agree on the average with a

certain statistic of the training data. The expectation of each
� � ! ��� �

under the desired distribu-

tion
��� ! ��� �

(the expected value of the feature in the model) is constrained to be equal to the

desired expectation � (generally its expected value in the training data) using the constraint:

� � � �
� � � ! ��� � � � ! ��� ��� � � � (2.58)

Hence, for a set of constraint functions
� � � � ! ��� ��� � ��� � � ������� with corresponding desired expected

values
� � � ����� � � ������� , the aim is to determine the optimal probability distribution

��� ! ��� �
or, more

often, the conditional probability distribution
����� � ! �

. Applying the maximum entropy prin-

ciple involves choosing the probability distribution with the highest entropy from among all

possible probability distributions which satisfy the constraints. If the constraints are consistent8

(which should be the case if they are all obtained from the same data) a unique solution is

guaranteed to exist and be of the following form (Berger et al., 1996)

����� � ! � � 	
� � ! � � ��$� � � 9 � � � � ! ��� � � � (2.59)

where the
9 �

are unknown constants and
�2� ! � � � � � ��$� � � 9 � � � � ! ��� � � ensures that

����� � ! �
is

a probability distribution. To search for the
9 �

that make
����� � ! �

satisfy all the constraints, the

generalised iterative scaling algorithm (Darroch and Ratcliff, 1972) is used, and is guaranteed

to converge to the solution.

The maximum entropy approach to language modelling is attractive in that many disparate

knowledge sources can all be combined effectively into one model. However, the main reason

why maximum entropy models have not become widespread is the computational burden of the

search for the maximum entropy distribution that satisfies the modelling constraints.

2.6 Summary

This chapter has outlined the field of statistical language modelling with particular reference to

its relationship to automatic speech recognition. The perplexity measure was defined as a means

of evaluating the performance of a language model and this was followed by an overview of the

major types of statistical language models that are currently in use. A description was then

given of several techniques that have been proposed for ensuring that the parameters of lan-

guage models are reliably estimated. Finally, a range of techniques were discussed for pruning

language models and combining different language models.

The remainder of this dissertation will concentrate on the development and evaluation of

various techniques for modelling Russian and English.

8If constraints are derived from different data sources or a discounting scheme is used, the constraints may no

longer be consistent.
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The corpora and word-based language modelling

This chapter begins with a brief outline of the requirements of the language modelling tools that

were needed to model the language dependencies used in the experimental work. The origin

and preprocessing of the Russian and English corpora are then described and as a first step in

modelling these languages, conventional word-based techniques are applied to the two corpora.

The failings of these techniques are analysed in some detail and provide the motivation for the

new techniques that are proposed in subsequent chapters.

The original contributions contained in this chapter include the collation and preprocessing

of a Russian text corpus for language modelling and an analysis of its characteristics. In partic-

ular, word
�

-gram models are built for various vocabulary sizes of up to one million words for

the Russian corpus and a back-off word
�

-gram model using permutated word histories is also

described.

3.1 Language modelling tools

A collection of language modelling software tools was developed along the lines of the CMU-

Cambridge Language Modelling Toolkit (Clarkson and Rosenfeld, 1997). It was foreseen that

certain basic requirements were required of the tools for the experiments in this dissertation

which were not available in the CMU-Cambridge Toolkit. Consequently, these tools needed to

be significantly extended to provide the required functionality. The most important difference

was allowing vocabulary sizes greater than sixty-five thousand words—this will be seen to be

essential for experiments on the Russian corpus. Another major difference was to permit words

in the history to be mapped into different classes according to their position � in the history,

������� � ��������	��#��� � � ��������� � � � ����� � + ����� ����������	�� � ��� � � � + ������� ��� � � �
(3.1)

This particular facility of the tools is used in Chapter 5 for one-sided class-based language

models in which the class mapping is made to depend on the position of the word in the history.

It should be noted that a conventional word
�

-gram model is a particular case of the class model

42
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where each word is mapped to its own unique class and where this same mapping is used for all

(
� � 	

) words in the history.

Essentially, only counts and back-off weights are stored in the model and the probability for

each requested
�

-gram is generated on-the-fly. Where the number of parameters in a model is

referred to in this dissertation, this is taken to be the total number of
�

-grams stored i.e. for a

trigram model it is the total number of unigrams, bigrams and trigrams stored in the model. It

should be noted that the actual physical storage requirements for the above model formulation

are greater than when words in the history are not mapped into classes. For the latter case,

one tree structure would be sufficient. Instead, each set of
�

-gram counts must be stored

in separate count tables since the context for each
�

-gram is now inconsistent across
�

-gram

tables. However, the same definition for the number of parameters will be used since this is valid

and consistent with other models in terms of the number of parameters required to generate a

probability and the search effort required to retrieve each parameter.

A set of context cues may be specified during language model construction to define words

that are themselves not to be predicted, but which are used in the context for predicting other

words. In all perplexity calculations in this dissertation, the unknown word “ � UNK
�

” and the

sentence-start “ � s
�

” symbols are specified as context cues and their probability of occurrence is

never predicted. However, where these two symbols or the sentence-end symbol “ � /s
�

” occur,

they are used as the context for predicting a following word i.e. no back-off is performed to

exclude them from the context.

In addition, all three model pruning methods described in Section 2.4 were implemented and

where possible the results were verified against those published in the literature. The accuracy of

the newly developed language modelling tools was tested, using a similar, standard word trigram

model and identical vocabulary, against the Entropic HTK language modelling tools (Young et al.,

1997) and CMU-Cambridge Toolkit (Clarkson and Rosenfeld, 1997). The results in each case

were shown to be identical.

3.2 Corpora selection and preprocessing

Two language modelling corpora, one for Russian and one for English, were required for the lan-

guage modelling experiments in this dissertation. Both corpora needed to be sufficiently similar

in terms of composition and size, so that their characteristics and the experimental results could

be compared sensibly. Two similar corpora were eventually located, each of which contained

around one hundred million tokens. Given the large size of the corpora it was expected that

small amounts of “noisy” text would not manifest themselves in the experiments, however, cer-

tain precautions were nonetheless taken. The composition and characteristics of the two corpora

are detailed below together with a description of the sanity checks that were made to ensure the

reliability and integrity of the two corpora.
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3.2.1 The Russian corpus

Currently, there are no commercially available Russian language text corpora. However, a large

source of Russian text material was eventually located in Russia, and this source was used as

the basis for all the Russian language modelling experiments contained in this dissertation. This

corpus of Russian texts is very varied in content, ranging from classical literature and trans-

lations of popular foreign novels to lists of anecdotes and jokes. In its original form it was

completely unusable since texts were stored using inconsistent character mappings1 and also

contained a large amount of text formatting characters which had to be removed prior to use.

After the corpus had been cleaned and the character mappings normalised, sentence bound-

ary information (sentence-start and sentence-end markers) was added which replaced various

punctuation markers such as full-stops, ellipsis and exclamation marks. All other punctuation

was removed. Finally, an important procedure in corpus preparation was also executed—the

removal of repeated “chunks” of text from the corpus, including whole articles or excerpts from

other texts where necessary. If such repetitions were to occur both in the training set and the

test set then spurious results (most likely to be much better results) would be obtained. It is

important therefore that none of the test data appears in the training data. An heuristic method

of determining repetitions of fifty-word sequences was developed and repeated segments up to

and including the nearest sentence-end marker were removed from the corpus. The final stage

of corpus preprocessing mapped all numerical digits to a “ � NUMBER
�

” symbol2.

3.2.2 The British National Corpus

Since it was desired to conduct similar experiments on English to those on Russian, the choice

of English language corpus, of which there were many, was dictated by the characteristics of

the Russian corpus, over which there was little control. It was decided that the most similar,

readily available English language corpus in terms of its composition and size, was the British

National Corpus (BNC corpus) (Burnard, 1995). The BNC corpus is a collection of English

language texts ranging from belles lettres and entire novels to transcriptions of spoken language.

The words in the BNC corpus are tagged with various attributes such as parts of speech, and

each article in the corpus also has header information pertaining to topic classifications and

publication information. This extra information is surplus to the needs of the language modelling

experiments in this dissertation and all of it was removed. As with the Russian corpus, there were

large sections of repeated data in the BNC corpus. The same criterion of removing repeated 50-

word sequences was used to produce a “cleaner” corpus. Finally, to maintain some consistency

with the processing of the Russian corpus, numerical digits were all mapped to a “ � NUMBER
�

”

symbol, however the occurrence of these numerical digits was significantly lower than in the

Russian corpus.

1Some letters occur in both the Cyrillic and Roman alphabets and there were many cases of Russian words that

had been represented using a mixture of the two. Such inconsistencies needed to be removed otherwise the same

words might be treated as completely different ones.
2There is no simple method for converting numerical digits into word representations in Russian, since each

number changes its grammatical case, gender and number depending on its role in the sentence.
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3.3 Corpora characteristics

Once the corpora had been cleaned and normalised, the next step was to partition the corpus

into training and test sets. Two test sets were required: one development set ( ���������	��
�� ) with

which to optimise the parameters of the model (which are estimated using the training set), and

one evaluation set ( �������������
�� ) with which to evaluate the performance of the language model.

The larger portion of the data is assigned to the training data set, since in general there is never

enough data with which to estimate all the free parameters of a model and maximum use of the

available data should be made wherever possible. Both corpora were finally partitioned in the

ratio of 98:1:1 for ����	������������������������
������������������
�� sets sizes.

The method in which a corpus is partitioned can significantly affect the experimental results.

Two common methods result in what shall be referred to here as homogeneous and heterogeneous

data partitioning. Homogeneous data sets can be created by selecting every  th sentence (or

“chunk” of sentences) from the corpus to form the test sets, with the left-over data forming the

training set. Heterogeneous data sets can be formed by selecting entire test sets on an article-

by-article basis such that the number of words in each partition are in the desired ratios. For the

experiments in this dissertation only the homogeneous data partitions for each corpus are used,

however in this chapter comparative results will be given for the heterogeneous partition of the

BNC corpus where this is instructive. The characteristics of the homogeneous partitions for both

corpora are given in Tables 3.1 and 3.2.

�������������� ������������
�� �������������
��

Total words 98,663,154 1,007,350 1,004,880

Total sentences 8,349,349 85,195 85,194

Table 3.1 Homogeneous Russian corpus partitions.

�������������� ������������
�� �������������
��

Total words 112,492,860 1,142,137 1,142,867

Total sentences 6,064,508 61,880 61,885

Table 3.2 Homogeneous English corpus partitions.

It must be remembered from section 2.1.1 that for the perplexity calculation to be reliable,

the length of the sequence used for testing should tend to infinity. This is, of course, impossible

in practice but the corpus partition sizes were justified by the perplexity results on different sizes

of test data of a baseline word trigram model built using the training data for each corpus. The

perplexity on half the ����������	��
�� set of around half a million words was 7.4% lower for the

Russian corpus (10.3% for the English corpus) than on the entire one million-word �������������
��
set. However, the perplexity on the combination of both the ���	������	��
�� and ������������
�� sets of

around two million words was only 0.1% higher for the Russian corpus (0.5% for the English

corpus) than on the ���	������	��
�� set alone. Data comprising one million words was therefore
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considered adequate for testing purposes while retaining the maximum amount of available

data for training.

3.3.1 Vocabulary growth and corpus size

It is evident from a basic knowledge of Russian and English that the number of different words

encountered in the two languages will differ significantly. What is unknown is to what extent

this difference manifests itself and the consequences it will have on existing language modelling

techniques. In Figure 3.1 the growth in the number of unique tokens (essentially the vocabulary

size) is plotted against corpus size for the two corpora.
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Figure 3.1 Growth in vocabulary size against corpus size.

It is clear from Figure 3.1 that the rate of growth of the vocabulary for Russian is approxi-

mately two and a half times greater than that for English. In fact, this is perhaps surprisingly

low, since Russian words generally have many more inflected forms than words in English. This

might be explained by the fact that not all inflected forms of a Russian word are used with the

same frequency. The other interesting observation from this graph is that the vocabulary size is

nowhere near saturating with the increasing corpus size.

3.3.2 Coverage and vocabulary size

A useful measure of the coverage of a vocabulary is the percentage of words that are encountered

in some held-out text which are out-of-vocabulary (OOV). The OOV-rate is thus defined as the
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number of tokens which are not in the vocabulary divided by the number of tokens in the held-

out text. The significance of a particular vocabulary’s OOV-rate on the recognition performance

of a speech recogniser cannot be understated. If a word is not in the vocabulary, it cannot be

recognised. However, the wrong word that is hypothesised to have occurred in it place will

affect the recognition of subsequent words since it will be used as the context for predicting

the current word by the language model. It has been shown that, on average, for the Wall

Street Journal Task, every OOV word that occurs in the test data, results in approximately 1.6

word-errors (Woodland et al., 1994). OOV words tend to be fairly rare, so even if they are

subsequently included in the vocabulary, their acoustic and linguistic properties tend not to be

well modelled. For each OOV word in the test data that is subsequently added to the vocabulary,

on average approximately 1 word error (from the previous 1.6) is recovered during recognition.
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Figure 3.2 Variation of OOV-rate against ( ����� ) vocabulary size.

A vocabulary of size
��&

is defined by taking the most frequent
� &

words from the ��������������
set of each corpus. The OOV-rate is computed with respect to the �������������
�� set of each cor-

pus. The results, displayed in Figure 3.2, highlight the significant difference between the two

languages which the size of the vocabulary has on the OOV-rate.

Currently the vocabulary size of a large vocabulary speech recogniser is around 65,000 (65k)

words since this is close to the limit of the number of identifiers that can be represented in a

computer by a two-byte integer. For the English corpus, such a vocabulary provides almost 99%

coverage on the �������������
�� set. The most significant observation with regard to the Russian

corpus, and one that inevitably dictates the course of subsequent work, is that the coverage of
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the appreciably large (65k) vocabulary is only 92.4%. Alternatively, the OOV-rate of 7.6% is

seven times greater than for the English corpus 65k vocabulary.

From Figure 3.2 it is clear that as the size of the vocabulary is increased, the coverage on

the English corpus increases almost ten times faster than the coverage on the Russian corpus.

However, for both corpora and for the size of vocabularies of interest (
�

65k), each doubling of

the vocabulary size approximately halves the OOV-rate. Note that there are always OOV words

in some held-out text, even when the vocabulary is defined to contain all the words which occur

in some much larger partition of the corpus.

All subsequent experiments will be performed with a vocabulary of the most frequent 65k

words that occur in the �������������� set for both the Russian and English corpora. In addition,

experiments for a vocabulary of the most frequent 430,000 (430k) words in the ���		�������	� set

will be used for the Russian corpus. This vocabulary size was chosen to provide an OOV-rate

identical to that on the English corpus with a 65k vocabulary.

3.3.3 Russian word � -gram models

Word trigram models employing Good-Turing discounting and Katz back-off were built for the

Russian corpus with all singleton
�

-grams (
��� 	

) discarded. A range of vocabulary sizes were

investigated to assess the variation in perplexity and coverage on the ���	������	��
�� set and the

results are shown in Table 3.3 and perplexity is plotted against vocabulary size in Figure 3.3.

Vocabulary Perplexity OOV

size on �������������
�� rate (%)

65k 413.3 7.60

100k 481.0 5.31

200k 586.8 2.65

300k 639.8 1.67

400k 670.9 1.19

430k 677.0 1.10

500k 689.9 0.93

600k 702.5 0.77

700k 708.0 0.71

800k 713.8 0.64

900k 718.8 0.59

1M 724.3 0.53

1.01M(ALL) 724.9 0.52

Table 3.3 Perplexities on Russian corpus �����
���	�

��

�

data of back-off word trigram models.

As is expected, the perplexity of the word models increases as the vocabulary size is in-

creased. This is obvious from the interpretation of perplexity given in Section 2.1.1 where for a
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Figure 3.3 Perplexity on Russian corpus ���	�
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�

data of word trigram models with various vocabulary

sizes.

fixed size training corpus, the greater the number of different words to be predicted, the greater

the uncertainty with which words are predicted and hence the greater the perplexity. Since vo-

cabulary words are chosen according to their frequency of occurrence in the corpus, increasing

the vocabulary size means increasing the number of lower-frequency words in the vocabulary.

The statistics of additional low-frequency words are unlikely to be as well estimated as words in

a smaller vocabulary and so the perplexity for the larger vocabulary increases. It is interesting to

observe that the increase in perplexity has nothing to do with an increase in data sparsity which

might be expected when a larger vocabulary is used. For example, using a trigram word model

built with the 430k Russian vocabulary, the equivalent perplexity of a 65k vocabulary is in fact

0.3% lower than the 65k word trigram model.

Several, more detailed perplexity experiments were conducted on the Russian ���	������	��
��
data for the 65k and 430k vocabularies. The results are shown in Tables 3.4 and 3.5, and give

the perplexity and
�

-gram hit-rates for trigram and 4-gram back-off word language models for

the cases where singleton
�

-grams (
� � 	

) are discarded and where they are retained. The
�

-

gram hit-rates show the percentage of
�

-gram requests that were found in the model and what

percentage of requests required backed-off estimates. It was not possible to build the 4-gram

language model for the 430k vocabulary while retaining all
�

-grams, due to computer memory

limitations. The results show that retaining
�

-grams is useful in reducing the perplexity for

both trigram and 4-gram models and for both vocabulary sizes. For the 65k trigram model

the perplexity improvement is 6.3% while for the 430k trigram model it is 8.8%. Models in
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which all
�

-grams are retained have significantly more parameters (five to six times more)

than models which discard singleton
�

-grams. However, these are significant improvements3

and suggest that perhaps the Good-Turing discounting scheme in conjunction with backing-off is

underestimating low-frequency events. The improvements when
�

-grams are retained correlate

with an increase in trigram (4-gram) hits and further imply the usefulness of the singleton

events in prediction. However, this is generally only true for training and test data that are

homogeneous.

Trigram model 4-gram model

Cutoffs (bi,tri,4g) 1, 1 0, 0 1, 1, 1 0, 0, 0

Perplexity 413.3 387.4 398.9 385.5

4-gram hits (%) — — 28.2 35.1

3-gram hits (%) 54.0 61.4 25.8 26.2

2-gram hits (%) 32.0 28.4 32.0 28.4

1-gram hits (%) 14.0 10.3 14.0 10.3

Table 3.4 Homogeneous Russian corpus partition: perplexities and hit-rates with 65k vocabulary and differ-

ent cutoffs.

Trigram model 4-gram model

Cutoffs (bi,tri,4g) 1, 1 0, 0 1, 1, 1 0, 0, 0

Perplexity 677.0 617.4 656.9 N/K

4-gram hits (%) — — 22.3 N/K

3-gram hits (%) 44.8 52.0 22.5 N/K

2-gram hits (%) 33.8 31.6 33.8 N/K

1-gram hits (%) 21.4 16.4 21.4 N/K

Table 3.5 Homogeneous Russian corpus partition: perplexities and hit-rates with 430k vocabulary and dif-

ferent cutoffs.

The 4-gram models outperform the trigram models by around 3% which is not a large im-

provement. This may be a consequence of the sparsity of the Russian corpus, the effect of

which becomes more significant as
�

is increased. It may also be speculated that the free word-

ordering in Russian means that there is little to be gained by increasing the context for making

predictions, since sequences of longer length are more likely to appear in the future as hitherto

unobserved permutations.

3It is worthwhile repeating that large perplexity improvements are sometimes obtained when all 
 -grams are

retained, if the test data appears, even partially, in the training data. A procedure to remove repetitions in the corpus

was performed as part of the corpus preparation, which suggests that the results reflect a characteristic of Russian

rather than a peculiarity of the corpus.
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3.3.4 English word � -gram models

An equivalent set of back-off word trigram language models with various vocabulary sizes was

built for the homogeneous partition of the English corpus. All singleton bigrams and trigrams

were discarded and the perplexity computed on the ����������	��
�� data. The results are shown in

Table 3.6 and perplexity is plotted against vocabulary size in Figure 3.4.

For reasons similar to those already given, increasing the vocabulary size increases the per-

plexity due to the addition of more low-frequency words to make larger vocabularies. The

increase observed with English is similar to that for Russian when examined over a comparable

range of OOV-rates.

Vocabulary Perplexity OOV

size on �������������
�� rate (%)

65k 216.1 1.10

100k 224.5 0.65

200k 232.4 0.31

300k 235.0 0.22

399k(ALL) 236.8 0.17

Table 3.6 Perplexities on homogeneous English corpus partition � ���
�����

��

�

data of back-off word trigram

models.

An interesting variation on the more detailed perplexity experiments is now considered for

the English corpus. It was mentioned earlier that two different types of partitions (homogeneous

and heterogeneous) had been constructed for the English corpus. The effect of cutoffs on back-

off trigram and 4-gram language models will now be examined for the two corpus partitions

using 65k vocabularies. Table 3.7 shows the perplexity and
�

-gram hit-rates of trigram and

4-gram word models on the heterogeneous corpus partition. The vocabulary is chosen to be the

most frequent 65k words from the heterogeneous corpus training partition and hence differs

from the vocabulary used in the homogeneous corpus experiments. The OOV-rate for the 65k

vocabulary on the ����������	��
�� set is 1.5%.

Trigram model 4-gram model

Cutoffs (bi,tri) 1, 1 0, 0 1, 1, 1 0, 0, 0

Perplexity 240.9 236.8 225.4 229.0

4-gram hits (%) — — 30.7 37.7

3-gram hits (%) 60.3 67.1 29.6 29.4

2-gram hits (%) 30.2 25.9 30.2 25.9

1-gram hits (%) 9.5 7.0 9.5 7.0

Table 3.7 Heterogeneous English corpus partition: perplexities and hit-rates with 65k vocabulary and differ-

ent cutoffs.
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Figure 3.4 Perplexity on English corpus �����
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data of word trigram models with various vocabulary

sizes.

The most striking result is for the 4-gram model when all
�

-grams are retained, for which

the perplexity is 1.6% higher than when all singleton
�

-grams have been discarded. This is a

direct consequence of the way in which the corpus has been partitioned. The implication is that

the information provided by the singleton
�

-grams is less useful, indeed more harmful, than the

probabilities that the back-off and Good-Turing discounting schemes assign to singleton events.

Another interpretation is that the singletons represent “noise” in the corpus which it is desirable

to remove in any case. It is also interesting to note that the hit-rates increase substantially

when singleton events are retained but that the perplexity does not change much. This indicates

that the backed-off estimates of these probabilities are almost as good (better in the case of the

4-gram model) as the discounted estimates when singleton events are retained.

The results obtained with the homogeneous corpus partition are shown in Table 3.8. Since

there is more similarity in composition (homogeneity) between the �������������� and �������������
��
sets, all the perplexity values are lower than for the heterogeneous case. In addition, the OOV-

rate is now only 1.1% compared to 1.5% although the
�

-gram hit-rates are very similar in

each case. The difference between the perplexities of models where
�

-grams are retained and

where they have been discarded is markedly different to the trend that was observed for the

heterogeneous corpus partition. When all
�

-grams are retained in the 4-gram model there

is a small but appreciable reduction in perplexity compared to the 4-gram model from which

singletons have been discarded. The improvement in the trigram model is greater than for the

homogeneous partition indicating that the singleton events now provide more useful estimates
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Trigram model 4-gram model

Cutoffs (bi,tri) 1, 1 0, 0 1, 1, 1 0, 0, 0

Perplexity 216.1 208.4 200.6 199.1

4-gram hits (%) — — 31.5 39.3

3-gram hits (%) 61.5 68.9 30.0 29.6

2-gram hits (%) 29.8 25.0 29.8 25.0

1-gram hits (%) 8.7 6.1 8.7 6.1

Table 3.8 Homogeneous English corpus partition: perplexities and hit-rates with 65k vocabulary and differ-

ent cutoffs.

than the backed-off estimates.

3.4 Permutated-history
�

-gram language model

A series of experiments was conducted to investigate the assertion that due to the perceived

potential for free-word ordering,
�

-gram models were unsuited to modelling the Russian lan-

guage. The aim of the permutated-history
�

-gram language model was to incorporate an addi-

tional knowledge source into the standard back-off scheme which would exploit any occurrence

of free-word ordering that occurred. If the
�

-gram, say ( � ��) ��� ) that is requested is not found

in the model, instead of backing-off to the bigram (
) ���

) the
�

-gram with its history permu-

tated (
) � � ��� ) is first sought. Only if this permutated-history

�
-gram is not found, will the

model then back-off to the (
� � 	

)-gram distribution. A permutated-history trigram model was

built and evaluated on the Russian corpus. The performance, however, was shown to be 5.8%

worse than the conventional trigram model. This degradation in performance was attributed to

the additional back-off stage which, if the permutated-history trigram was not found, reduced

the probability of every final backed-off bigram or unigram estimate by the appropriate back-off

weights. When the model did back-off from the trigram distribution, very few ( � 0.7%) of the

permutated-history trigrams were in fact found. Consequently, many probability estimates were

reduced unnecessarily which resulted in a higher perplexity.

The conclusion drawn from this experiment was that the potential for free-word ordering

does not seriously reduce the effectiveness of the
�

-gram framework for modelling Russian.

This conclusion is at least valid over the relatively short span of the three words in a word

trigram model.

3.5 Summary

In this chapter, the composition of the Russian and English language corpora that are used for the

experiments in this dissertation and the preprocessing that was necessary, have been described

in detail. The characteristics of the two corpora in the context of language modelling were then
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examined. Back-off word
�

-gram language models were built for both corpora and the variation

of perplexity and OOV-rate for different vocabulary sizes was investigated. It was shown that

much larger vocabulary sizes are required for Russian in order to achieve the same coverage

as for English. The requirement for larger vocabularies increased the already serious effects of

sparsity in the Russian corpus.

The experiments in the next three chapters look at several methods for reducing the effects

of data sparsity. The first methods that are considered involve the pooling of event statistics

in class-based language models to produce more reliable probability estimates. The second set

of methods involve reducing the vocabulary size using sub-word units (particles) to capture

different dependencies in the language.



4

Class-based language modelling

In this chapter an investigation of class-based language modelling techniques is made using a

two-sided class-based language model. After an introduction to the two-sided class-based model,

an overview is given of several techniques described in the literature for automatic word clas-

sification. The results of a series of clustering experiments on the Russian and English corpora

are then presented and class-based language models built for different numbers of word classes.

Perplexity results for these models are reported and discussed. The last section in this chap-

ter compares the performance of class-based language models that use automatically generated

word classes and linguistic parts of speech. Both perplexity and word recognition results are

used for this comparison.

4.1 Introduction

All class-based language models (hereafter referred to simply as class models) employ some

component that uses word equivalence classes (often abbreviated to word classes) to capture

dependencies in the training text. A deterministic word classification function (or class mapping

function) of the form

+ � � � + ��� � �
(4.1)

assigns each word to one class only since the class mapping function is many-to-one. Having

determined
+

, class
�

-gram language models can be built in a similar manner to word
�

-gram

models in which the dependencies are captured by
�

-tuples of word classes rather than by
�

-

tuples of words. The class
�

-gram model referred to in the following literature review and the

work in this chapter is of the following form:

� � ����� � + ����� � � �#��� � + ����� � � + ����� ���
	�� � ��� � � � + ��������� � � �
(4.2)

Ney refers to this model as the two-sided symmetric class model (Ney et al., 1994) since the same

word classification function
+

is used to map both the current word and the predecessor words.

55
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The model comprises two independent probability distributions: a unigram class membership

component
��� ��� �

and a class
�

-gram component
�8� ��� �

which is used to predict the current word’s

class from its predecessor word classes.

Generally, word classes are groups of words which are deemed to be similar in some way.

If linguistic parts of speech are used to define the classes, all nouns might be grouped together

in one of the classes, for example, and all adjectives in another. Alternatively, some statistical

criterion of similarity can be used to determine the word classes. The latter is the focus of the

work in this chapter. Both independent probability distributions in Equation (4.2) are optimised

simultaneously using the maximum likelihood relative frequency estimates from the training

data for the component conditional probabilities

� � ��� � � + ��� � � � � ��� + ����� � ����� �
� � + ����� � � � ������� �

� � + ����� � � � (4.3)

and

� � � + ����� � � + ���������
	�� � ��� � � � + ��������� � � � � � + ���������
	�� � ��� � � � + ��������� � � + ����� � �
��� + ����������	�� � ��� � � � + ��������� � � �

(4.4)

It is apparent that the optimal classification is likely to lie somewhere between the two

extreme classifications that would be obtained if the two components were optimised separately.

Consequently, there is a trade-off between the resolution of the unigram component, where

each word would tend to prefer its own unique class, and the predictive ability of the
�

-gram

component where all words would tend to be grouped in one and the same class.

The majority of the schemes presented below determine
+

by optimising the log-likelihood

of a bigram class model
484�� �

on the training data, using the relative frequency estimates given

above

4 4�� � � +'� �
���

� ����� �����
� ����� �

� � + ����� � � �
� � + ��������� � � + ����� � �

��� + ����� ��� � � �
(4.5)

where
� (

is the total number of words in the training data. A further simplification is obtained

by grouping together similar terms

484�� � � +'� �
���

� �����
���

�	 ��� � � * � � * 	 � � ����� � � * � � * 	 �
� � * � � � ��� * 	 �

�
� �

� � ��� � ��� � � � ����� � ��� � � �
(4.6)

where
� ,

is the number of word equivalence classes.

The above formula appears to be composed of two elements which may be interpreted as the

average mutual information
�

between classes and the entropy
6

of the words in the training

data (Brown et al., 1992)
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484�� � � +'� � 	
� ( � � � � * � � * 	 � � 6 ��� � � � (4.7)

The classification function has no effect on the entropy component which is constant for a fixed

text, hence the average mutual information between classes can instead be used as an equivalent

optimisation criterion which can be further simplified for implementation to

484 � � � + � �
���

� �����
���

�	 ��� ��� * � � * 	 � ��!��� ��� * � � * 	 � � � �
���

� � ��� � � * � � � �!��� � � * � � � const
�

(4.8)

Once
+

has been determined, it is a relatively simple matter to construct the class model.

Although most algorithmic methods determine the classification function using a bigram class

model, the assumption is often made that the classification is suitable for mapping all
�

words

in the
�

-gram. Both the probability distributions in Equation (4.2) can be modelled separately

and combined by multiplication. There are far fewer free parameters to estimate in a class
�

-

gram model than in a word
�

-gram model since in general
� , � �'&

. There are (
� , � � � , �	 � � � & � � ,

) parameters to estimate for a class bigram model compared to
� & � � � & � 	 �

for a word bigram model. However, in many cases it is still necessary to apply some form of

probability smoothing scheme. For the class
�

-gram distribution this can be performed in an

identical manner as for word
�

-gram models (see Section 2.2.3). If necessary, the unigram

distribution can be smoothed by setting a minimum unigram count on all words.

Several different algorithms for determining the classification function
+

will now be con-

sidered.

4.2 Survey of existing techniques

The way in which words are assigned to word classes is dictated by the way in which they will

be used in the language model or speech recogniser. An intuitive linguistic assignment of words

to classes may put all words that possess a common part of speech together in one class. Since

English words generally possess more than one part of speech, this classification function would

necessarily be many-to-many. All the data-driven approaches described in this section, except

for the first method, permit a word to belong to only one class and the classification function is

therefore many-to-one. This has the effect of significantly reducing the complexity of both the

clustering algorithm and the resulting class model. The following sections describe in a more or

less chronological order the developments in word clustering algorithms.

4.2.1 Nuclear parts of speech

In (Jelinek, 1990) a method which had its origins in an experiment conducted in (Cave and

Neuwirth, 1980) is described for finding word classes through the application of an expectation
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maximisation (E-M) algorithm (Dempster et al., 1977). A hidden markov model interpreta-

tion of the class language model given by Equation (2.15) is used where words can belong to

multiple classes and the model parameters are estimated through repeated application of the

forward-backward algorithm (Baum, 1972). The class
�

-gram component is represented by a

probability distribution � ��� � � � for the transitions between states (
+ ��� � 	 � ��� � ��� � � � + ��� � ��� �

) and

(
+ ����� 	 � � ��� � � � + ����� �

) in the model. The unigram component is modelled by an emission proba-

bility distribution � ��� � � � associated with each state transition. This specifies the probability with

which a word from the vocabulary is emitted during a particular state transition.

The nuclear part of speech approach recognises the shortcomings of linguistic part of speech

assignments and is based on the assumption that a relatively small number
�

of words exhibit

significantly different grammatical behaviour from each other. Given an initial nuclear set
�

the

desire is to classify the remaining vocabulary words (words are allowed to belong to more than

one class) into the
�

available classes. The initial nuclear set of
� ��� � �

is chosen heuristically

to be a mixture of the most frequent words in the vocabulary and those words which exhibit

important grammatical characteristics which are not otherwise represented. A class trigram

model is used and the two distributions are initialised as follows

� � * � � * ��� * � � � 	
� � � � (4.9)

and

� ��� � * � �

����� ����
� � * � � ��� �

if
�

is in
�

, and * is the class of
�

�
if
�

is in
�

, and * is not the class associated with
�

� �
� 	 �

� �
	� � �

if
�

is not in
�

,

(4.10)

where � � * � is chosen to ensure that � ��� � * � adds up to one, when summed over all
�

for each
* . After training, the class membership of a word is restricted to the three most probable classes

and then a further few iterations of the forward-backward algorithm are executed.

Allowing multiple class membership in the final model requires the class model given by

Equation (2.15). However if class membership is further restricted to only one class, using the

most probable class for each word, then the model in Equation (4.2) can be used.

4.2.2 Hierarchical clustering

In (Brown et al., 1992) a greedy algorithm1 is employed to cluster words into classes. The opti-

misation criterion that is used is the log-likelihood of the bigram class model on the training data484 � � � + �
, which was shown above to be equivalent to maximising Equation (4.8), the average

mutual information between classes.

1Greedy algorithms consider each possible configuration one at a time. The effect of each configuration is evalu-

ated without regard to configurations which are subsequently selected.
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There are two main stages to this agglomerative algorithm which clusters words in a hierar-

chical bottom-up fashion. After initialisation, in which each vocabulary word is placed in its own

unique class, the first stage of the algorithm consists in successively merging each pair of classes

for which the reduction in
484�� � � +'�

is the smallest. Since the initial state is the one for which484 � � � + �
is a maximum, each merge of a pair of classes results in a reduction in

484 � � � +'�
. When a

pair of word classes is merged, it is not necessary to recompute
484 � � � +'�

entirely by performing

the each summation again, since only those components in Equation (4.8) which are affected

by the move need to be updated. A sensible arrangement of the update equations thus results in

an algorithm of approximately order � � �
�& �

. The algorithm continues to merge pairs of classes

until the desired number of classes
� ,

has been obtained. (Note that if the algorithm were to

run to completion, all words would eventually end up in one class.)

The second stage of the algorithm does not allow
� ,

to change and instead moves each

word from its current class to the class for which the increase in
484 � � � +'�

is the greatest. Once

again, only those terms which are affected by the movement of a word from one class to another

need to be updated and this can be performed in � � �
�, �

time.

Initial vocabulary partitions for vocabularies larger than 5000 words are obtained by assign-

ing the
� ,

most frequent words to their own classes. The
� � , � 	 �

th most probable word is

then assigned to its own class and those two classes (from the resulting (
� , � 	

)), for which the

reduction in
484 � � � + �

is the smallest, are merged as before. This brings the number of classes

back to
� ,

again. This process is executed for the
� & � � ,

unclassified words and then the

second stage of the algorithm is performed as before.

4.2.3 The exchange algorithm

In work that appears to have been conducted at around the same time as the hierarchical clus-

tering method, another greedy approach to the clustering of words was being developed. In fact,

the algorithm is essentially identical to the second stage in the hierarchical clustering method

described above. Work on the exchange algorithm2 for word clustering which has been reported

over the last decade is more extensive than for the hierarchical clustering method.

In their first paper, Kneser and Ney use the leaving-one-out log-likelihood (see Section 2.3.3)

as well as the maximum likelihood of a bigram class model on the training text as the optimi-

sation criteria (Kneser and Ney, 1993). The benefit of using an approach which incorporates

an element of cross-validation is that the resulting class model is prevented from over-fitting to

the training data. The ability to generalise to unseen test data is therefore optimised and also

enables the optimum number of classes to be found. It does appear, however, that this optimum

number of classes only holds true for a stand-alone class model and the number of classes is not

necessarily optimal for an interpolated class and word model.

As the name suggests, the exchange algorithm exchanges words between the
� ,

available

classes so as to maximise some optimisation criterion. Each word is moved from its class to the

2Exchange algorithms are a conventional means of clustering a set of vectors by exchanging a vector between the

available clusters (Duda and Hart, 1973).
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class for which the increase in
484 � � � + �

is the greatest. Recalculating the optimisation criterion of

a bigram class model each time would require � � � �, �
computations, however, since the majority

of the terms in Equation (4.8) are unaffected by a word movement, updating only the affected

terms is of order � � �
�, �

.

In general, the classification function, which is determined using a class bigram optimisation

criterion, is used to map words in all
�

positions of the
�

-gram i.e. the classification function

is independent of position. However, there have been attempts in (Martin et al., 1995) and

(Martin et al., 1998) to optimise the classification function directly using the perplexity of a class

trigram model on the training text. A comparison between trigram class models that were built

and evaluated using the classification from a trigram clustering criterion was shown to give a

reduction of up to 6% in perplexity over the classification obtained using a bigram criterion. This

perplexity improvement was negligible however, when the class models were combined with the

word model. The absolute clustering times using the trigram criterion made it prohibitive for

large numbers of classes and the computational effort does not normally justify the perplexity

improvements.

It has already been pointed out that greedy algorithms only have local convergence and

hence the choice of initialisation is generally of great importance. In (Martin et al., 1998)

three initialisation methods are investigated: a baseline initialisation assigns the most frequent

(
� , � 	

) words each to their own unique class and all remaining words fill the last class; a

random initialisation assigns words to classes randomly and evenly; and a POS initialisation

uses 33 linguistic part of speech tags and leaves the remaining (
� , � � �

) classes empty. Each

initialisation method is shown to produce approximately the same results indicating that the

algorithm is insensitive or fairly independent of the initialisation method. It could also mean, of

course, that another better method has yet to be found. Martin et al. also note that there is no

basic performance difference between the hierarchical clustering method described above and

the three initialisation methods that were investigated for the exchange algorithm.

4.2.4 Simulated annealing

Simulated annealing gets its name from the analogy with the physical annealing of solids that

occurs in nature. The main characteristic which distinguishes this method from the previous

greedy methods is that configurations which result in a temporary decrease in the objective

function that is being maximised can be accepted. Configurations which result in an increase in

the objective function are always accepted, while those resulting in a decrease are accepted with

probability given by the Metropolis criterion

� ���� � � � � �7� � 	��* � � (4.11)

where
�7� �

is the perplexity at iteration � and * is a control parameter (analogous to a temperature

dependent variable in physical systems) which is itself governed by an annealing schedule.
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For the purposes of word classification problems the objective function is often the perplexity

(or alternatively log-likelihood) of a class model on the training data. Equation (4.11) forms the

basis of the Metropolis algorithm and the acceptance criterion of accepting a new configuration at

time ( � � 	 ) is

� � �
accept configuration

� ��� 	 if
� � � � 	 � � � � � �

� ������ �
� 	�� � �

� 	��
	
� �

if
� � � � 	 � �

� � � �
�

(4.12)

Simulated annealing has been applied successfully to several tasks including a solution to

the Travelling Salesman problem (Press et al., 1992), and for finding a locally optimal layout of

tracks between components in VLSI chips. Simulated annealing is proven to locate a globally

optimal solution (Aarts and Korst, 1990), under the rather unrealistic requirement that an infi-

nite number of configurations are considered at each iteration, and that the control parameter is

reduced logarithmically. The first application of simulated annealing to word classification prob-

lems for language modelling was presented in (Jardino and Adda, 1993a) where the class model

in Equation (4.2) is used. The fundamental difference with the simulated annealing method is

that new configurations are chosen randomly (Monte Carlo selection of both word and destina-

tion class) and that configurations which increase the perplexity may also be accepted. Multiple

rearrangements of several words to several destination classes have also been investigated.

Experiments on small (around one hundred thousand words) French and German corpora

are described in (Jardino and Adda, 1993a; Jardino and Adda, 1993b) where small perplexity

improvements over the exchange algorithm approach are reported. The best results are obtained

using an initialisation of all words in one class, and by moving a multiple of the number of

vocabulary words for each value of the control parameter which is decreased logarithmically.

In (Jardino, 1996) a class trigram model built using the classification that was obtained using

a bigram criterion, is shown to have a lower perplexity on test data than each of the word

trigram models trained on large (
� � � � 	����

words) English, French and German corpora. The

low perplexity figures (particularly unexpected for English) were attributed to the inclusion of

punctuation in the texts. In (Jardino and Adda, 1994) a refinement is described that allows

words to belong to two classes and gives a 20% perplexity reduction on test data, compared to

the equivalent single-class membership model. Multiple-class membership is not restricted to

the simulated annealing clustering approach but the results do indicate that there is potential

for further improvement if words are permitted to belong to more than one class.

4.3 Automatic word clustering experiments

In this section the operation of the exchange algorithm is examined in more detail and perplex-

ity experiments are performed on the Russian and English corpora that were described in the

previous chapter. The exchange algorithm is used to determine the class mapping function by

optimising the perplexity on the training data of the two-sided, symmetric class bigram model
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given by Equation (4.2). The classification function is then used to build class trigram mod-

els. The main aim of this section is to examine the performance of a well-established clustering

algorithm in terms of the clustering times and the performance of the class models that are

built using the resulting class mapping function. The performance of the class models that are

built are evaluated in terms of the number of classes and the language involved. The work in

this section extends the experiments that were conducted on the Russian data and published in

(Whittaker and Woodland, 1998). In addition, the analysis here will provide a useful perfor-

mance benchmark for the experiments in the next chapter where a clustering algorithm for a

one-sided class model is presented.

4.3.1 Exchange algorithm for the two-sided class model

A brief outline of the workings of the exchange algorithm has already been presented in Sec-

tion 4.2.3. A thorough analysis of the update equations and efficient implementation details are

given in (Martin et al., 1998) and in order not to repeat that analysis, only the details which

are considered relevant to experiments in subsequent chapters will be given here. The essential

points in the operation of the algorithm are given below:

1. Initialisation: ������� ���������� � �����	���� ������� ��� ������
 �	�
�����
�
���

2. Iterate

� ��� ���� � ������
 � �
� Iterate

� ��� ����������
�
 ��
 * �
– ������	��� � ����� �

�	������	
�
 *
– �����������	�����  �	��� ��� �	�����������������
– ����������	� � � ����� � � �����!�����
�
 *

� �	����� � �����"�������� ��� �	�	�$# ���&%���
��'�����
�


3. ���������� 
������'( � ��� � �*)���� ���+��%������ � � �����	�� ������


4.3.1.1 Update equations

The viability of the exchange algorithm relies on there being an efficient means of updating the

optimisation criterion each time a word is moved. The set of update equations presented below

allows the implementation of an algorithm of order � � �
�, �

by updating only those counts that

are affected when a word
� �

is moved from class * 	 to class * � (Martin et al., 1995)

� *-,� * 	 � � � * � * 	 � � � � * � * 	 � � � � * ��� � � � (4.13)
� *-,� * 	 � � � * 	 � * � � � � * 	 � * � � � ����� � * � � (4.14)

� � * 	 � * 	 � � ��� * 	 � * 	 � � � � * 	 ��� � � � ����� � � * 	 � � ����� � ��� � � �
(4.15)
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and similarly

� *-,� * � � � � * � * � � � ��� * � * � � � � � * ��� � � � (4.16)
� *-,� * � � � � * � � * � � ��� * � � * � � � ����� � * � � (4.17)

� � * � � * � � � � � * � � * � � � � � * � ����� � � � ����� � * � � � � ����� ����� � �
(4.18)

where for example

� ����� � * � � �� ��� ��� �
� ����� ��� � �

(4.19)

It is pointed out in (Martin et al., 1998) that the counts
�����"� � * � and

��� * ��� � � only have

an effect if they are non-zero. Since many words are infrequent, the number of classes for

which this is the case is generally much less than
� ,

. A significant amount of unnecessary

computation can be avoided by only considering the predecessor and successor word classes for

which
� ����� � * � ,� �

and
��� * ��� � � ,� �

, respectively. The implementation used in the experiments

here also maintains a reversed bigram lookup table so the count
� ���7����� �

of words
�

occurring

before word
� �

can easily be retrieved.

4.3.1.2 Computational complexity

The update equations presented above facilitate the computation of the optimisation criterion

in � � � , �
time each time a word is moved from one class to another class. Since, over each

iteration
�
, each word in the vocabulary must be moved (tentatively) from its original class to

all possible destination classes, there is a � � � � � & � �
�, �

complexity to the algorithm which

dominates due to the
�����

operations in the innermost loop where the change in likelihood is

computed. However, for small numbers of classes, the size of the training data
� (

may also

become a dominant factor. This manifests itself as the number of unique bigrams (containing

only vocabulary words) in the training data
)

(where
) � � (

in general) which is factored

into the count generation procedure. The complexity of the algorithm can therefore be shown

to be

� � � � � � � ) � � � �'& � �
�, � � �

(4.20)

where the
� � )

factor originates from the generation of counts
� ���"� � * � and

��� * ����� � and because

the implementation does not involve any search in looking up the necessary bigram counts. In

addition, by only considering the
���

 �,

, predecessor and
�
� � �,

, successor word classes for which
� ����� � * � ,� �

and
� � * ����� � ,� �

the complexity can be reduced still further to

� � � ��� � ��) � � & � � , � � ���

 �, � �

� � �, � � � �
(4.21)

This results in a significant reduction in the complexity of the algorithm which is conse-

quently made to be “more than linear but far less than quadratic [in the number of classes]” (Mar-

tin et al., 1998).
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4.3.1.3 Model parameters

Additional comparisons will be made between models on the basis of how many parameters are

stored in each model. There is not necessarily a parameter stored for every possible event that

the model may have to handle. The number of parameters represents the number of observed

events for which explicit parameters are stored in the model. The parameters for these events

can then be used to compute probability estimates for other events which were unobserved or

discarded (see Section 2.3). A model with many parameters ought to perform better than a

model with fewer parameters, however, this is often not the case since some parameters may

be poorly estimated or even redundant. In the experiments in this dissertation, the number of

parameters in a trigram model is taken to be the sum of the number of unigrams, bigrams and

trigrams that are stored in the model. Strictly speaking, there is also a backoff weight associated

with each unigram and bigram context stored in the model, and various other parameters defin-

ing discounting coefficients, however these are not included in the number of parameters. In

addition, the parameters in the class membership component were not factored into this number,

however, since their number is small in comparison with the number in the
�

-gram component

this is a reasonable approximation.

4.3.2 Experimental procedure

The experimental procedure employed for obtaining the word classes and subsequently building

the class trigram models was identical for both corpora so as to allow as comprehensive and

legitimate a comparison as possible. The clustering algorithm requires: a list of word bigram

and unigram counts for all vocabulary words in the training data; the number of classes
� ,

into which words can be clustered to be specified; and, an initial classification of words into

the
� ,

classes. A word bigram language model was built to serve the first requirement and the

initial classification assigned the most frequent (
� , � 	

) vocabulary words to their own unique

class and all remaining vocabulary words were placed in the
� ,

th class. Further to this, four

special symbols were each placed in their own unique classes and could not be moved from these

classes nor could other words be moved to them during the clustering operation. These special

symbols are: � s
�

, � /s
�

, � NUMBER
�

and � UNK
�

(sentence-begin, sentence-end, number3

and unknown-word symbols). The extra four classes account for the (
� , ���

) classes in all the

experiments below. It should be noted that all vocabulary words, other than the four mentioned

above, were considered for classification into any of the
� ,

classes, and no minimum unigram

count was placed on a word for it to be considered to be moved. Words are moved in order of

decreasing frequency of occurrence in the training data and two whole iterations through the

vocabulary are performed in every case.

The value of
� ,

was varied to determine the effect of different numbers of classes on the

performance of the class model. Words were clustered into 204, 504, 1004, 2004, 3004, 4004

and 5004 classes. The vocabulary size was fixed to be the most frequent 65,000 words as used in

the word
�

-gram experiments in chapter 3. After two iterations, all vocabulary words had been

3The requirement for a number-symbol was explained in Chapter 3.
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moved up to two times and this final classification function was then used to construct back-

off class trigram models. The class trigram component was built and smoothed in an identical

manner to the back-off word
�

-gram models in the previous chapter: singleton bigrams and

trigrams were discarded in all cases and back-off models built using Good-Turing discounting

and Katz’s backing-off scheme. Since singletons were discarded from the word trigram model it

is reasonable from a statistical point of view not to include singletons in the class models.

Each vocabulary word occurred at least once in the training data, so the class membership

component was simply estimated using the relative frequency of the word unigram count and

the class unigram count in the training data. No further smoothing was necessary. The two

component probabilities were simply multiplied together to obtain the word-level probability of

the class model.

4.3.3 Results

The times in hours to complete one iteration of the algorithm for different numbers of classes

on a 300MHz Ultra 2 Sun Sparc Workstation are given in Table 4.1 for both the Russian corpus

and the English corpus.

No. of Hours per iteration

classes Russian corpus English corpus

204 0.8 0.7

504 2.1 1.9

1004 5.9 5.5

2004 17.7 16.3

3004 33.9 36.4

4004 61.4 53.7

5004 99.0 91.5

Table 4.1 Hours per iteration for different numbers of classes on a Sun Ultra2 processor.

The results presented in the following tables and graphs show the perplexities computed on

the ���	������	��
�� set of each corpus of the stand-alone class trigram models and of the interpolated

word trigram and class trigram models. The interpolation weights were chosen so as to optimise

the perplexity on the appropriate ���������	��
�� portion of each corpus using a tool that uses the E-M

algorithm (Rosenfeld, 1994) to perform the optimisation. The relative perplexity improvement

of each interpolated model over the stand-alone word trigram model is given in the fifth column

of the table and the number of parameters in each stand-alone model is given in the final column.

Results are reported for seven different numbers of classes in Table 4.2 for the Russian corpus

and in Table 4.3 for the English corpus. To ease comparison, the same results are plotted in

Figures 4.1 and 4.2 for the Russian and English corpus respectively.
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No. of Perplexity weights % improvement Class model size

classes
�7� � �	� � � �7� � � � � 


�
9 � � 
�� , 9 ��� � � � over word trigram (parameters)

204 720.1 375.5 0.75, 0.25 9.1 1,753,940

504 558.0 358.1 0.66, 0.34 13.4 4,152,540

1004 484.2 349.6 0.61, 0.39 15.4 6,341,130

2004 436.5 345.8 0.57, 0.43 16.3 8,318,650

3004 414.4 346.4 0.55, 0.45 16.2 9,159,020

4004 405.2 348.6 0.55, 0.45 15.7 9,583,230

5004 400.1 351.4 0.55, 0.45 15.0 9,830,420

65000 413.3 — — — 10,896,660

Table 4.2 Russian corpus (65k): perplexity on ���	�
�����

� 

�

data of stand-alone class trigram models and

interpolated class and word trigram models.
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Figure 4.1 Russian corpus (65k): perplexity on � ���
�����
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�

data of stand-alone class trigram models and

interpolated class and word trigram models.
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No. of Perplexity weights % improvement Class model size

classes
�7� � �	� � � �7� � � � � 


�
9 � � 
�� , 9 ��� � � � over word trigram (parameters)

204 383.1 205.5 0.78, 0.22 4.9 1,850,350

504 306.8 201.0 0.72, 0.28 7.0 5,424,600

1004 268.8 199.2 0.67, 0.33 7.8 7,975,660

2004 242.8 199.1 0.64, 0.36 7.9 10,110,760

3004 231.5 200.5 0.63, 0.37 7.2 10,982,810

4004 226.4 202.0 0.62, 0.38 6.5 11,384,370

5004 223.5 203.5 0.62, 0.68 5.8 11,596,280

65000 216.1 — — — 12,431,060

Table 4.3 English corpus (65k): perplexity on �����
� ���

��

�

data of stand-alone class trigram models and

interpolated class and word trigram models.
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Figure 4.2 English corpus (65k): perplexity on �����
�����

��

�

data of stand-alone class trigram models and

interpolated class and word trigram models.

4.3.4 Analysis of model performance

The performance of seven class models that were built for each corpus has been presented in the

previous section. It is now necessary to analyse the models in more detail to determine where

the deficiencies and strengths of these models lie. Since there are too many models to be able



Class-based language modelling 68

to analyse each individually, the analysis will examine only the best interpolated model and the

best stand-alone class model for the Russian corpus only.
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(a) 2004-class model.
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(b) Interpolated word and 2004-class model.
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(c) 204-class model.
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(d) 5004-class model.

Figure 4.3 Russian corpus (65k): distribution of log-probabilities for trigram word and class models.

Figure 4.3 shows the distribution of log-probabilities assigned to words in the �������������
��
set by the different models. In each sub-figure the distribution of log-probabilities assigned by

the word model is repeated to aid comparison with the distributions of the three class models

and the interpolated class and word model. The plots themselves are obtained by partitioning

the log-probabilities into equally spaced bins in the
5���� � �

domain. The area under each plot is

approximately equal to the log-likelihood of the ���	������	��
�� data i.e. it is directly related to the
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perplexity of the model.

It is immediately clear that the word model and the class model apportion probabilities quite

differently. In particular, the class model appears to distribute the probabilities more evenly, with

a lower proportion generally being assigned probabilities smaller than
	�� ���

. In contrast, the

word model predicts more words with a high probability (
� � � 	

) than the class model does. The

conclusion that can be made from this is that the class trigram events which capture less specific

dependencies than word trigram events are more robustly estimated, hence the class model

backs-off less frequently and consequently assigns fewer very low probabilities. Conversely, the

high-probability estimates result from strong word relationships which the class model does not

capture as well4.

The distribution of log-probabilities in the interpolated model indicates that the best aspects

of both models have been preserved: the large number of high-probability estimates of the word

model and the small number of very-low probability estimates of the class model. The significant

perplexity reduction that is obtained may well be attributed to the reduced number of very low

probability estimates5. The distribution of very small probabilities ( �
	�� ���

) in the interpolated

model is particularly intriguing since there are fewer than in either of the component models.

When this phenomenon was investigated more closely, it was observed that a significant propor-

tion of the very low probabilities of one model are combined with much higher probabilities from

the other model resulting in higher probability estimates on average. It is clear why the class

model will often assign a higher probability than the word model to previously unseen word

sequences, but not so clear the other way round. In general, very low probability estimates

( �
	�� ���

) often involve a back-off to the model’s unigram distribution6 and further analysis

showed that this was indeed the case. When very low probability estimates were produced,

the word model’s backed-off unigram distribution often gave a higher probability estimate to an

event than the class model’s backed-off unigram distribution.

The stand-alone 204-class model, which does not perform particularly well, has a distribution

of log-probabilities that differs significantly from that of the word model. The distribution is

much flatter for probabilities between
	�� ���

and
	�� � �

and there are relatively few very low and

very high probabilities. A good model will preserve the small number of very low probabilities

and have a large number of high probabilities. The interpolated model demonstrates this and to

some extent so does the 5004-class model. In fact, the latter has a similar distribution of very

low and very high probabilities to the word model but a greater number of probabilities between	�� ���
and
	�� � �

(the word model has more between
	�� ���

and
	�� ���

) which helps to explain its

lower perplexity.

4If a particular 
 -gram event is modelled well then the probability assigned to that 
 -gram event will generally

be higher than a backed-off ( 
�� � )-gram probability estimate.
5It should be remembered that here perplexity is a geometric average of the probabilities of events in the test data

hence small probabilities can have a large effect on the overall probability. By interpolating two sources, many very

small probabilities may only be increased by a small amount, yet have a significant effect on the overall perplexity

(Rosenfeld, 1994).
6Note that because all bigram and trigram singletons were discarded from both class and word models, and since

the class mapping is deterministic, whenever the class model backs-off, the word model must also back-off.
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Perplexity of different models

Back-off case 204-class 2004-class 5004-class 65k word

3 196 101 85.6 71.6

3-2 1.28
� 	�� �

820 748 655

3-2-1 2.90
� 	�� �

2.96
� 	�� �

3.62
� 	�� �

1.23
� 	�� �

Table 4.4 Russian corpus (65k): perplexities of several models computed on sets of events that were predicted

by different word model back-off cases.

Table 4.4 shows the perplexities of three different class models and the word model for the

65k Russian vocabulary where the perplexity of each model is computed on those events that

are predicted by the three7 different backoff cases of the word model i.e. when the trigram word

model finds the requested trigram (3), or backs-off to either the bigram (3-2) or unigram (3-

2-1) distribution. The results clearly show the relative performance of the different models for

the different backoff cases of the word model. In particular, the 204-class model has the lowest

perplexity when the word model backs off to the unigram distribution but the highest perplexity

when the requested trigram is found by the word model. This clearly illustrates the class model’s

ability to generalise to unseen word sequences. The 5004-class model, which has a 3% lower

perplexity overall than the word model, has a 15-20% higher perplexity for the cases where the

word model finds the trigram or only backs off to the bigram distribution. This is explained

by the word model’s ability to capture more specific dependencies. However, when the word

model backs off completely to its unigram distribution, the 5004-class model has a 70% lower

perplexity than the word model. The 2004-class model which forms the best interpolated model

has perplexity characteristics which best complement the specificity of the word model.

To complement this quantitative analysis, an investigation of the contents of the word classes

that were obtained showed many of them to be intuitively appealing. Judging by the contents

of the ten randomly chosen classes given in Table 4.5 on the next page, it is clear that the

contents of some classes are consistent in terms of their part of speech e.g. class 10, and other

classes have obvious semantic similarities e.g. class 9. Also, most of the written numerals below

twenty form their own class like “EIGHT” in class 4. However, it is hard to find a consistent

attribute to describe some other classes e.g. class 5. Interestingly, class 6 contains what appear

to be corrupted (intentionally or accidentally) forms of the word “TO”, together with the correct

spelling of the word. Some of the classes for Russian (not shown) contain the majority of a set of

word inflections, for example, all six masculine word-forms of the adjective “superfluous” appear

in one class together. In general, a more consistent attribute (subjectively determined) can be

found for the classes that were obtained on the Russian corpus than for those obtained on the

English corpus.

7The bigram request at the beginning of the �����
���	�

��

�

text has been ignored.
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Class 1 Class 2 Class 3 Class 4 Class 5

CONCERNED

WRONG

HAPPENING

EVEN I’D HIMSELF RAINING

EQUIVALENTLY YOU’D MINDEDLY EIGHT BERSERK

WE’D THEMSELF SNOWING

GROUNDLESS

NODED

AGOG

NEEDFUL

Class 6 Class 7 Class 8 Class 9 Class 10

AVAILABLE SOCIETY RELATIONSHIP GONE

PAYABLE CULTURE RELATIONSHIPS GROWN

PRICED POLITICS CONFLICT BEGUN

TO REDUNDANT LITERATURE LINK FALLEN

TER TRANSMITTED DEMOCRACY CONVERSATION SPOKEN

TAE UNDERWAY RELIGION CONNECTION RISEN

UNAVAILABLE CONSCIOUSNESS LINKS ARISEN

REFERENCED IDEOLOGY COMPARISON SPRUNG

RECOVERABLE CAPITALISM PARTNERSHIP LAIN

OBTAINABLE CHRISTIANITY TENSION SHRUNK

Table 4.5 All, or up to the ten most frequent, words from ten randomly chosen classes of the 1004-class

English model.

4.3.5 Discussion

For both corpora, as the number of classes is increased the perplexity of the stand-alone class

model decreases, however this trend cannot continue indefinitely. If the number of classes is

increased to the point where each word resides in its own class, the word model is obtained as a

result. The optimum number of classes for the Russian corpus may be expected to lie somewhere

between 4004 and 65000 classes. For the English corpus it is conceivable that the word model

in fact represents the optimal classification of words for a stand-alone model.

When the class model is interpolated with the word model there is clearly a particular num-

ber of classes which results in optimal performance. For both the Russian corpus and the English

corpus, the optimal number lies between 1004 and 3004 classes8. The interpolation weights

also indicate that as the number of classes increases, the weighting given to the class model

increases. This trend will probably continue to the point where each model is given an equal

weighting by the E-M algorithm. Even when the stand-alone class model outperforms the word

model, its weight is less than that assigned to the word model. This last point, that the class

models are able to outperform the word models for the Russian corpus is particularly interest-

ing. For English, class models tend always to give worse perplexity results than the word model

when there is sufficient training data available. For the Russian corpus, of those models inves-

tigated, the two using 4004 and 5004 classes outperform the word model and also have fewer

8Referring to section 3.3 on the effect of different corpus partitioning techniques, it is interesting to note that the

optimal number of classes for the heterogeneous English corpus partition is actually less than for the homogeneous

partition (results not shown).
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parameters than the word model.

Since both the Russian and English corpora are of a similar size it is clear that the large

number of unique words in the Russian training data means that its data sparsity is likely to

be greater. The class models reduce the effects of sparsity to a certain degree by pooling the

statistics of contextually similar words. This makes the probability estimates more robust at the

expense of making them less precise. The explanation for the variation in performance with

different numbers of classes is associated with a trade-off in the model’s ability to generalise

to previously unseen word sequences while maintaining the accuracy with which words are

predicted. If there are too few classes then over-generalisation occurs and the probabilities are

not specific enough. If there are too many classes then the idiosyncrasies of the training data are

captured resulting in over-specialisation and a reduction in the ability to generalise.

The clustering times for the algorithm on both corpora are similar and reflect the fact that

both corpora are of a similar size and that the vocabulary sizes are the same. The size of the

training data manifests itself in the number of distinct bigrams that must be retrieved during

the clustering process. It is clear that this implementation of the clustering algorithm scales

slightly less than quadratically in the number of classes9. From the analysis in section 4.3.1.2,

it is clear that the algorithm should scale approximately linearly in the number of vocabulary

words. Unfortunately, the long clustering times for the above models and the way in which the

algorithm scales made further investigation of the algorithm for the 430k Russian vocabulary

and larger numbers of classes impractical.

4.4 Word recognition experiments

The aims of the experiments in this section10 were to evaluate the difference in performance

between class models built using automatically generated word classes and those built using

152 part of speech (POS) classifications. The exchange algorithm was employed to obtain the

“automatically generated” word classes. All class models were interpolated with a baseline word

trigram language model that used Good-Turing discounting and had singleton bigrams and tri-

grams removed. Additionally, a minimum unigram count of ten was applied. The performance

evaluation is both in terms of perplexity on held-out data and word recognition experiments

using  -best re-scoring (Schwartz and Chow, 1990). All class
�

-gram models were built us-

ing the variable-length
�

-gram model (Niesler and Woodland, 1996a) which was described in

Section 2.4.2.
�

-grams are progressively extended and only retained if doing so decreases the

leaving-one-out training set likelihood by at least some fraction
9 � �

. The number of parameters

retained by the model can thus be varied according to the value of
9 �	�

.

Using part of speech classifications for words means that a many-to-many vocabulary map-

9The implementation of the clustering algorithm in (Martin et al., 1998) scales more than linearly but much less

than quadratically in the number of classes, however, the corpus that was used is different and its size is a third the

size of the corpora used in the experiments here.
10The work in this section contains experiments performed jointly by the author and Thomas Niesler in the Cam-

bridge SVR group and are published in (Niesler et al., 1998). It should also be noted that these experiments pertain

only to the English language.
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ping exists. A model of the form given by Equation (2.15) was therefore required. With the

automatically derived word classifications the model given by Equation (4.2) was suitable, since

a word is only allowed to belong to one class.

4.4.1 Results

All experiments were performed on the Wall Street Journal (WSJ) Corpus (Paul and Baker,

1992). The language modelling data consists of 37 million words of newspaper text from the

WSJ newspaper over the years 1987-89. Approximately the first 19,000 words from the language

model development test data for each year were taken to form a 59,000 word test data set for

perplexity calculations. Recognition experiments used the development (R-DEV) and evaluation

(R-EVAL) tests which formed part of the 1994 ARPA CSR HUB-1 evaluation, the composition of

which is shown in Table 4.6.

Sentences Speakers Words

R-DEV 310 20 7,388

R-EVAL 316 20 8,190

Table 4.6 Composition of the 1994 ARPA CSR HUB-1 development (R-DEV) and evaluation (R-EVAL) test

sets.

Two iterations of the exchange algorithm were executed to generate classifications for all 65k

words of the vocabulary. Classifications were obtained for 150, 200, 500, 1000 and 2000 classes.

Variable
�

-gram language models were then constructed using these classifications. Two models

were built for the 150-class classification, one of which was forced to contain approximately the

same number of parameters as the model that used POS classifications. This was achieved by

specifying a value for
9 �	�

which determines the number of model parameters and allows a fair

comparison of the performance of the two classifications to be carried out.

The perplexity figures on the test portion of the corpus for the class models and baseline

word model are shown in Table 4.7. The number of parameters in each model is also shown.

Model type
� ,

Parameters
� �

POS 152 909,540 448.5

XCHNG ALG 150 1,038,770 301.1

XCHNG ALG 150 2,134,920 289.5

XCHNG ALG 200 2,697,020 265.8

XCHNG ALG 500 4,677,640 212.2

XCHNG ALG 1000 6,384,710 184.4

XCHNG ALG 2000 8,376,950 167.8

WORD — 4,884,860 148.8

Table 4.7 Class model characteristics and perplexity (
���

) on LM-DEV.
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Lattices were generated for each R-DEV and R-EVAL test set using the HTK large-vocabulary

speech recognition system (Woodland et al., 1995) with a 65k vocabulary and backoff bigram

language model. These lattices were then rebuilt using the baseline word trigram model to

ensure that the language models were trained on the same text.  -best (  � 	�� � ) lists were gen-

erated using the Entropic Lattice and Language Modelling Toolkit (Odell and Niesler, 1996) and

re-scored using a linear interpolation of the class and word language models. The interpolation

weights were chosen so as to minimise the word error rate on R-DEV. The recognition results

together with the perplexity on LM-DEV is shown for the interpolated word and class models in

Table 4.8.

Perplexity WER

Model type
� ,

LM-DEV R-DEV R-EVAL R-DEV R-EVAL

POS 152 139.4 185.4 183.2 11.5 12.3

XCHNG ALG 150 142.2 189.7 187.1 11.1 12.2

XCHNG ALG 150 139.1 186.4 184.4 11.1 11.9

XCHNG ALG 200 136.9 184.5 181.9 11.0 11.9

XCHNG ALG 500 131.7 180.8 175.7 10.8 11.7

XCHNG ALG 1000 129.7 179.0 175.0 10.9 11.8

XCHNG ALG 2000 129.4 179.9 176.1 10.9 12.0

WORD — 148.8 206.2 201.8 11.9 12.5

Table 4.8 Perplexity and word error rates (WER) for the interpolated class and baseline word trigram models.

4.4.2 Discussion

The perplexity results in Table 4.7 for the stand-alone class language models show that models

which used automatically derived classes all had lower perplexities than the model that used

POS classifications. In particular, this was true when 150 automatically derived classes were

used in a model similar in size to that of the POS model. From Table 4.8 it is seen that this is

also true for the word error rate of the combined class and word models even though the per-

plexities of the combined word and POS model are lower. In the literature, permitting multiple

class membership has generally resulted in significant reductions in perplexity which shows that

the POS classification is a particularly sub-optimal classification of words for this data set and

vocabulary.

The automatic clustering technique allows classifications into different numbers of classes

and for this task the model that used 500 classes resulted in the lowest word error rate. The

relative improvement of the interpolated 500-class model over the baseline word trigram model

was 7%. As the number of classes was increased, the performance began to deteriorate, since

the class model begins to generalise less well to unseen word sequences. It is this generalising

ability of the class model which complements the specific predictive power of the word model,

and for which there is an optimum number of classes.
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Analysis of the contents of the automatically derived classes revealed that words were dis-

tributed much more evenly than in the case of the POS model. Words which were themselves

very frequent were often assigned a class of their own by the clustering algorithm. POS classi-

fications group words only according to their grammatical function and with no regard to their

statistical properties. Very infrequent words may be assigned their own class and frequent words

may be grouped together, which is not optimal from a statistical point of view.

As an adjunct to the experiments conducted here, a two-sided class trigram model using

one thousand automatically generated classes was interpolated with a word 4-gram model in

the 1997 HTK Broadcast News transcription system (Woodland et al., 1998). The inclusion of

the class model reduced the overall word error rate by 3% relative. The final system had the

lowest word error rate overall in the 1997 DARPA Broadcast News evaluation by a statistically

significant margin.

4.5 Summary

This chapter has given an overview of several techniques that have been used in the literature for

determining the word classification function. Experiments on the Russian and English corpora

using the exchange algorithm to obtain word classifications were then described and back-off

class trigram models built using these word classifications. For the Russian corpus, two different

stand-alone class models were shown to outperform the word model and also contained fewer

parameters. For both corpora, the interpolated class and word model gave significant perplexity

improvements over the stand-alone word model. The best improvement on the Russian corpus

was twice as large as the best improvement for English, and this was attributed to the greater

sparsity of the Russian corpus.

Lastly, a comparison in terms of perplexity and recognition performance was made between

the performance of class models with part of speech classifications and automatically generated

classes. All interpolated class and word models gave an improvement in terms of perplexity

and word error rate but the best performance was obtained using the automatically generated

classes.



5

One-sided class-based language modelling

The work in this chapter builds upon the experiments and the models developed in the previous

chapter where a two-sided class model was considered. The work in this chapter concentrates

on a particular type of one-sided class model. After an introduction to the one-sided class model

that will be used in subsequent experiments, an exchange algorithm is developed for the one-

sided model similar to that used for generating word classifications for the two-sided model.

A series of clustering experiments is then performed on both the Russian and English corpora,

and one-sided class models are built for different numbers of word classes. Particular emphasis

is placed on the speed of the clustering algorithm. Finally, a comparison is made between the

performance of the one-sided models and the two-sided models presented previously, in terms

of the perplexity of models and the clustering times for the two different types of class model.

5.1 Introduction

The experiments in the previous chapter concentrated on the two-sided symmetric class model

which combines what may be thought of as separate state transition and state emission distribu-

tions, with the same class mapping function for both the current and predecessor words. In this

chapter, a one-sided class model is considered in which a state mapping is used for the prede-

cessor words only, and the current word that is being predicted is not mapped at all. The state

mapping is an (
� � 	

)-tuple of word classes. The one-sided class
�

-gram model that will be

used throughout this chapter maps words in the history as follows:

������� � + ����� ����� ���
	�� � ��� � � � + � ��������� � � �
(5.1)

The probability of the current word is directly conditioned on the (
� � 	

) classes of the

predecessor words. The independence assumption between the current word being predicted

and the predecessor word classes that was present in the two-sided class model has effectively

been removed.

It should be noted that there is no constraint on which words in the history are mapped

nor how they are mapped, so long as the mappings are consistent. Combinations of classes and

76
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words can easily be incorporated into this structure and the generation of independent class

mapping functions for each position in the history can also be accommodated. The word
�

-

gram model still forms a particular case of the above class model when each word is mapped to

its own unique class.

Since the one-sided model is capturing different language dependencies to the two-sided

model, there is no guarantee that the performance benefits that were observed with the two-

sided model will be obtained with the one-sided model. Given that the structure of the one-

sided model lies somewhere between that of the word model and the two-sided class model, the

characteristics of the one-sided model may also be expected to lie somewhere between those of

the two models.

5.2 Automatic word clustering experiments

This section describes the details of the implementation and the experimental work using one-

sided class models.

5.2.1 Exchange algorithm for the one-sided class model

The exchange algorithm that was presented in the previous chapter can be modified to de-

termine the word classification function for the one-sided class model of Equation (5.1). The

exchange operation is still an integral part of the algorithm and words are moved systematically

among the available classes to determine the best class for each word. Similarly, when a word

is moved from one class to another, the optimisation criterion can be computed efficiently by

only updating contributions which are affected by the word movement. A greedy approach is

likewise employed to make local optimisations by taking each word in turn and finding the best

class among those available to which to move it. The best class is chosen with no regard for

subsequent word classifications, hence the algorithm is not guaranteed to converge to a globally

optimal solution.

In an analogous manner to the directed optimisation technique presented in the previous

chapter, the optimisation criterion is defined as the log-likelihood of the training text using a

one-sided class bigram model,

4 4�� � � + � � �
� �

� ����� �!���8������� � + ����������� � � � (5.2)

Insertion of the maximum likelihood estimates of the conditional probabilities results in the

following optimisation equation:

484 � � � + � � � � � � � � �
� � * 	 ����� � � ����� � � * 	������ �

��� * 	 �
�

(5.3)

which can be further simplified for implementation to
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484 � � � + � � � � � � � � �
� � * 	 ����� � � ����� ��� * 	 ����� � � � � � ��� * 	 � ������ � � * 	 � � (5.4)

5.2.1.1 Update equations

When a word
� �

is tentatively moved from class * 	 to class * � it is only necessary to recompute

the change in log-likelihood as a result of the move. Moreover, only the contribution of those

counts which are affected by the movement of
� �

need to be updated i.e. only those stored

bigram counts in which
� �

appears. The count update equations are as follows:

� � � � � * 	 ��� � � ��� * 	���� � � ������� ��� � �
(5.5)

� � � ��� * � ��� � � ��� * � ��� � � ������� ��� � �
(5.6)

� � * 	 � � � � * 	 � � � ��� � � �
(5.7)

��� * � � � � � * � � � � ����� � �
(5.8)

where, as before, for example

� � * � ��� � � �� � � � � � � � � ����� ��� � �
(5.9)

There is no explicit search involved in computing the count updates since only those counts

for words which follow
� �

in the training data need to be changed and these can be indexed

directly. The contribution to the log-likelihood of
�"�

being in class * 	 need only be computed

once. Thereafter, the contribution to the log-likelihood of
���

being in all remaining classes * �

can be computed. When
� �

is moved, there is no “knock-on” effect1 on class bigram counts,

other than those involving * � , hence the change in log-likelihood can effectively be computed

for all classes simultaneously. Word
� �

is then moved to the class * � , for which the increase in

log-likelihood is the greatest.

5.2.1.2 Computational complexity

Each iteration
�

of the algorithm involves finding the locally optimal class for the
� &

vocabulary

words by moving each word in turn to each of the
� ,

classes. When word
� �

is moved to a

tentative destination class, (
�� �

� 	
) count updates involving a

�����
operation must be performed,

where
�� � is the average number of distinct bigrams per word i.e. all

� ���"� ��� �
in which

� �

appears2. The complexity of the algorithm is therefore linear in the number of classes and linear

in the number of words in the vocabulary:
1This was the case for the two-sided clustering operation since the class bigram counts 
���� � � ��� and 
���� � � � � for

all � are affected by moving a word; for the one-sided algorithm, only 
���� � � 
�� is affected.
2The number of distinct bigrams � in the training data is affected by the size of the training data 


�
and the

size of the vocabulary 
 � . As an example of the absolute values that are involved, for the 65k Russian vocabulary

�
	 ���� � ��� and for the 430k vocabulary �
	 � �� � ��� .
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� � � � � & � � , ��� )
� & � 	 � � �

(5.10)

Compared to Equation (4.21) this complexity highlights a significant advantage of this al-

gorithm over that for the two-sided model, specifically because the algorithm no longer scales

quadratically in the number of classes. Correspondingly larger vocabularies may now be clus-

tered into larger numbers of classes in a fraction of the time taken by the two-sided clustering

algorithm.

5.2.1.3 Model parameters

The number of free parameters in the one-sided class bigram model is
� & � � � , � 	 �

, i.e. the

number of free parameters lies between that of the two-sided class model for the same number

of classes, and that of the word model.

The storage of separate
�

-gram (
� � 	 � � � � �

) tables is necessary for models of the form

given by Equation (5.1)3. Where the number of parameters is reported in the tables below, this

refers to the sum of the number of
�

-grams (
� � 	 � � � � �

) stored in each model. This value can

be used as a valid comparison with the other models since it takes into account the number

of parameters that are used to compute probabilities even if it does not accurately reflect the

amount of storage space required by the model.

5.2.1.4 Efficient code implementation

The code for this algorithm was implemented in a different manner to that of the two-sided

exchange algorithm since it was observed that a linked-list implementation would remove the

necessity for any repetitive search operations and because it allowed the most efficient storage

of the bigram counts
��� * ��� � . Whereas the bigram counts for the two-sided clustering algo-

rithm were easily accommodated in a
� , � � ,

array for the range of values of
� ,

that were

investigated, for the one-sided clustering algorithm, the storage of the bigram counts would re-

quire a
� & � � ,

array which is prohibitive for all but small values of
� &

and
� ,

. A linked-list

implementation therefore offered a memory efficient solution to the problem.

Separate linked lists are maintained for each class; each element in a class list * contains the

count of a word
�

that follows class * in the training data i.e.
��� * ��� � . In addition, separate

linked lists are constructed for each vocabulary word
�

and these are interlaced with the class

lists to connect together all following word counts with the same identifier. The purpose of this is

to facilitate the computation of the new optimisation criterion value when a word is tentatively

moved from one class to another class. When a word
� �

is tentatively moved to all possible

destination classes * � , the word list associated with each word
�

that follows
� �

in the training

data is traversed, and the count updates are computed for all classes * � simultaneously. In this

way, no searching for counts is necessary.

The drawback with this implementation concerns the removal and addition of new elements

to the class lists whenever a word is taken out of its original class and placed in the best class

3The reason for this requirement was explained in Section 3.1 regarding the language modelling tools.
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because some slow linear search operations are then necessary. However, this can be tolerated

since it is only performed
��&

times per iteration. No garbage collection is performed to remove

“empty” elements from the linked lists which may also add a small overhead to the update

calculations. Other performance issues concerning computer memory caching might also be of

importance if the interlaced linked lists were to become significantly fragmented in memory.

5.2.2 Position dependent word classification

The one-sided class model given by Equation (5.1) suggests that different, independent classi-

fication functions are possible for each of the (
� � 	

) words in the history4. In the literature,

classification methods which use the word bigram statistics from the training data to determine

the word classification generally use the same classification for words in all positions of the his-

tory. This assumption implies that the co-occurrence statistics of adjacent words are the same as

for pairs of words which are separated by any number of words. This is probably not a sensible

assumption given that the class mapping function can only map words into one class. It is a

plausible conjecture that words may have different parts of speech or different meanings when

they appear in different relative positions to other words.

Since it has been shown that the clustering algorithm with the optimisation criterion given

by Equation (5.4) is linear in the number of classes, it is still practical to perform an additional

clustering operation using the distance bigram statistics from the training data. In particular,

for the case of a one-sided class trigram model, the bigram counts of pairs of words which are

separated by one word can be used to obtain a classification for the
� � � � � th word in the

�
-gram

as follows5:

4 4�� � � + � � � � �

� ����� �!���8������� � + � ������� � � � � (5.11)

An analogous set of update equations to those developed in Section 5.2.1.1 can then be used by

the exchange algorithm.

5.2.3 Experimental procedure

The experimental procedure employed for evaluating the one-sided class models is essentially

identical to that used for evaluating the two-sided models in the previous chapter.

4A word classification function may be independently specified to map each word to its own unique class i.e. to

be mapped to itself. Combinations of words and word classes may then be used in the context. This was investigated

for a one-sided class trigram model for both possible combinations of words and word classes. The results, however,

were worse than for the word model by itself and the beneficial properties of the class models were also absent so

this combination was not pursued further.
5Optimising both class mapping functions simultaneously would be expected to give superior results, however,

this would be at the expense of a significant increase in algorithmic complexity and clustering times.
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The first step was to generate a set of word classifications for the vocabulary of each corpus

for different numbers of word equivalence classes. To facilitate a comparison with the perfor-

mance of the two-sided model, the 65k vocabularies for both corpora were clustered into 204,

504, 1004, 2004, 3004, 4004 and 5004 classes6. This range of classes allows an approximate

relationship between the number of classes and the perplexity of the models to be determined.

In addition, the 430k Russian vocabulary was clustered into the same range of classes, since this

is now feasible due to the improved scaling properties of the one-sided clustering algorithm. The

same initialisation scheme as before was used, whereby the most frequent (
� , � 	

) words are

assigned to their own unique class and all remaining words placed in the
� ,

th class.

The second step was to build one-sided class trigram models for each of the seven different

numbers of classes using the ���		�������	� data from each corpus. All singleton bigrams and tri-

grams were discarded and Good-Turing discounting employed together with Katz’s backing-off

scheme. The performance of each class model was assessed by computing its perplexity on the

���	������	��
�� portion of each corpus. Interpolated word and class models were also evaluated and

the interpolation weights found using an E-M algorithm to optimise the perplexity of the model

on the ���������	��
�� portion of each corpus.

For all the above class trigram models, a position-dependent word classification (see Sec-

tion 5.2.2) was also obtained for each of the two predecessor words and class models then built

and evaluated in an identical manner.

An aside: combinations of classifications

Since it was known in advance that the clustering operation for the one-sided class model would

be fast, it seemed obvious to use the classifications obtained for the one-sided model in the two-

sided model. The motivation behind this strategy was that since the two-sided model captures

more general dependencies than the one-sided model, the advantages of both models should

perhaps be combined. However, the performance of the two-sided model with the one-sided

model’s classifications was found to be substantially worse than both the one-sided model with

one-sided classifications and the two-sided model with two-sided classifications. This was true

both for the stand-alone model and when it was interpolated with the word model. Conse-

quently, this line of experimentation was not pursued further and the results will not be given

in the next section. Nonetheless, the conclusion that was drawn from this experiment was that

it is important to optimise the word classifications directly for the type of model they will be

used in. In particular, this is relevant to the use of part-of-speech classifications in class models

since they are inherently predetermined and not optimised for the model they are used in. This

observation corroborates the results that were obtained in the previous chapter in Section 4.4.

6As before, the additional 4 classes contain symbols which are not considered for clustering and to which other

words cannot be moved. See Section 4.3.2 for a more detailed explanation.
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5.2.4 Results

The clustering times for the one-sided algorithm are presented first, followed by the perplexity

results for one-sided class models using both the 65k and 430k Russian vocabularies and the

65k English vocabulary.

Number Hours per iteration

of Russian corpus English corpus

classes 65k 430k 65k

204 1.0 10.1 0.8

504 1.6 11.2 1.4

1004 3.7 13.7 2.3

2004 4.3 15.8 4.0

3004 5.9 18.3 5.4

4004 7.7 20.9 6.8

5004 9.1 23.3 8.2

Table 5.1 Hours per iteration for a range of different numbers of classes and vocabulary sizes.

The times taken to perform one iteration of the clustering algorithm using the 65k and 430k

Russian and 65k English vocabularies for the seven different numbers of classes are given in

Table 5.1. A comparison of the clustering times per iteration between the one-sided and two-

sided clustering algorithms for the same range of classes is plotted in Figure 5.1 for the 65k

vocabularies only.
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(a) Russian corpus.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

100

Number of classes

C
lu

s
te

ri
n
g
 t
im

e
s
 (

h
o
u
rs

)

2−sided
1−sided

(b) English corpus.

Figure 5.1 Comparison of clustering times per iteration for 1-sided and 2-sided models with a 65k vocabulary.

To reduce clutter in the presentation of the results, only the perplexity results for the one-
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sided class models with the position-independent word classifications have been displayed in

the tables of results. However, to allow some comparison to be made, graphs are also pro-

vided to show the perplexity variation between models with position-dependent and position-

independent word classifications.

No. of Perplexity weights % improvement Class model size

classes
�7� � �	� � � �7� � � � � 


�
9 � � 
�� , 9 ��� � � � over word trigram (parameters)

204 483.3 362.6 0.65, 0.35 12.3 7,492,300

504 436.0 361.5 0.60, 0.40 12.5 8,759,640

1004 414.9 363.6 0.58, 0.42 12.0 9,542,270

2004 403.5 368.9 0.56, 0.44 10.7 10,093,100

3004 400.3 373.3 0.55, 0.45 9.7 10,354,210

4004 400.0 377.4 0.55, 0.45 8.7 10,394,830

5004 399.6 380.4 0.54, 0.46 8.0 10,458,490

65000 413.3 — — — 10,896,660

Table 5.2 Russian corpus (65k): perplexity on �����
� ���

��

�

data of stand-alone 1-sided class trigram models

and interpolated class and word trigram models (position independent classification).

The perplexities of one-sided, position independent class models for the Russian corpus with

the 65k vocabulary are shown in Table 5.2. A comparison of the perplexities obtained with the

position-independent and position-dependent classifications for the same vocabulary is plotted

in Figure 5.2.
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(a) Position independent classification.
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(b) Position dependent classification.

Figure 5.2 Russian corpus (65k): perplexity on �����
���	�

��

�

data of stand-alone 1-sided class trigram models

and interpolated class and word trigram models.
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The perplexities of one-sided, position independent class models for the Russian corpus with

the 430k vocabulary are shown in Table 5.3. A comparison of the perplexities obtained with the

position-independent and position-dependent classifications for the same vocabulary is plotted

in Figure 5.3.

No. of Perplexity weights % improvement Class model size

classes
�7� ��� � � � �7� � � � � 


�
9 � � 
 � , 9 ��� � � � over word trigram (parameters)

204 773.9 567.1 0.62, 0.38 16.2 9,562,340

504 701.9 566.8 0.58, 0.42 16.2 10,657,620

1004 670.7 572.4 0.56, 0.44 15.5 11,316,050

2004 653.0 582.1 0.55, 0.45 14.0 11,755,510

3004 648.6 590.5 0.54, 0.46 12.8 11,895,130

4004 648.2 597.9 0.54, 0.46 11.7 11,958,400

5004 647.7 602.7 0.54, 0.46 11.0 11,989,020

430000 677.0 — — — 12,177,700

Table 5.3 Russian corpus (430k): perplexity on �����
� ���

��

�

data of stand-alone 1-sided class trigram models

alone and interpolated class and word trigram models (position independent classification).
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(a) Position independent classification.
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(b) Position dependent classification.

Figure 5.3 Russian corpus (430k): perplexity on �����
�����

��

�

data of stand-alone 1-sided class trigram mod-

els and interpolated class and word trigram models.
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Perplexity results for the 65k English vocabulary are shown in Table 5.4 and a comparative

plot of the position-independent and position-dependent classifications is given in Figure 5.4.

No. of Perplexity weights % improvement Class model size

classes
�7� � �	� � � �7� � � � � 


�
9 � � 
�� , 9 ��� � � � over word trigram (parameters)

204 286.4 205.2 0.75, 0.25 5.0 7,851,320

504 252.0 204.7 0.70, 0.30 5.3 9,757,910

1004 236.3 205.5 0.67, 0.33 4.9 10,912,120

2004 226.2 207.3 0.65, 0.35 4.1 11,640,630

3004 222.5 208.9 0.64, 0.36 3.3 11,891,270

4004 220.5 209.9 0.63, 0.37 2.9 12,017,590

5004 219.2 210.7 0.62, 0.38 2.5 12,097,360

65000 216.1 — — — 12,431,060

Table 5.4 English corpus (65k): perplexity on � ���
�����

��

�

data of stand-alone 1-sided class trigram models

and interpolated class and word trigram models (position independent classification).
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(a) Position independent classification.
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(b) Position dependent classification.

Figure 5.4 English corpus (65k): perplexity on � ���
�����

��

�

data of stand-alone 1-sided class trigram models

and interpolated class and word trigram models.

5.2.5 Analysis of model performance

One-sided class models have now been built for both corpora using seven different numbers of

classes. In order to analyse the properties of the one-sided class model and assess its interaction

with the word model when it is interpolated with it, only the best interpolated model on the
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Russian corpus using the 430k vocabulary will be examined, together with the performance of

the best and the worst stand-alone class models. The same analysis techniques that were applied

in the previous chapter will also be used here.
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(a) 504-class model.
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(b) Interpolated word and 504-class model.
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(c) 204-class model.
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(d) 5004-class model.

Figure 5.5 Russian corpus (430k): distribution of log-probabilities for trigram word and class models.

The distributions of the log-probabilities assigned by the 204, 504 and 5004-class models and

the interpolated word and 504-class model are shown in Figure 5.5 for the Russian �������������
��
data. A noticeably different apportioning of probabilities is obtained, compared to that of the

two-sided models in the previous chapter, cf. Figure 4.3. One major difference is that the one-

sided class models apportion a higher number of very low probabilities ( �
	�� ���

) than the word
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model does which was not the case for the two-sided models. (Note that, although not shown

here, this was also found to be the case for the one-sided models based on the 65k vocabulary.)

Whenever the class model backs off, the word model must also back off. For these cases, it was

found that the probability assigned by the class model was generally lower than that assigned

by the word model. When the class model backs off to its unigram distribution (note: this

is the word unigram distribution in the one-sided class model), the majority of class model

probabilities tend to be lower than the word model’s probabilities. This is directly related to the

back-off weights in the class model which are smaller on average. Words occurring in a particular

word context are generally more sparse than words occurring in the corresponding class context,

hence for the word model the back-off weight (which can be thought of as determining the

significance of the lower-order distributions) tends to be higher.

The distribution of log-probabilities for the interpolated model exhibits a large peak for high

probabilities (
� � � 	

) and the number of very low probabilities is similar to that of the word

model’s. It will be remembered that for the interpolation with the two-sided model, the number

of very low probabilities was much less than for either of the component models so this is a

major difference between the characteristics of the interpolated word and one-sided and word

and two-sided class models. The distribution of log-probabilities for the one-sided 204-class

model appears to be skewed to the left with a peak around probabilities of
� � � 	

. As the number

of classes is increased, the distribution moves progressively to the right, up to the point where

for the one-sided 5004-class model the distribution of all probabilities becomes very similar to

the word model’s. The slightly lower perplexity of the 5004-class model can be attributed mainly

to the different apportioning of probabilities between
	�� � �

and
	�� � �

by the two models.

Perplexity of different models

Back-off case 204-class 504-class 5004-class 430k word

3 111 91.8 71.5 66.4

3-2 624 551 462 429

3-2-1 6.46
� 	�� �

7.34
� 	�� �

1.13
� 	�� �

1.82
� 	�� �

Table 5.5 Russian corpus (430k): perplexities of several models computed on sets of events that were pre-

dicted by different word model back-off cases.

In Table 5.5 the perplexities of three different class models and the word model for the 430k

Russian vocabulary are computed in an identical manner to that used in Section 4.3.4 for the

three7 different backoff cases of the word model, i.e. when the word trigram model finds the

requested trigram (3), or backs-off to either the bigram (3-2) or unigram (3-2-1) distribution.

Clearly the word model does not perform well when it backs off to its unigram distribution,

but compensates for the poor probability estimates by assigning relatively high probabilities

when it locates the trigram or only backs off to the word bigram. As the number of classes

is increased, the perplexity of the class models tends to decrease for cases where the word

7The bigram request at the beginning of the �����
���	�

��

�

text has been ignored.
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model does not back-off and tends to increase for cases where the word model backs off to the

unigram distribution i.e. the characteristics of the class model become more similar to those of

the word model, as is expected. The lower perplexities of the class model, when the word model

backs-off completely, are directly related to the class model’s ability to generalise to previously

unseen word sequences. Unseen word
�

-grams that are poorly estimated by the word model

are generally better modelled by the class
�

-gram.

When a position-dependent classification is used instead of the position-independent clas-

sification for all word history positions, there is, on average a 1% relative improvement in

perplexity. There is also a corresponding improvement in the interpolated perplexity figures.

Although it would be instructive to determine the reason for this improvement, no conclusive

explanation was found. The contents of the classes for words with multiple parts of speech,

e.g. “LIGHT”, were examined, yet no satisfactory attribute distinguished the two classifications.

For the sake of interest, several word trigrams in which the third word was assigned a much

higher (
	�� � � �

) probability by the English 5004-class model with the position-dependent clas-

sification than by the position-independent model, are shown in Table 5.6. It is clear that the

words in each sequence are strongly correlated, moreover, the individual words are not the only

members of their respective classes i.e. they are not effectively word trigrams. However, no con-

clusion may be drawn from this observation, since very similar sequences were also obtained

for the position-independent model predicting words with a much higher probability than the

position-dependent model (not shown here).

CEYLON AND BURMA

MICROSOFT IS PRICING

MANUFACTURERS AND EXPORTERS

AZALEAS AND RHODODENDRONS

CASSEROLE TO TASTE

JOURNALIST AND CRITIC

SNEAKERS AND SWEATSHIRTS

EARRINGS AND BANGLES

ANALYTICAL AND TECHNICAL

WRIT OF MANDAMUS

UNWORTHY OF INCLUSION

FORDS OR BRIDGES

RUFFLED THE FEATHERS

OMF I ELEVEN

CATARRH AND SNEEZING

PACKS OF WOLVES

TAIL HELD ERECT

GREENHOUSE OR GARDEN

Table 5.6 Word trigrams in which the third word is assigned a probability one thousand times greater by the

position-dependent 5004-class model than by the position independent 5004-class model.

It is interesting to note that the stand-alone one-sided and two-sided class models perform

equally well when they have similar numbers of parameters. Using the Russian 65k vocabulary,

the perplexity of the 2004-class two-sided model on the training data is around 4% higher than

the 504-class one-sided model even though the models’ perplexities on the �������������
�� data
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are almost identical. This further implies that the two-sided model has a greater capacity for

generalisation than the one-sided model and also that the one-sided model has captured more

of the idiosyncrasies of the training data. Such dependencies will already be well estimated

by the word model and this may explain why the improvement that is obtained when the one-

sided class model is interpolated with the word model is less than for the interpolation with the

two-sided class model.

Class 1 Class 2 Class 3 Class 4 Class 5

APPOINTED MEETING ATTENTION

ELECTED CONFERENCE APPEAL

EXPERIENCED CONGRESS DUTY OTHER

EMPLOYED ASSEMBLY EFFORT FEWER FELT

TRAINED SESSION REACTION PRECATORY SOUNDED

REGISTERED SUMMIT RESISTANCE OVVER

RETIRED CONCERT CONSENT AZANIAN

QUALIFIED LECTURE ADMISSION WEIGHTIER

DISTINGUISHED CEREMONY COURAGE

RESPECTED RALLY LOYALTY

Class 6 Class 7 Class 8 Class 9 Class 10

BIT BIG JOINT ORIGINALLY WIND

MITE GIANT FORMAL NEWLY RAIN

CLOVE SUPER DETAILED FORMALLY SMOKE

WAFER MIGHTY EXTENSIVE SPECIALLY SNOW

UNPLEASANTLY GIGANTIC COMPREHENSIVE OFFICIALLY SAND

TAD MEGA INFORMAL BEAUTIFULLY DUST

BURBLE RUNAWAY INTENSIVE LEGALLY STORM

GLUG MAMMOTH THOROUGH POORLY MUD

INSULTINGLY VERITABLE FULLER DULY SWEAT

PROVERBIAL AUTHORITATIVE FINELY BREEZE

Table 5.7 All, or up to the ten most frequent, words from ten randomly chosen classes of the 1004-class

English model.

In Table 5.7 the contents are presented of ten randomly chosen classes that were taken from

the English one-sided 1004-class classifications. It is readily apparent that most of the words in

a particular class share some attribute in common, be it semantic or syntactic. However, there

are also classes for which an adequate explanation cannot easily be found, notably classes 4 and

5. A comparison of the kinds of classes obtained with the two-sided model in Table 4.5 shows

that similar word groupings are obtained with the one-sided model. Despite these apparent

similarities, it is worth repeating that the classifications optimised for one particular class model

are generally unsuitable for use in other types of class model.

5.2.6 Discussion

The main advantage of the one-sided class model was identified near the beginning of this

chapter as the improved scaling properties of its clustering algorithm. It is clear from the graphs

of the clustering times in Figure 5.1 that the algorithm does indeed scale linearly with the

number of classes and is significantly faster than the two-sided clustering algorithm. Moreover,
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in Table 5.1 it is seen that this is also true for the two different Russian vocabulary sizes where the

only difference is an offset to the total clustering time for the larger vocabulary size. This offset is

partly explained by the complexity of the algorithm given by Equation (5.10): the scaling of the

algorithm depends on (
� & � � �� �

� 	 �
) which for the experiments described here approximates

to
)

. As
� &

is increased,
)

also increases, but much less than linearly and so ultimately this has

little additional effect on the way the algorithm scales. Much more significant is the apparent

offset in the clustering times for the larger vocabulary. A profile of the software implementation

showed that this was directly due to the linked-list implementation used to store the counts
� � * ��� � . On average,

�� � removal and insertion operations are required when a word is moved

between classes and this operation involves a linear search to replace and insert elements from

and into a linked-list8. The larger the vocabulary is, the longer each list tends to be. This effect

is more apparent for smaller values of
� ,

since more words occur in each class context (the

classes are more frequent) and hence the lists are longer.

The perplexity of the best interpolation of the one-sided class model with the word model

was slightly less (between 2.8% and 4.5%) than the perplexity of the best interpolation obtained

with the two-sided class model (for the 65k English and 65k Russian vocabularies respectively).

It may be inferred that the two-sided class model is better able to generalise to unseen word

sequences since only
�

-grams of classes are captured by the two-sided model. In contrast, the

one-sided model captures
�

-grams of (
� � 	

) classes plus one word, which will inevitably be

more sparse, and consequently the one-sided class model’s ability to generalise to unseen word

sequences will be poorer than the two-sided class model’s. Depending on the quantity of training

data available and the vocabulary size used, this tradeoff may well be acceptable.

The same trend that was observed with the stand-alone, two-sided class model of the per-

plexity decreasing as the number of classes increases is also observed with the stand-alone,

one-sided class model, although again this will only be true up to a certain point. An optimum

number of classes for the Russian corpus can again be expected to lie somewhere between 4004

and 65000 classes for example. It is also clear that increasing the number of classes much be-

yond 5004 will not reduce the perplexity significantly since the perplexities of class models with

more than 3004 classes have more or less converged anyway. For the English corpus it appears

that the word model may well outperform all possible class models although further experimen-

tation would be necessary to confirm this. As was noted in the previous chapter, some of the

class models built on the Russian corpus were able to compensate better than the word model

for the increased data sparsity of the corpus. It may therefore be concluded that the stand-alone,

one-sided class models are easily able to compete with the two-sided class models and even the

word models in terms of their perplexity and the number of model parameters.

Furthermore, if the language concerned is highly inflected and requires a very large vocab-

ulary to achieve a usable OOV-rate then the one-sided class model represents a very effective

solution. The clustering operation for the Russian 430k vocabulary was performed in a rela-

tively short time and the perplexity reduction of the combined word and one-sided class model

8It will be remembered that this implementation was necessary to conserve memory usage, however, for the

204-class model, these operations accounted for 40% of the total clustering time of the algorithm.
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was 16.2%. These factors recommend the one-sided class model as a particularly efficient means

of building a language model in situations where large vocabularies are required.

5.3 Summary

This chapter has examined the one-sided class model and its properties as a language model.

A comparison has also been made of its performance against the two-sided class model inves-

tigated on the Russian and English corpora. The one-sided and two-sided stand-alone class

models were shown to perform similarly well on both corpora. On the Russian corpus with the

430k vocabulary, the class model was able to outperform the word model by 4.3% while still

employing slightly fewer parameters. The performance of the best interpolated word and one-

sided class models was shown to be slightly inferior to that of the best interpolated word and

two-sided class model. This was attributed to the poorer generalisation ability of the one-sided

class model.

The use of separate word classification functions, which were optimised for each position of

the word in the conditioning context, was shown to give a small but appreciable reduction in

perplexity (up to 1.5%) over using the same classification function for all positions in the word

history.

The clustering algorithm for the one-sided class model was shown to be significantly faster

than that for the two-sided class model. This was an important consideration since it allowed the

very large 430k Russian vocabulary to be classified into a large number of classes in a computa-

tionally acceptable time. In conclusion, a much faster and similarly effective means of building

stand-alone class models has been developed.



6

Particle-based language modelling

This chapter examines a range of techniques which model language at a sub-word level. The

term particle has been chosen in preference to sub-word unit to denote any possible representa-

tion of part of a word, be it a single character or a whole word. This representation might also

include characters which are not letters, for example punctuation marks or even the phonetic

transcription of part of a word.

The motivation for modelling language at a sub-word level using particles is first examined,

followed by an overview of several techniques in the literature that may be used for obtaining

particles. The development is then presented of one linguistically motivated and two novel,

data-driven techniques that determine particle units and word decompositions automatically.

The results of perplexity experiments are reported for several different particle 6-gram models

and their characteristics and performance are then analysed.

6.1 Introduction

Most language modelling approaches use words as the fundamental modelling units or classes

of words like those investigated in the previous two chapters. Although words are a logical

choice, since it is ultimately words that are to be output by a speech recognition system, they are

not necessarily the best units for capturing dependencies in a text. The optimal set of units will

inevitably depend on the language, the sparsity of the training data and the model into which

the units are incorporated.

In chapter 3, the necessity was highlighted for an alternative approach to word-based lan-

guage modelling of Russian. In particular, the very large vocabulary size that is required to

achieve a usable OOV-rate with Russian has clearly shown that modelling at the word level is

not necessarily the best solution. It was pointed out in the introduction (see Section 1.3) that

Russian words often have many morphological units in common. This is particularly evident in

the case of Russian word inflections, which are appended to word stems to denote the word’s

grammatical case, gender and number. Given this characteristic of the Russian language, there

is a strong argument for decomposing words into units, smaller than the word themselves, and

using these in some form of language model. Unfortunately, there is no satisfactory, rule-based

92
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method available for providing a linguistically accurate, morphological decomposition of all the

Russian words that might ever be encountered. It was decided, therefore, to investigate several

techniques for the automatic generation of a deterministic decomposition function
0

of words

into a set
3

of
���

particles / �

0 � � � 0 ��� � � / ��� / ���������$� / �

� �
	���� / � � 3 �

where word
�

is decomposed into
4���� �

particles.

A � w
�

symbol is always attached to the terminal particle / � � �
	 ���

in the decomposition of

word
�

to denote a word boundary. Identification of word boundaries at the particle level is

necessary to ensure a deterministic mapping from a stream of particles back to the word-level.

A summation over all the possible ways in which the word stream could be obtained from the

particle stream would otherwise be necessary. This is generally undesirable when the language

model is to be incorporated into a speech recogniser.

A further consequence of this requirement is that the relationship between some morpholog-

ical strings is inevitably lost. As an example, for the two words “SATISFY” and “SATISFYING”,

if “SATISFY”, “SATISFY � w
�

” and “ING � w
�

” are determined to be particles, the connection be-

tween the two words is lost. An alternative scheme would be to separate � w
�

from the terminal

particle, however, this would reduce the effective context of the particle
�

-gram model that will

be used and unduly complicate the automatic algorithms which are described later. From the

point of view of language modelling, the inclusion of the word boundary marker may be seen

as incorporating additional linguistic information. Strings which appear at the ends of words

cannot be confused with identical strings which appear in other word positions.

Since the identity of a morpheme is distorted by the environment in which it occurs, it

is expected that not all allomorphs of a morpheme will be determined correctly by a purely

statistical method. Even rule-based decomposition methods must take into account the spelling

changes that occur at word boundaries. It may in fact be preferable, from a language modelling

point of view, to obtain a decomposition of words into uninflected word stems and inflections,

rather than into constituent morphs. The objective of the two data-driven algorithms presented

in this chapter is to determine the particle units and word decompositions that best model the

training data.

Once the decomposition function
0

has been determined, words in the training text can be

decomposed and a particle
�

-gram language model built:

����� � �������$��� � �
�

���
�
�����
� � / � � / �����
	�� �������$� / ����� � � (6.1)

where each word
�

in the text is decomposed using
0 ��� �

into its constituent particles and
�'1

is the total number of particles in the text when all words have been decomposed. Relative

frequencies of the occurrences of particle
�

-tuples can be used to compute the above conditional
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particle probabilities and then smoothed in a manner similar to that described for conditional

word probabilities in Section 2.3.

In this chapter, it is assumed that it is ultimately words which are to be recognised and

therefore all subsequent discussion will only concern word level probabilities and perplexities. It

must be emphasised that the particle units under discussion are not being proposed as sub-word

units for recognition, only as language modelling units. The word-level probability of a word
� �

given some particle context
! � 0���� � � ������0 ��� � ��� �

can be computed using the following particle

bigram model:

������� � ! � � 	
�2� ! � �#��� / � �� � � �

	 ��� � / ����
� � �

	�� � � �#��� / ����
� � �

	�� � � / � ��
� � �

	 � � � � � � � � / � �� � / � � � ��

� � � � �
	 ��� � �

(6.2)

where
� �

is decomposed into
4���� � �

individual particles / � �� � � � �������$��4������ � � 	
, and

� � ���

is decomposed into
4���� � ��� �

individual particles /
� � � �	 � � � �������$��4 ����� ��� � � 	

, and
�2� ! �

is a

normalization constant. In particular, the bigram context for the first particle of word
�7�

(which

is identical to
!

in the above example) is the terminal particle of the previous word: / � � � ��

� � � � �
	 .

The normalization constant
�2� ! � � � � � ������� � ! � ensures a correct probability distribution at

the word level. The remainder of the probability mass (
	 � �2� ! �

) is accounted for by words

that are not in the vocabulary, but for which probabilities could be generated by concatenating

unused sequences of particles up to some maximum number of particles. This may be seen

as a beneficial consequence of the particle modelling approach which permits the word-level

vocabulary to be augmented with new words without the complete retraining of the particle

language model. If all single letters and all single letters attached to the word boundary symbol

were included in the particle vocabulary then a probability could be generated for all possible

words.

It is desirable that the largest vocabulary possible should be used for determining sets of

particles and word decompositions. This is because the majority of the richness of word inflec-

tions and commonality of word stems will only be exhibited by also including words that occur

infrequently. Moreover, it is precisely these words that it is hoped will benefit from the particle

modelling approach, since their statistics are often more poorly estimated by the word model

due to their low frequency of occurrence.

Before reporting on the three different algorithms used in the experimental work in this

chapter, several techniques that have been proposed in the literature for automatically obtaining

sub-word units will be described.

6.2 Overview of existing techniques

In this section, a description is given of five techniques which appear in the literature and how

they might be applied to the task of automatically determining particles and word decompo-

sitions. This overview, which is not intended to cover all the methods available, begins with
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elementary linguistics-based approaches and progresses through to data driven methods. Sta-

tistical language modelling was not the motivation for some of the techniques presented below,

however their exposition is still instructive and they are included for the sake of interest. It is

important to note that only two of the methods given here could be used for determining par-

ticles of the kind used later in this chapter; the reasons why the other techniques could not be

used are given in the appropriate place.

6.2.1 Suffix-stripping

One obvious method of segmenting a word into sub-word units is to strip the known affixes

from a word, wherever they appear in the word. A more acceptable approach must consider

spelling changes at morpheme boundaries. A non-statistical approach to the problem of suffix

stripping which has been used in the field of information retrieval is presented in (Porter, 1980).

A list of suffixes and stripping rules is already assumed to exist and the problem becomes one

of determining whether or not the end of a word is a proper suffix or not. The first step of the

algorithm converts plurals and past participles into a singular form. Each of steps two, three and

four convert words ending in each of a particular type of suffix to a normalized form. The final

step involves tidying up all those forms, from which a suffix has been stripped, to make them

consistent with each other. Certain heuristics are applied which prevent the removal of suffixes

from words where the stem would be too short. Complex suffixes are successively stripped as

the algorithm proceeds from one step to the next. In principle, this method could be used for any

language given the existence of appropriate rules for stripping suffixes from words. However,

such rules are not known to be available for Russian.

6.2.2 Morph decomposition in MITalk

A rule-based approach to the segmentation of words into morphs is employed in the MITalk

speech synthesis system (Allen et al., 1987). The morphemes in a word are then used to con-

struct a pronunciation of whole words. Such an approach removes the need for a pronunciation

dictionary of all the words that may ever be input to the system.

The morph segmentation algorithm requires a morph lexicon from the outset. The algorithm

proceeds by matching the right hand side of a word against the largest lexicon morph possible.

When a match is found, the search for further matches is performed recursively on the remaining

unmatched portion of the word. If the match fails, at any stage, the previous match is discarded

and the next largest matching morph is used instead. Only those morphs which are legal in the

current context are considered for matching. This is handled by a set of selectional rules. In

addition, a score is used to rank the likelihoods of multiple legal segmentations. As with the

previous method, the morph lexicon and selectional rules for a language must be available for

this method to work and for Russian they have not been determined.
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6.2.3 Statistical-combinatorial modelling

Possibly the first attempt of using a data-driven approach to determine linguistic units and inflec-

tional paradigms appears in (Andreyev, 1965)1. Andreyev headed a team of around ten people

in the Soviet Union during the 1960s. All data processing and computation were performed

manually (Shaikevich, 1997) and experiments were conducted on a wide range of languages,

including English and Russian, using technical texts of around a million words in size.

The first step in Andreyev’s technique of statistical-combinatorial modelling was to rank the

probabilities of all letters, conditioned on their relative position from the end or beginning of

a word. Using the prior information that inflections occur at the ends of words, Andreyev first

found the letter with the highest probability that appears in the word-final position. This single

letter is then combined with the letter that appears with the highest probability in the word-

penultimate position and adjacent to the previously found letter. This process is repeated suc-

cessively with each of the next highest ranking letters until the desired set of inflections has been

obtained.

6.2.4 Sticky pairs

One method that has been employed to determine language modelling units other than individ-

ual words is presented in (Brown et al., 1992). The method determines pairs of words using the

mutual information metric, which is defined as the ratio of the probability of two words occur-

ring together, to the product of their independent probabilities. The resulting units were termed

sticky pairs. No perplexity measurements were quoted in (Brown et al., 1992) using these units,

although the units that were obtained were intuitively appealing, with pairs like Humpty Dumpty

and Pontius Pilate ranked highly as very sticky. With the original method, which does not directly

optimise the perplexity of a text, it is unclear whether such units are indeed useful in language

modelling. The derivation of similar word pairs on the German Verbmobil task by minimising

the perplexity of a text have met with a certain amount of success in terms of word error rate

improvements (Ries et al., 1996).

This method can easily be extended conceptually to determining particles: starting with sin-

gle characters as the set of particles, the algorithm would successively combine each pair of

particles that has the highest mutual information. In fact, this agglomerative approach forms

the basis of one of the data-driven methods developed in Section 6.3.3. The fundamental dif-

ference is that particles are chosen according to how much they increase the likelihood of the

training data rather than by the mutual information between the constituent characters in a

particle.

1Andreyev’s work is not well known in the West; the majority of his publications were written in Russian and

never translated.
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6.2.5 Multigrams

The multigram method of modelling language, described in (Deligne and Bimbot, 1995), was

developed for “retrieving sequential variable-length regularities within streams of data.” Such

a model was observed to be particularly appealing for use with natural language corpora. The
 -multigram was defined to be a sequence of up to  non-overlapping symbols which could, for

example, be letters or phones2. Multigrams are also permitted to span word boundaries.

The multigram model that was originally developed assumed statistical independence be-

tween multigrams. Computation of the likelihood of some observation sequence
�

involves a

summation over each possible segmentation
0

of the observation sequence into a sequence of
 -multigrams:

484 � ��� � �'� � �� ��� ���
4 4 � � � � � � 0 � �

(6.3)

Maximum likelihood estimates of the model parameters are obtained, using an E-M algo-

rithm, as a maximum likelihood estimation from incomplete data (Dempster et al., 1977). The

observed data is the string of symbols
�

and the unknown data is the underlying segmentation0
. The parameters of the  -multigram model are initialised with the relative frequencies of

all symbol co-occurrences of symbols up to length  in the training text. The parameters are

iteratively re-estimated using a forward-backward algorithm or Viterbi alignment (Deligne and

Bimbot, 1995) until there is no significant increase in training set likelihood, or alternatively un-

til a fixed number of iterations has been executed. Pruning of infrequent multigrams is used to

reduce the size of the particle set at each iteration and to reduce the complexity of the multigram

model.

In (Deligne and Bimbot, 1997) the psalms of the King James Bible are used as the training

text with all the spaces between words removed. The value of  is set to five and the segmen-

tation is found using a Viterbi search. The results clearly show the morphological structure of

the text and frequent single words and pairs of words are isolated by the algorithm as multi-

grams. The original independence assumption between sequences of multigrams is extended in

(Deligne et al., 1996) to include
�

-grams of  -multigrams3.

It is important to note that the multigram method finds the most probable segmentation

of the whole training text, so identical words may be segmented into different sequences of

multigrams depending on a word’s position in the training text. This renders the technique

inappropriate for use in the particle language model that has been proposed.

2In this respect the definition of a multigram is very similar to the definition of a particle given above, however,

use of the term particle will be maintained since there are other connotations associated with multigrams which it is

necessary to avoid.
3One further use of the multigram approach was the formulation of the joint multigram in (Deligne et al., 1995).

This approach aims to determine a many-to-many alignment between the � strings in � streams of observable

symbols, drawn from � distinct alphabets. The method is used for a 2-stream case to infer pronunciations for

variable-length sequences of graphemes. This is achieved by finding the most likely joint segmentation to align

variable-length sequences of phonemes with the graphemes.
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6.3 Automatic methods for decomposing words

In a similar vein to several of the methods described above, a simple, pseudo-linguistic algorithm

and two data-driven algorithms will now be described which automatically determine particles

that reduce the word level perplexity of a particle bigram model on the training data. The aim

of the experiments with these algorithms is as follows: to determine particle decompositions of

all words into particles, and to build a particle
�

-gram model which, when it is interpolated

with a word model, is able to generalise to unseen word sequences and smooth the word model

probability estimates so as to reduce the word level perplexity.

It is conceivable that the optimal decompositions of words may be the undecomposed words

themselves. Since it is necessary to restrict the search space of possible particles, none of the

algorithms will find such a solution. Moreover, the stated aim of these experiments is to deter-

mine a particle model which best complements the characteristics of the word model. A particle

model in which words are not decomposed will obviously not achieve this. In any case, for Rus-

sian it has been convincingly shown that the 430k vocabulary word
�

-gram model (
�

=3,4) is

not very robust, due to the sparsity of the Russian training data, and combinations with other

models will not be detrimental. Perplexity comparisons will be made against the 430k word tri-

gram model for Russian and the 65k word trigram model for English. The perplexities of these

models on the appropriate ���		�������	� and ���	������	��
�� data sets are shown in Table 6.1.

Word trigram perplexity Model size

Language �������������� ���	������	��
�� (parameters)

Russian (430k) 463.5 677.0 12,177,700

English (65k) 162.5 216.1 12,431,060

Table 6.1 Perplexities of word trigram models on �����
�����

��

�

and
���
�
���������

data partitions for the two

corpora together with the number of parameters in each trigram model.

All three algorithms presented below, simultaneously determine the decomposition func-

tion
0

of vocabulary words into particles and the set of particles
3

. For language modelling

purposes, a unique decomposition is desired for each vocabulary word. This requirement is

acceptable from a linguistic point of view since most words are expected to have deterministic

morphological decompositions which are not dependent on the surrounding word context; this

contrasts with say, the part of speech of a word which is clearly dependent on the word’s context.

Moreover, if words are forced to have only one decomposition the resulting language model is

made less complex than if each word were to have multiple probabilistic decompositions.

The first algorithm uses a list of linguistic affixes for each language which have been deemed

to be potentially useful. A string matching operation then separates the affixes from each word

in the vocabulary. The two data-driven algorithms use only the statistics of word and character

occurrences in the training data and the location of word boundaries to determine the set of

particles and word decompositions. An absolute minimum of prior linguistic knowledge about

each language is therefore encoded in the two data-driven algorithms.
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The first data-driven algorithm determines the optimal decomposition of each word in the

vocabulary in turn by maximising the likelihood of the training data using a particle bigram

model:

�0 ��� � � � / � �� � / � �� ������� � / � ��
� � �

	 ��� ����� � 
 ��
� � � �

	 �#4 4�� � � 0 ��� � (6.4)

The second data-driven algorithm iteratively selects the particle which, when it is inserted

simultaneously into all possible words, maximises the training set likelihood using a particle

bigram model:

�/ � ���	��
 ��
�
�
�
�#484 � � � 0 ��� �

(6.5)

For both algorithms the log-likelihood of the training data is computed using a particle bi-

gram model for which the probability estimates are the maximum likelihood estimates,

4 4�� � � 0 � �
� �

� ����� �����8��� / � � / ����� � �
� �

� ����� �!���
� � / �����#� / � �

� � / ����� �
�

(6.6)

This may be simplified further by grouping together the occurrences of pairs of particles in the

training data,

484 � � � 0 � � �� ��� � � � � � �
��� � � � 	 � � ��� / � � / � � ������ � � / � � / � � � �� ��� � � �

��� 	 � � � � / � � ������ � � / � � � (6.7)

The normalization term has been omitted from the above calculations and is not evaluated

by the algorithms, since evaluating
�2� ! �

for all possible
!

is computationally very demanding.

Experimental procedure

The perplexity of the particle bigram model on the training data is computed by predicting all

tokens in the data using unpruned and unnormalized particle bigram models. The same cal-

culation is performed in each of the data-driven algorithms. Predicting all tokens simplifies

the implementation of the algorithms and does not affect the final decompositions. These per-

plexities are also given in the tables of results where appropriate and are used only to perform

qualitative, not quantitative, comparisons between models.

Once
0

has been determined using one of the three algorithms, particle 6-gram models

are built using Katz backoff and Good-Turing discounting. Initial experiments with particle

4-gram models showed the span of the particle 4-gram to be too restricted. This warranted

the construction of particle
�

-grams with longer spans and 6-grams were instead used for all

particle models. Since such models would be impractical if they were not pruned, the entropy-

based pruning method described in Section 2.4.3 was employed to discard
�

-grams which were
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not useful. The threshold parameter for pruning all models was adjusted to ensure that all

particle models contained around twelve million parameters, approximately the same number

as in the word trigram models. Both the cutoffs and variable-length pruning techniques were

also investigated for reducing the number of parameters in the particle models but both were

shown to give a significantly lower performance than the entropy-based pruning method for the

same number of model parameters.

For reasons already given,
� � ! � � 	

is used in computing the stand-alone and interpolated

perplexities of models in this chapter. As a consequence, the perplexity figures that are presented

represent upper-bounds on the perplexity. The effect that correct normalization has on the

perplexity is investigated in Section 6.3.4 for the best performing particle models obtained using

each algorithm.

Analysis procedure

The same analysis methods that were used in the previous two chapters will also be used to

examine the characteristics of each particle model. The distribution of log-probabilities appor-

tioned both by the stand-alone particle model and the interpolated word trigram and particle

model will be plotted and examined and the perplexities computed on events which are pre-

dicted by different back-off cases of the word model will also be presented.

In addition, since particle 6-grams are being used (for reasons explained above) it will be

necessary to ensure that improvements in the performance of the interpolated model are not

due to the possible inclusion of word 6-grams in the particle model. Therefore, the maximum

number of whole (including partial) words in the particle contexts for the particle probabilities

which make up each word will also be examined. Many particle contexts will still not have been

observed and this is taken into consideration in the analysis. The maximum number of whole

(including partial) words in each particle context for a word is found and averaged for all events

in the �������������
�� data. It is not possible to consider only the context for the first particle in each

word since this context may be shorter than that for particles in other positions of the word,

hence the maximum of all these values is used. It should be noted that these values are also of

relevance when considering how the particle model should be incorporated into the recognition

process. Long word
�

-grams can significantly complicate time-synchronous search strategies,

and would normally be avoided unless their usefulness dictated otherwise. Further analyses and

comments of relevance to each algorithm will also be given where appropriate.

6.3.1 Linguistic affixes

The first set of particle experiments was performed using a simple, linguistics-based derivation

of word decompositions for the 430k Russian vocabulary and the 65k English vocabulary. For

the Russian vocabulary, twenty-eight prefixes and sixty suffixes4 (given in Appendix A) were

first chosen according to their usefulness and productivity (as perceived by the author) with the

4In this chapter, suffixes refers to both derivational and inflectional suffixes (inflections).
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help of a textbook of Modern Russian Grammar (Offord, 1993). Similarly for the English vo-

cabulary, fifty-two prefixes and sixty-two suffixes (also given in Appendix A) were obtained with

the help of an encyclopedia of the English language (Crystal, 1995). The prefixes and suffixes

were then systematically separated from the beginnings and ends, respectively, of all words in

the vocabulary using a simple string-matching operation. All vocabulary words were eligible

for decomposition and the affixes were separated wherever a match was made, irrespective of

whether the match was linguistically correct or not. The � w
�

symbol was then appended to the

terminal particle (the suffix or the end of a word) in the decomposition for each word.

6.3.1.1 Results

The numbers of distinct modelling units used in each of the affixes models are given in Table 6.2.

In the same table, the average number of particles per word is also shown, where the number of

particles in a word is scaled by the unigram count of the word in the training data and where it

is not scaled.

Number of Average number of particles per word

Language modelling units unweighted frequency weighted

Russian 192,149 2.08 1.72

English 47,158 1.82 1.41

Table 6.2 Number of modelling units and average numbers of particle units per word for both languages.

The results obtained using the word decompositions from this simplified linguistic method

in particle 6-gram models are shown in Table 6.3. These results will be considered a suitable

baseline from which to evaluate the other particle models described later, since the particles and

word decompositions have been determined without regard to their statistical properties.

Perplexity

�������������� ���	������	��
�� weights % improvement

Language
�7� � �

�
� 
 � �7� � �

�
� 
 � �7� � �

�
� 
 � �7� � �� � � � 


�

9 � � 
�� , 9 � � 
 � over word trigram

Russian 1019 510.0 747.5 632.3 0.67, 0.33 6.6

English 335.8 161.8 225.6 204.4 0.60, 0.40 5.4

Table 6.3 Word level perplexities of stand-alone particle 6-gram models on � ���
�����

��

�

and
���
�
���������

, and

interpolated particle and word trigram model on � ���
�����

��

�

only.

6.3.1.2 Model analysis

The above results show that even with a simple affix stripping scheme, quite substantial per-

plexity reductions can be obtained by interpolating the particle model with a word model. The

distributions of log-probabilities apportioned by the particle model and the interpolated model

are given in Figure 6.1.
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(a) Affixes model.
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(b) Interpolated affixes and word trigram model.

Figure 6.1 Russian corpus (430k): distribution of log-probabilities for the word trigram, the affixes 6-gram

and the interpolated models.

The distributions differ significantly from those of the class models examined in the previ-

ous two chapters. The most notable difference is that the particle model assigns around twice

as many very low probabilities ( �
	�� ���

) as the word model does. On closer examination of

the low probability events it was found that the majority of these were the result of predicting

infrequent words containing at least one uncommon particle (usually the infix). Interestingly,

such words must be reasonably well modelled by the word model since the interpolated model

has characteristics of the word model in this region i.e. the very low probabilities assigned by

the particle model are combined with higher probabilities from the word model. The distribu-

tion of probabilities greater than
	�� ���

is more favourable in the particle model, with a lower

number of probabilities assigned between
	�� ���

and
	�� ���

and more between
	�� ���

and
	�� � �

. The

distribution of probabilities above
	�� � �

is similar for both models. The peak around 0.1 in the

distribution of the interpolated model suggests that some high probability events are boosted as

a result of the combination with the particle model.

Table 6.4 shows the perplexities of the particle model computed for different word model

back-off cases on the Russian ���	������	��
�� data.

Back-off case
� �
�
� 
 � �7� � � 
��

3 75.1 66.4

3-2 512 429

3-2-1 1.69
� 	�� �

1.82
� 	�� �

Table 6.4 Russian corpus (430k): word-level perplexity of word model and affixes model, computed on sets

of events that were predicted by different word model back-off cases.
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For the case where the word model backs off to its unigram distribution the particle model has

a lower perplexity than the word model. This extends what was explained above, that the low

probability estimates assigned by the word model are combined with higher estimates from the

particle model, and also that low probability estimates from the particle model are combined

with higher estimates from the word model. It is also worthwhile mentioning that the particle

model predicted 29% of words that occurred less than five times in the training data with a

higher probability than the word model.

Max. words in context Percentage

1 25.5

2 59.3

3 14.8

4 0.4

5 0.0

Table 6.5 The average maximum number of words used to predict words in Russian ���	�
�����

� 

�

data using

the affixes model.

In Table 6.5 the percentages are given of different maximum numbers of whole (or partial)

words used in the particle context for predicting words in the Russian ���	������	��
�� data. Clearly,

the affixes 6-gram model employs no word 6-grams, very few word 5-grams and relatively few

word 4-grams in its predictions of events in the ����������	��
�� data. The majority of probability

estimates use a context containing two words, which is equivalent to a word trigram. The

improvement that is obtained with the interpolated model is not due to higher order word
�

-grams that have been built into the particle model and is due more to the smoothing of the

word trigram probabilities. The smoothing has been achieved through the modelling of different

dependencies in the words.

6.3.2 Greedy word decomposition algorithm

The first of the two data-driven algorithms for determining word decompositions automatically

is now presented. Given an initial decomposition for each vocabulary word the algorithm seeks

to optimise the decomposition of each word in turn. The optimal decomposition of a word is

that which maximises the likelihood of the training data. The set of particles at any one time

comprises those particles which are required to generate all the current word decompositions.

There are certain obvious similarities and differences between this algorithm and the E-M

algorithm used in the multigram method described in Section 6.2.5. The important difference

between the method proposed here and the multigram method is that this algorithm constrains

the decomposition of each vocabulary word to be identical, wherever it appears in the training

data. The multigram method determines that segmentation of the whole training data which

has the highest probability. Hence, with the multigram method, identical words which appear

in different locations in the training data may have different segmentations. Constraining words
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to have identical decompositions simplifies the final particle language model: each vocabulary

word is forced to have a deterministic decomposition rather than multiple decompositions, each

of which would otherwise require an associated probability. Another important difference with

this algorithm is that word boundaries are known beforehand and therefore particles may never

overlap word boundaries.

6.3.2.1 The algorithm

Internally, each word in the vocabulary is stored as a graph as shown in Figure 6.2 which repre-

sents compactly all the possible decompositions of a word into any-length particles. At any time,

only one path in each graph is active; the sequence of particles on this active path represents the

current decomposition of the word.

W

WORD

D

WOR ORD

RD

R

OR

O

WO

Figure 6.2 Internal representation of all possible word decompositions of the word “WORD”.

Given an initial set of word decompositions, the unigram and bigram statistics are collected

both for word-internal particle bigrams and those which span word boundaries. The initialisa-

tion procedure (described in detail in the next section) and the algorithm itself are described

concisely by the following steps:

1. Initialisation:
��� � � � � ��+)�� �	�$��� ������������ ���������+� ��� 5 � ��� ������		� ����� 
� ���������	� � � �����	�	���	���������� � ���� � ����� 
��	�� ��
�������
��� �������*� ����� �����$����
��"�	����% �%����	� � # ���������	����
�� � ����� � ��� ��	��� � �����

2. Iterate
� ��� ���� � ������
 � �

� Iterate
� ��� ���� � ����� �����$���	����
���� ����� 
 0 ��� � �

– �$���	�����	� �	���	������� � ����� � ���		�������	� �	���
��� ���������"%���
�� � ����� ���������	����
�� � ������	� �������� � ���� � ����� 
��	�����
�������


3. ���*������ step 2
� ��� � ��)���� ���$�	%������ � ���	��������$� � 
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When a word’s decomposition changes, the particle
�

-gram (
� � 	 � �

) counts must be mod-

ified to reflect the change. This can be achieved efficiently by traversing the old decomposition

path of a word and subtracting the previous particle
�

-gram counts. The new decomposition

path can then be traversed and the new particle
�

-gram counts included. Count updates of

cross-word particle contexts are also performed so that the
�

-gram statistics remain consistent.

When the decomposition of a word changes, it affects the contribution to the total likelihood

of all word-internal particle
�

-gram counts and the counts of those particles which appear in

the left and right hand contexts of each vocabulary word
�

. The update equations for updating

particle
�

-gram counts when an old word decomposition is removed are presented below:

� For word internal particles, the unigram count of word
�

is subtracted:

� � 	 ����� 4 ��� � � 	 � ��� / ������ � / �� � � ��� / �� ��� � / �� � � � ��� � �
(6.8)

� For particle bigram counts spanning word boundaries where the words are not identical

(i.e. for particles in the word pairs
���7��� � � and

��� � ��� � where
� ,� � � ) the update equations

are:

� � / � �
� �
	 ��� � / � �� � � ��� / � �

� �
	���� � / � �� � � � ���7��� � � � � � � ����� ��� � � � �

(6.9)

� � / � ��
� �
� 	���� � / � � � � ��� / � ��

� �
� 	 ��� � / � � � � � ��� � ��� � � � � � ����� � ��� � � �

(6.10)

� For the situation where the particle bigram spans a word boundary where the words are

identical only the count update for words in the right-hand context are performed:

��� / � �
� �
	���� � / � � � � ��� / � �

� �
	���� � / � � � � ����� ��� � � ���7��� � � �

(6.11)

An analogous set of equations exists for obtaining the new counts when a new word decompo-

sition is added.

Since at each step of the algorithm the word decomposition is selected which maximises

the likelihood of the training data, the algorithm is guaranteed to converge. However, since

the algorithm is greedy, the final set of word decompositions is only guaranteed to be locally

optimal. Words are considered for decomposition in order of decreasing unigram frequency.

This is motivated by the reasoning that words for which the statistics are more reliable should

be considered before words for which the information about them is less reliable.

The value of
5 � ��� , which fixes the maximum size of particles, affects the total number of

modelling units that will be used in the final particle language model. The larger
5 � � � is, the

larger the set of modelling units will be. Experiments were conducted for
5 � � � � � �������$� �

for

Russian and
5 � � � � � ������� � �

for English and only one iteration through all vocabulary words was

performed. One iteration was deemed sufficient since the perplexity on the Russian �������������
��
data of the stand-alone particle 6-gram language model with

5 � ��� � �
was found to be only

0.5% less after two iterations than after one iteration.
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6.3.2.2 Algorithm initialisation

Since the algorithm is greedy in nature and only capable of local convergence in general, the

choice of initialisation method is particularly important. The initialisation method must generate

a probability estimate for as many particles as possible, otherwise particles which are assigned a

unigram count of zero initially will never be included in the decomposition of any word. Setting

a floor unigram count on all particles does not solve the problem because the bigram statistics

will then be inconsistent with the unigram statistics.

Ideally, the algorithm would be initialised with the particle statistics for all possible com-

binations of decompositions of all words. In practice this is only computationally possible if

cross-word contexts are ignored. The method used here decomposes all words into all possible

combinations of particles up to
5 � � � characters in length and collects the word-internal parti-

cle statistics. When these statistics have been collected, the highest probability path through

each word is found while still ignoring cross-word contexts for the time being. The decompo-

sitions which are obtained act as the initialisation for the re-estimation algorithm (step 2) in

which cross-word contexts are then considered. In addition, the word decompositions obtained

with the affixes method in the previous section were also used as an initialisation to assess the

algorithm’s ability to improve existing word decompositions.

6.3.2.3 Results

Preliminary results using an algorithm similar to the one described here were published in (Whit-

taker and Woodland, 1998) where the algorithm used the word decompositions from the affixes

method as the initialisation. Results are presented for the decompositions obtained from the

initialisation (ini) in step 1 of the algorithm and the optimised decomposition (opt) after one

iteration of step 2 of the algorithm. For clarity, results have only been tabulated for models with5 � � � around that value which produced the best performing interpolated model. The model

number refers to the value of
5 � � � that was used.

Number of Average number of particles per word

Model modelling units unweighted frequency weighted

2 (ini) 2,591 5.65 3.00

2 (opt) 2,580 5.37 2.85

3 (ini) 20,970 4.07 2.26

3 (opt) 20,563 3.54 2.03

4 (ini) 77,301 3.20 1.94

4 (opt) 73,615 2.77 1.68

affixes (ini) 192,149 2.08 1.72

affixes (opt) 189,805 2.09 1.73

Table 6.6 Number of modelling units and average numbers of particle units per word for Russian.

The number of particle modelling units in the final language model is given in Table 6.6 for
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Number of Average number of particles per word

Model modelling units unweighted frequency weighted

4 (ini) 28,850 2.77 1.68

4 (opt) 27,385 2.43 1.52

5 (ini) 38,980 2.47 1.57

5 (opt) 36,619 2.14 1.39

6 (ini) 42,739 2.37 1.53

6 (opt) 40,019 2.03 1.34

affixes (ini) 47,158 1.82 1.43

affixes (opt) 46,804 1.82 1.44

Table 6.7 Number of modelling units and average numbers of particle units per word for English.

Russian and Table 6.7 for English. Both tables also show the average number of particles per

word, weighted both by a word’s frequency in the training data and unweighted. The figures are

given for the word decompositions used as the initialisation for the algorithm and after running

the algorithm for one iteration.

The perplexities of the particle model are shown in Table 6.8 for Russian and Table 6.9 for

English. The algorithm is guaranteed to choose decompositions which increase the training data

likelihood using a bigram particle model and this is shown in the second column of each table. To

compare how the bigram criterion extends to the 6-gram models the perplexity on the ���		�������	�
data of the pruned 6-gram particle model is given in the third column. Perplexity figures are also

given for the stand-alone particle model and the interpolated model on ����������	��
�� data, along

with the relative improvement of the interpolated model over the corresponding word trigram

model.

Perplexity

����	��������� ����������	��
�� weights % improvement

Model
�7� � �

�
� 
 � �7� � �

�
� 
 � �7� � �

�
� 
 � �7� � �� � � � 


�

9 � � 
 � , 9 � � 
 � over word trigram

2 (ini) 21110 706.9 905.8 635.1 0.75, 0.25 6.2

2 (opt) 13160 678.7 876.0 630.3 0.73, 0.27 6.9

3 (ini) 2941 611.4 821.4 635.8 0.72, 0.28 6.1

3 (opt) 1573 572.6 779.4 628.2 0.68, 0.32 7.2

4 (ini) 1423 589.9 813.6 641.1 0.74, 0.26 5.3

4 (opt) 729.2 532.1 769.6 635.6 0.71, 0.29 6.1

affixes (ini) 1019 510.0 747.5 632.3 0.67, 0.33 6.6

affixes (opt) 905.0 518.8 751.0 633.3 0.68, 0.32 6.5

Table 6.8 Russian corpus (430k): word level perplexities of stand-alone particle 6-gram models on

�����
�����

��

�

and
���
�
���������

, and interpolated particle and word trigram model on � ���
�����

��

�

only.
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Perplexity

����	��������� ����������	��
�� weights % improvement

Model
�7� � �

�
� 
 � �7� � �

�
� 
 � �7� � �

�
� 
 � �7� � �� � � � 


�

9 � � 
 � , 9 � � 
 � over word trigram

4 (ini) 458.2 185.0 245.4 206.7 0.71, 0.29 4.3

4 (opt) 293.2 174.4 237.2 205.2 0.67, 0.33 5.0

5 (ini) 398.5 177.4 240.4 206.5 0.69, 0.31 4.4

5 (opt) 252.8 166.1 230.8 204.9 0.65, 0.35 5.2

6 (ini) 378.9 178.2 242.9 207.0 0.71, 0.29 4.2

6 (opt) 243.1 166.6 232.8 205.4 0.67, 0.33 5.0

affixes (ini) 335.8 161.8 225.6 204.4 0.60, 0.40 5.4

affixes (opt) 310.3 167.2 227.2 205.3 0.62, 0.38 5.0

Table 6.9 English corpus (65k): word level perplexities of stand-alone particle 6-gram models on �����
� ���

��

�

and
���
�
���������

, and interpolated particle and word trigram model on ���	�
�����

� 

�

only.

6.3.2.4 Model analysis

The value of
5 � � � that is used in a model has a marked effect on the number of modelling units.

Obviously this is because the initialisation method uses all occurring character combinations

up to length
5 � ��� and the number of such combinations increases as

5 � ��� is increased. It is

interesting that many different particles are retained when the highest probability path is found

through each word. This may indicate that the initialisation method fails to exploit fully the

commonality between particle sequences in different words.

An interesting aspect of Stage 2 of the algorithm is that some modelling units which were

present in the initialisation do not appear in the optimised decompositions. The reduction in

the number of modelling units varies between 0.42% and 6.3%. For all models, the training

set perplexity of the bigram model decreases (the algorithm guarantees that the likelihood will

improve or stay the same) and this is effected to some extent by adding extra bigram parameters

to the model so as to better fit the training data. Extra parameters are added by changing words’

decompositions and in the process, superfluous modelling units are discarded. Since, cross word

contexts are used in step 2 of the algorithm, there is significant additional information compared

to that used in the initialisation with which to obtain new word decompositions.

Even a cursory glance over the changes that take place between the initial and optimised

decompositions shows that the algorithm produces subjectively more sensible linguistic decom-

positions for words. Many single-character combinations that were present in the initial decom-

positions are grouped together into recognisable morphological units after optimisation. This is

most apparent among suffixes where it may be postulated that the presence of the � w
�

marker

helps to isolate such particles. The agglomeration of smaller particles also partly explains the

smaller average number of particles per word in the optimised decompositions, although this is

not true for the affixes initialisation and this is examined further below.

As
5 � � � is increased the perplexity of the bigram model on the training data decreases, how-
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ever for the English corpus this trend does not extend to the perplexity of the pruned 6-gram

model on the training data. This was not attributed so much to the bigram criterion being a

poor approximation for the 6-gram model but rather to the restricted number of parameters in

the 6-gram model. The bigram model can add as many parameters as it requires to model the

training data but the 6-gram model is pruned and so begins to model the training data less well.

This trend is also observed on the ���	������	��
�� data. A model which cannot make full use of its

more refined particle dependencies (because of parameter restrictions) also does not generalise

well. If the 6-gram model were pruned using some form of cross-validation the performance

might well be improved.

For the affixes initialisation, step 2 of the algorithm has produced worse decompositions for

the 6-gram models. Although the perplexity of the bigram model on the training data has de-

creased by around 11%, for the same reasons given above, the 6-gram model has failed to exploit

the optimised particle dependencies. From Tables 6.6 and 6.7 it is clear that the optimised affixes

decompositions have more particles per word on average than the initial affixes decompositions.

Closer examination of the optimised decompositions revealed that many affixes had been further

decomposed into smaller particles. This explains the reduction in perplexity of the unpruned bi-

gram model and also why the performance of the 6-gram model worsened. The effect was offset

to a small extent by the recombination of prefixes with infixes in some decompositions to form

particles which were themselves infixes of other words in the vocabulary.

Interpolating the particle model with the word model results in a minimum for Russian at5 � � � � �
and for English at

5 � � � � � , however the differences between adjacent models are small

(up to 1.2%) so it is difficult to conclude much from these values. Nonetheless the improvements

over each word trigram model are appreciable. Compared with the affixes model the improve-

ment over the word model for Russian is 9% better, whereas for English the improvement is

around 4% less than the affixes model.

Figure 6.3 shows the distribution of log-probabilities for the stand-alone and interpolated

Russian word decomposition model with
5 � � � ���

. Comparison with Figure 6.1 reveals that the

distribution of log-probabilities is similar to that obtained with the affixes model. The number

of very low probabilities ( �
	�� ���

) assigned by the particle model is reduced in the interpolated

model where there are fewer even than in the word model (around 20% fewer). Words assigned

very low probabilities were found to have 3.4 particles per word on average. This is significant

in that the particle model involves taking the product of the component particle probabilities.

The smoothing action of the particle model is suggested by there being fewer low probabilities

in the range
	�� ���

to
	�� ���

and more between
	�� ���

and
	�� � �

. The peak around
� � 	

indicates that

the probabilities of events that are well estimated by the word model are boosted to some extent

by the particle model. Words assigned these high probabilities were found to have 1.27 particles

per word on average.

Table 6.10 gives the perplexities computed on events in the Russian �������������
�� data that

were predicted by different back-off cases of the word model. The values show that the particle

model does not perform as well as the word model when the word model uses a trigram or

bigram estimate but does do better when the word model backs off to the unigram distribution.
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(a) Word decomposition model.
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(b) Interpolated word decomposition and word

trigram model.

Figure 6.3 Russian corpus (430k): distribution of log-probabilities for the word trigram, the particle 6-gram

obtained using the word decomposition algorithm with ���������
	 , and the interpolated model.

The differences between the two models are not very large but the smoothing effect is sufficient

in the interpolated model to produce a 7.2% perplexity reduction over the stand-alone word

model. The word decomposition model predicted 36% of words that occurred less than five

times in the training data with a higher probability than the word model. This is more than the

affixes model predicted and helps to explain its better smoothing effect.

Back-off case
� �
�
� 
 � �7� � � 
��

3 77.1 66.4

3-2 559 429

3-2-1 1.69
� 	�� �

1.82
� 	�� �

Table 6.10 Russian corpus (430k): word-level perplexity of word model and stand-alone word decomposition

model with ���������	 , computed on sets of events that were predicted by different word model back-off cases.

In Table 6.11 the average maximum number of words used for predicting the particles in

words of the ���	������	��
�� data by the particle model is given. Very few word 5-grams and no word

6-grams are used and only 13% of predictions use word 4-grams. Nonetheless, to test whether

the number of 4-grams was having a disproportionate effect on the perplexity, a particle 4-gram

model was interpolated with the word 4-gram model described in Section 3.3.3, and all single-

ton events were discarded from both models. Consequently, any word 4-grams present in the

particle model were also present in the word model and the effect of such events was therefore

minimised. A 6.6% perplexity reduction was obtained over the stand-alone word 4-gram model
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Max. words in context Percentage

1 31.4

2 54.8

3 13.0

4 0.8

5 0.0

Table 6.11 The average maximum number of words used to predict words in Russian �����
�����

��

�

data using

the word decomposition model with � ���� � 	 .

(
� � � �� � 
�� � � � � � �

) which shows that the particle model does indeed provide a smoothing effect

to the word
�

-gram probabilities by capturing different dependencies within words and that the

improvement is not due to the inclusion of word 4-grams. As further confirmation, the particle

6-gram model was interpolated with a word 6-gram model (
�7� � �� � 
�� � � � � � �

) that had been

pruned to contain 12 million parameters. The interpolated model produced a 6.8% reduction in

perplexity over the stand-alone word model.

The word decomposition algorithm is very sensitive to the initialisation that is used. In

particular, only those particles that are present in the initial decomposition can ever occur in

the optimised decompositions. Ideally, initialisations that consider all sequences of all possible

sequence lengths would be used and would also include cross-word contexts as well. It has

already been explained however that this was computationally infeasible.

6.3.3 Greedy particle selection algorithm

The second of the data-driven algorithms presented here adopts a greedy approach to the se-

lection of individual particles by choosing, at each iteration, the best particle from a restricted

set under consideration. In this algorithm, the emphasis is on the order in which particles are

selected rather than whether particles are selected at all. The order in which particles are chosen

affects the decompositions of words since particles are only allowed to replace existing particles

in a limited number of ways. As before,
5 � � � , the maximum length of a particle unit, will also

be seen to be an important factor.

6.3.3.1 The algorithm

The algorithm only requires word unigram and bigram statistics from the training data and a

list of all possible candidate particles of different lengths. This list only contains those particles

which actually occur within words of the vocabulary and is not simply a list of all possible com-

binations of the single characters that may occur. Moreover, it does not include particles which

cross word boundaries. Initialising the algorithm involves decomposing all words into their

constituent single characters. The contents of the set of particles
3

at initialisation therefore

comprises all single characters which occur in words of the vocabulary. Single characters must

always appear in the final set since they may be necessary as filler particles to complete a de-
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composition which does not divide exactly into larger particles. The algorithm may be described

concisely by the following steps:

1. Initialisation:
� 5 � 	
� ���������	����
 � � ������
 �����	� 5 ����� ����� �	���&���������������
� ���������	��� �	�������	��������� � � �������������� �	��	

2.
5 � 5 � 	

3. Iterate
� ��� ����

5
����� ����� �	������ ����������	� � ���� � ������
 /

��� �
:

�  ����
������ � � ���� � ����� /
��� �

��� ����
� ����� 
 �� ���������	�������� �	��� ��� �	���	������� � ����  �	��������� � � ���� � ����� /

��� � �
�	��� ����

� ����� 
 �

4. ��� 
 �����"%���
�� 5
����� ����� �	��� ������ ������� ���	��� 3  �	�

�����*�� ���������$# ��� ����
� ������


5. �
�
����
����	��� ���+��%������ � ���������������
 ��%���	������� �+����� terminate

6. �
� � �&������ ��������
 �	�������������� �$��� � terminate

7. �
� � ���	�����	����� �	� ������� step 3, ���	
�� �����	� step 2

After each iteration, the particle which results in the greatest reduction in perplexity is per-

manently added to the final set of particles. Naturally, the order in which particles are chosen

affects the selection of all subsequent particles. Since the algorithm only accepts configurations

which result in an increase in the optimisation function, the algorithm is guaranteed to converge,

however due to its greedy nature it is only likely to find a locally optimal solution. In these ex-

periments the algorithm is only used to determine a set of particles up to some maximum size5 � � � and does not run to completion.

The choice of optimisation criterion was found to have a significant effect on the outcome

of the algorithm. The performance of the final language model was shown to be poor when

particles were selected using the algorithm with a particle unigram criterion. Consequently,

only results for particles selected with a particle bigram criterion are reported here. Other
�

-

gram (
� � �

) optimisation criteria were not considered because of the increase in algorithm

complexity.

6.3.3.2 Update procedure

The optimisation criterion for the algorithm is given by Equation (6.7). There is no simple

method for updating the likelihood when a particle is tentatively inserted into a word, since

particle bigrams may span word boundaries i.e. the context may be in the preceding word. One

solution would be to flag all particles which are affected by the insertion of a particle but this is

unappealing since it results in excessive memory use. Instead, the approach that was adopted

maintained a separate table of bigram counts for storing all bigram count changes that occur

when a particle is inserted into a word. When all words have been examined to see whether the
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tentative particle can be inserted, the counts table is traversed and the likelihood contributions

of each affected particle bigram updated accordingly. Before the tentative insertion of the next

particle, the entries in the count table are first removed. This method was shown to be efficient

both in terms of memory use and speed.

Since cumulative count changes are stored in the counts table, care must be taken to en-

sure that the correct identities of particles are used in updating counts since a change in the

decomposition of one word will inevitably affect subsequent words. Shown below are the count

update equations for replacing a sequence of
4�� / 
 � � � particles /


 �
�� ��������� /


 �
�� ������� � /


 �
��

in word
�

with the candidate particle /
��� �

that is being tentatively inserted. Naturally, concatenating the

sequence /

 �
�� ��������� /


 �
�� �������$� /


 �
��

produces /
��� �

and
5 � /

 �
�� � � ������� 5 � /


 �
�� � � ������� 5 � /


 �
�� � � 5 � / ��� � �

where
5 � / � is the number of characters in particle / . (

5 ��� �
is similarly defined for the number of

characters in word
�

.) Particle replacements may occur at the beginning ( /

 �
�� � / � � ) or the end

( /

 �
�� � / � �

� �
	����

) of word
�

or word internally (
� /

 �
�� ������� � /


 �
�� � � � / �	 ������� � / �	 	 �

�
� ����� 	���� � ):

� Beginning of word
�

(if
5 � / ��� � � ,� 5 ��� � ):

– left context:

if / � �� � �
� 	 ��� � / ��� � �� � � � / ��� � � /


 �
�� � � � � / ��� � � /


 �
�� � � � ��� � ��� � � � � � � ��� � ��� � � �

� � / ��� � � / ��� � � � � � / ��� � � / ��� � � � � ��� � ��� � � � � � � ��� � ��� � � � (6.12)

else

�� � � � / �

� �
� 	���� � / 
 � �� � � ��� / �

� �
� 	 ��� � / 
 � �� � � � ��� � ��� � � � � � ����� � ��� � � �

� � / �

� �
� 	���� � / ��� � � � � � / �

� �
� 	 ��� � / ��� � � � ����� � ��� � � � � � ����� � ��� � � � (6.13)

– right context:

��� / 

�
�� � / � �

�
� ����� 	 � � � � / 


�
�� � / � �

�
� ����� 	 � � � ��� �

(6.14)

��� /
��� � � / � �

�
� ����� 	 � � � � /

��� � � / � �
�
� ����� 	 � � � ��� �

(6.15)

� End of word
�

:

– left context:

� � / � �
� �
	 � �

�
� ����� 	 ��� � / 
 � �� � � � � / � �

� �
	 � �

�
� ����� 	���� � / 
 � �� � � ����� �

(6.16)

� � / � �
� �
	 � �

�
� ����� 	 ��� � / ��� � � � � � / � �

� �
	 � �

�
� ����� 	���� � / ��� � � � ����� �

(6.17)

– right context:

if / � �� � /
��� � �� � ��� /


 �
�� � / ��� � � � � � /


 �
�� � / ��� � � � � ���7��� � � � � � � ����� ��� � � � �

��� / ��� � � / ��� � � � ��� / ��� � � / ��� � � � ����� ��� � � � � � � ����� ��� � � � � (6.18)

else

�� � � � /

 �
�� � / � �� � � � � /


 �
�� � / � �� � � � ���7��� � � � � � � ����� ��� � � � �

� � / ��� � � / � �� � � ��� / ��� � � / � �� � � � ���7��� � � � � � � ����� ��� � � � � (6.19)



Particle-based language modelling 114

� Internally within word
�

at position / �	 :

– left context:

if / 	���� � /
��� � �� � � � / ��� � � / �	 � � � � / ��� � � / �	 � � � ��� �

� � / ��� � � / ��� � � � ��� / ��� � � / ��� � � � ����� � (6.20)

else

�� � � � / �	 ��� � / �	 � � ��� / �	���� � / �	 � � � ��� �
� � / �	 ��� � / ��� � � � � � / �	 ��� � / ��� � � � ����� � (6.21)

– right context:

� � / 

�
�� � / 	 	 �

�
� ����� 	 � � � � / 


�
�� � / 	 	 �

�
� ����� 	 � � ����� �

(6.22)

� � /
��� � � / 	 	 �

�
� ����� 	 � � � � /

��� � � / 	 	 �

�
� ����� 	 � � ����� �

(6.23)

� Always update for � � � ������� ��4�� / 
 � � � � � :
� � /


 �
�� � /


 �
�� 	�� � � � � /


 �
�� � /


 �
�� 	�� � � ����� � �

(6.24)

The update equations for the unigram counts are straightforward since only those of the particles

being replaced, /

 �
�� � � � �������$��4�� / 
 � � � � 	 and /

��� �
, are affected.

6.3.3.3 Heuristic algorithm speedups

For the experiments conducted with this algorithm, the set of possible candidate particles was

chosen to be the most frequently occurring ten thousand particles of each size in the training

data. For some sizes of particles, there were in fact far fewer than ten thousand particles, but

generally there were far more. Since the algorithm performs a search over all particles of a

particular size, finds the best particle and repeats the search over all the remaining particles, the

search space of possible particles is crucial to the speed of the algorithm. It was noted that the

ranking of particles according to their improvement of the likelihood did not change significantly

from one iteration to the next. The conclusion that a high number of useless search operations

was being performed led to the following heuristic improvement:

1. Whenever a new size of particle is considered, a full search is performed over all particles

and the particles are then ranked according to the contribution their inclusion made to the

log-likelihood.

2. For subsequent iterations over particles of the same length, the search is restricted to the

top � candidate particles. As each best particle is found, it is removed from the top

� candidate particles and the next best particle from the initial ranking is added to the

candidate list to form � candidate particles once more.
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The ranking of particles should ideally be recomputed after each iteration since the inclusion

of the best particle will affect the contribution of all other particles, however, this would have

the effect of slowing down the algorithm even more. It is also possible that the would-be best

particle does not appear in the top � candidate list, however, the trade-off in accuracy is easily

justified by the increase in algorithm speed. The value of � � 	�� �
was used for the experiments

on English and �
� 	��

for those on Russian since these values allowed the algorithm to produce

decompositions in an acceptable amount of time (several days). In fact, it transpired that the

performance of the
5 � � � � �

model was found to be more or less insensitive to the value of �
that was used: the perplexity of the stand-alone particle model on the Russian �������������
�� data

was only 0.25% higher with decompositions obtained using �
� 	��

, than those obtained using

� � 	�� �
.

6.3.3.4 Permitted particle replacements

There remains the issue of how particles may replace existing combinations of particles during

the course of the algorithm. A decision had to be made as to which replacements were possible

and these are outlined briefly in Table 6.12 for the case of 4 characters, � ,
)

,
+

and
�

, where

the brackets denote the particle composed of the characters within the brackets.

Original Replacement

(AB)(C)(D)

(A)(BC)(D)

(A)(B)(C)(D) (A)(B)(CD)

(AB)(CD)

(ABC)(D)

(A)(BCD)

(AB)(C)(D)

(A)(BC)(D)

(A)(B)(CD)

(AB)(CD) (ABCD)

(ABC)(D)

(A)(BCD)

(AB)(C)(D)

(A)(BC)(D) (ABC)(D)

(A)(BC)(D)

(A)(B)(CD) (A)(BCD)

Table 6.12 Permitted particle replacements for the case of four characters.

Particles which are already used in a decomposition may only be combined with adjacent

particles to form larger units and cannot themselves be split up to be combined with other

particles. Due to the way the replacement operation works, the order in which the algorithm
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selects particles is implicitly encoded in the decompositions. If (AB) is selected before (BC) then

(A)(B)(C) must be decomposed into (AB)(C), and it is impossible to obtain (A)(BC). Later on, if

(ABC) is selected as a particle then it will replace (AB)(C) as the decomposition, assuming that

neither (AB) nor (C) has already been incorporated into some other particle.

6.3.3.5 Results

Particle 6-gram models were built and pruned using decompositions from the algorithm after all

particles of a fixed length (
5 � � � � 	 ������� � � for Russian and

5 � � � � 	 ������� � �
for English) had been

considered for inclusion into
3

. This approach was adopted since the characteristics of a model

only changed appreciably when the size of particle under consideration was increased (step 2

in the algorithm). In other words, the relationship between the number of particles selected
���

and the perplexity of a model was similar to a decreasing step function with discontinuities

at the points where
5 � � � was increased. The number of particle units used in each of the final

particle models is shown in Table 6.13 for Russian and Table 6.14 for English, together with

the average number of particles per word both weighted by a word’s unigram frequency and

unweighted.

Number of Average number of particles per word

Model (
5 � � � ) modelling units unweighted frequency weighted

1 128 8.98 4.82

2 1660 5.27 2.93

3 9512 3.85 2.15

4 18675 3.15 1.79

5 26617 2.86 1.58

Table 6.13 Number of modelling units and average numbers of particle units per word for Russian.

Number of Average number of particles per word

Model (
5 � � � ) modelling units unweighted frequency weighted

1 64 7.59 4.40

2 985 4.56 2.69

3 5379 3.23 1.91

4 11416 2.69 1.56

5 16717 2.40 1.36

6 21012 2.25 1.25

7 24648 2.15 1.17

8 28004 2.07 1.11

9 31258 1.98 1.08

Table 6.14 Number of modelling units and average numbers of particle units per word for English.
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The perplexity results for the different particle models are shown for Russian in Table 6.15

and for English in Table 6.16.

Perplexity

�������������� �������������
�� weights % improvement

Model (
5 � � � ) �7� � �

�
� 
 � � � � �

�
� 
 � � � � �

�
� 
 � � � � �� � � � 


�

9 � � 
�� , 9 � � 
 � over word trigram

1 347300 1529 1784 662.9 0.90, 0.10 2.1

2 25910 695.2 897.8 630.6 0.74, 0.26 6.9

3 4171 591.8 800.2 626.2 0.69, 0.31 7.5

4 1575 542.6 766.0 627.1 0.68, 0.32 7.4

5 979.2 515.4 750.0 630.1 0.68, 0.32 6.9

Table 6.15 Russian corpus (430k): word level perplexities of stand-alone particle 6-gram models on

�����
�����

��

�

and
���
�
������� �

, and interpolated particle and word trigram model on � ���
�����

��

�

only (
� ����� ).

Perplexity

�������������� ���	������	��
�� weights % improvement

Model (
5 � � � ) �7� � �

�
� 
 � �7� � �

�
� 
 � �7� � �

�
� 
 � �7� � �� � � � 


�

9 � � 
�� , 9 � � 
 � over word trigram

1 93900 429.4 472.3 214.4 0.93, 0.07 1.7

2 6127 217.1 272.4 209.0 0.77, 0.23 3.3

3 1040 191.8 250.3 206.2 0.71, 0.29 4.6

4 462.2 175.2 238.4 204.5 0.66, 0.34 5.4

5 315.3 166.7 231.7 203.9 0.64, 0.36 5.6

6 261.6 160.9 226.7 203.4 0.62, 0.38 5.9

7 233.3 155.4 222.6 202.8 0.59, 0.41 6.2

8 216.3 151.5 219.6 202.3 0.56, 0.44 6.4

9 206.0 148.2 217.5 201.9 0.54, 0.46 6.6

Table 6.16 English corpus (65k): word level perplexities of stand-alone particle 6-gram models on �����
� ���

��

�

and
���
�
���������

, and interpolated particle and word trigram model on ���	�
�����

� 

�

only (
� ������� ).

In Table 6.17 the first ten particles for English selected by the algorithm for
5 � ��� � � � � � � � �

are shown in the order in which they were selected.

Table 6.18 shows ten randomly chosen words from the English decompositions for
5 � � � � �

and gives an idea of the way in which words are decomposed by the algorithm and how the

particle replacement operation works.

6.3.3.6 Model analysis

The perplexity on the training data of both the bigram model and the pruned 6-gram models

decreases as more particles are selected by the algorithm. In a manner similar to the word

decomposition method, the particle selection algorithm adds unigram and bigram parameters
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order
5 � ��� ��� 5 � � � � � 5 � ��� � � 5 � ��� ���

1 TH THE � w
�

THER � w
�

THOUS

2 AN AND � w
�

THAT � w
�

ETEEN � w
�

3 IO ING � w
�

BEEN � w
�

THERE � w
�

4 OF � w
�

ERE � w
�

DRED � w
�

THINK � w
�

5 IN NIN ENTY � w
�

EIGHT � w
�

6 RE WIT HAVE � w
�

THREE � w
�

7 RO FRO THIS � w
�

OTHER � w
�

8 TO � w
�

DRE THAN � w
�

SEVEN � w
�

9 GH HUN WITH GOVER

10 EN EEN � w
�

WERE � w
�

INTER

Table 6.17 The first ten particles of each size chosen by the algorithm for English.

Word Decompositions

PRESUMPTUOUS PRE—SUMP—TUOUS � w
�

BRISTLY BRIST—LY � w
�

TRAVERSAL TRAV—ERSAL � w
�

WARDSHIP WAR—DSHIP � w
�

SOMETIMES SOM—ETIM—ES � w
�

DISPATCHED DIS—PAT—CHED � w
�

HEATHEN HEA—THEN � w
�

GRANDMOTHERS GRAND—MOTH—ERS � w
�

NEWSCASTER NEW—SC—ASTER � w
�

OBLIGATION OBLIG—ATION � w
�

Table 6.18 Ten randomly chosen English words and their decompositions with � ����� ��� .

to the model as necessary so as to fit the training data better. However, similar reductions in

perplexity are also observed on the held-out ����������	��
�� data which suggests that none of the

models that were built were over-trained.

The best stand-alone and interpolated models for both languages are better than for either

the affixes or word decomposition methods. For the interpolated word and particle model an

optimal value of
5 � ��� was not found for English however for Russian

5 � � � � �
was found to

be marginally better than
5 � � � � � . For Russian,

5 � � � � �
was also found to be the optimal

value with the word decomposition algorithm. This shows fairly conclusively that dependencies

between particles limited in length to three characters best complement the dependencies in

the Russian word model. For the English models, part of the performance improvement was

undoubtedly due to the selective inclusion of word
�

-grams (
� � �

) in the particle model.

Such events are perhaps more robust in English than in Russian and so retaining them improves
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the performance on unseen data. In Table 6.19 the average maximum number of words used in

particle contexts for predicting words is given for English with
5 � � � � � and

5 � � � � �
. Increasing5 � � � certainly increases the maximum number of words used in particle contexts, although even

for
5 � ��� � �

only 24% of vocabulary words are also their own decompositions.

5 � ��� � � 5 � ��� � �

Max. words in context Percentage Percentage

1 18.6 21.7

2 52.3 46.1

3 25.6 25.6

4 3.3 5.7

5 0.2 0.9

Table 6.19 The average maximum number of words used to predict words in English ���	�
�����

� 

�

data using

the particle selection model with ������� ��� and � ����� ��� .

When 4-gram models with all singleton events discarded were built for both the
5 � � � � �

particle

model and the word model (see Section 3.3.4) the perplexity reduction of the combined model

was only 0.4%. The interpolated particle 6-gram and word 6-gram also only gave a 1% reduction

in perplexity over the stand-alone word 6-gram. This clearly indicates that both particle models

contained a large proportion of word
�

-grams. It is interesting to note that the particle 6-gram

model built using decompositions from the
5 � � � � 	�� word decomposition algorithm did not

have characteristics similar to the
5 � ��� � �

particle selection model i.e. word
�

-grams (
� � �

)

were not present to the same extent and for those decompositions only 12.5% of words were

also their own decompositions.

The first ten particles that were selected by the algorithm for different maximum particle

lengths was shown in Table 6.17. For
5 � � � � � � � the particles appear to be frequent and poten-

tially useful modelling units. (Approximately half of the particles shown for
5 � � � � � are in the

ten most frequently occurring 2-character particles in the training corpus.) For
5 � ��� � � � � the

tendency is to choose whole words (or ends of words) instead of word-internal particles. This

was not the case for Russian and reflects the assertion that whole words rather than sub-word

units tend to be more useful for modelling English.

The algorithm is restricted by the limited number of ways in which particles may replace

existing particles. This is shown clearly in Table 6.18 where the selection of smaller particles

earlier on has formed groups which prevent the subsequent selection (at least in the decompo-

sitions shown) of intuitively more useful particles. This is particularly apparent for the words

“SOMETIMES” and “NEWSCASTER”.

In Figure 6.4 the distribution is plotted of log-probabilities apportioned by the
5 � ��� � �

par-

ticle selection and interpolated models to events in the ���	������	��
�� data. The distribution is very

similar to the word decomposition algorithm and this reflects the similar performance of the

two models. The salient points are that the interpolated model has fewer very low probabilities
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( �
	�� ���

) than in the word model (18% fewer) and a more favourable distribution of probabil-

ities in the middle range. The peak observed for probabilities around 0.1 again suggests that

well estimated words have their probabilities boosted by the particle model. It should be noted,

however, that this is still a smoothing effect and is not necessarily undesirable.
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(a) Particle selection model.
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(b) Interpolated particle selection and word tri-

gram model.

Figure 6.4 Russian corpus (430k): distribution of log-probabilities for the word trigram, the particle 6-gram

model obtained using the particle selection algorithm with � ����� �
	 , and the interpolated model.

The perplexities of the particle and word model computed on events in the Russian �������������
��
data for different back-off cases of the word model are given in Table 6.20. Although the particle

selection model, when it is combined with the word model, gives the best performance of the

three different particle models, the perplexities of the stand-alone model for the different back-

off cases are all slightly higher than exhibited by the other two particle models. However, this is

simply because the stand-alone particle selection model has a higher perplexity than the other

stand-alone particle models. The particle selection model also assigned a higher probability than

the word model to 32% of words in the �������������
�� data that had occurred less than five times

in the training data which also partly explains the model’s smoothing effect.

Back-off case
� �
�
� 
 � �7� � � 
��

3 78.9 66.4

3-2 575 429

3-2-1 1.75
� 	�� �

1.82
� 	�� �

Table 6.20 Russian corpus (430k): word-level perplexity of word model and stand-alone particle selection

model with ������ =3, computed on sets of events that were predicted by different word model back-off cases.
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Table 6.21 shows the average maximum number of words used in the context for predicting

particles in words of the Russian �������������
�� data. The values are almost identical to those

obtained for the word decomposition model with
5 � � � � �

which reflects the similar nature and

lengths of the particle modelling units that were used, even though word decompositions were

identical for only 11% of words in the vocabulary.

Max. words in context Percentage

1 31.4

2 54.7

3 13.1

4 0.8

5 0.0

Table 6.21 The average maximum number of words used to predict words in Russian �����
�����

��

�

data using

the particle selection model with ������� ��	 .

A 4-gram particle model was built (in the same manner as for the analysis of the word

decomposition model) with all singleton events discarded, and interpolated with a word 4-gram

which had also had all singleton events removed. The interpolated model gave a 6.8% perplexity

reduction over the 4-gram word model so it is safe to conclude that the improvement is due

to smoothing between the particle and word model probabilities rather than the inclusion of

useful higher order dependencies. As yet more confirmation, interpolating the
5 � � � � �

particle

selection model with the pruned word 6-gram gave a 7.2% reduction in perplexity over the

stand-alone word 6-gram.

6.3.4 Effect of Normalization

All the perplexity results for the particle models have been given as an upper bound on the per-

plexity of those models since the normalization constant in Equation (6.2) was set to one. To

evaluate the effect of this approximation on the perplexity figures, each of the best performing

models on the Russian data will be examined. However, due to the burden of computing the nor-

malization constant, calculations will only be computed on the first 5,000 sentences ( � 50,000

words) of the Russian ���	������	��
�� and ���������	��
�� data. Since it is only the relative changes in

perplexity that are of interest, this is expected to be acceptable. The perplexity on the smaller

data set for the baseline word trigram model is 614.9 (cf.
�7� � � 
�� � � � � � �

on entire ����������	��
��
data). The perplexities of the affixes, word decomposition (

5 � � � � �
) and particle selection

(
5 � ��� � �

) models for both normalized and unnormalized probabilities are given in Table 6.22.

Clearly, there is not a large difference between the normalized and unnormalized perplexities

of the stand-alone particle models (up to 2.5%) nor between the interpolated models (up to

0.7%). Moreover, normalization will always improve a model’s perplexity. Since the effect of

normalization is relatively small, using the approximation of
� � ! � � 	

in all the above results
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Perplexity weights % improvement

Model Normalization
�7� � �

�
� 
 � �7� � �� � � � 


�

9 � � 
�� , 9 � � 
 � over word trigram

affixes unnormalized 687.7 580.2 0.70, 0.30 5.6

normalized 678.4 577.8 0.68, 0.32 6.0

word decomp. unnormalized 712.6 574.4 0.70, 0.30 6.65 � � � � �
normalized 697.7 570.7 0.67, 0.33 7.2

particle select. unnormalized 741.6 574.8 0.71, 0.29 6.55 � � � � �
normalized 723.3 570.8 0.68, 0.32 7.2

Table 6.22 The effect of normalization on the three best performing interpolated word and particle models

computed using the first 5000 sentences of the Russian �����
� ���

��

�

data.

is seen to be justified especially when consideration is made of the computational complexity

involved in computing the correct value of
�2� ! �

for each context
!
.

6.3.5 Discussion

The performance of three different particle models has now been presented and analysed in

some detail. To facilitate a comparison between the overall performance of all the models, the

perplexity of the stand-alone and interpolated models is shown on the next page in Figure 6.5

for Russian and in Figure 6.6 for English. (Note that the scales on the y-axis of each plot are

different.) Models’ perplexities are plotted against the weighted average number of particles per

word. This was chosen as a convenient means of relating the different models to each other.

For the stand-alone models the trend is observed of the perplexity decreasing as the average

number of particles per word decreases. What is striking is that the stand-alone perplexities

are almost identical for models that have a similar number of average particles per word in

their decompositions. For the interpolated models there is a clear difference between the plots

for the two languages. Convincing minima are obtained for the two data-driven algorithms on

Russian whereas for English any minima that are present are much less evident. For English,

the perplexity of the interpolated word decomposition model is more or less independent of

the average number of particles per word and the interpolated particle selection model gets

progressively better as the average number of particles per word gets less and as more higher-

order word
�

-grams are included.

The results obtained with the particle selection algorithm perhaps indicate that the opera-

tion of the algorithm is better than that of the word decomposition algorithm. In particular, it

would appear that it might be better to determine the effect that a particular particle has on all

words simultaneously rather than to consider only the effect that a particle has on an isolated

vocabulary word, as was the case for the word decomposition method. Moreover, the problem

with algorithm initialisation is largely absent from the particle selection method yet it was of

great importance with the word decomposition method.
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Figure 6.5 Russian corpus (430k): summarised results for the different particle models.
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Figure 6.6 English corpus (65k): summarised results for the different particle models.
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A final question that may be asked is whether the characteristics of the particle model com-

plement those of both the word model and the one-sided class model that was investigated in

the previous chapter. A three-way interpolation was performed with the word trigram model,

and one-sided class model and particle model, each of which had given the best result when

they were individually interpolated with the word trigram. The results are given in Table 6.23

for the appropriate models on Russian and English.

Perplexity on �������������
�� weights % improvement

Language
�7� � � 
�� 	 ��� � � � 	 � � 
 � 9 � � 
�� , 9 � �	� � � , 9 � � 
 � over word trigram

Russian (430k) 548.2 0.44, 0.37, 0.19 19.0

English (65k) 191.8 0.33, 0.28, 0.39 11.2

Table 6.23 Perplexities of combined word, one-sided class and particle selection models on ���	�
�����

� 

�

data

for the two corpora.

Although the combined models each have around two and a half times the number of pa-

rameters as the word model, the perplexity reductions are significant. Moreover, the results

also indicate that the characteristics of the three models are indeed complementary and the

performance of the individual models is approximately additive.

The analyses that have been performed in this chapter suggest that the probabilities in the

word model have indeed been smoothed by the probabilities from the particle model and that

using the combined models in a speech recognition system should reduce the word error rate. It

has been pointed out that such experiments were not carried out because there was no appro-

priate acoustic data available for either of the two language modelling corpora that were used.

In addition, it is also worth mentioning that the use of 6-grams in the particle model need not

present any difficulty during recognition. Unique paths need only be maintained for different

word histories and since only a small percentage of particle 6-grams map to word 4-grams (13%)

and longer (1%) this represents very little additional computational difficulty over using a word

trigram language model. In fact, a greater number of paths can potentially be merged since

paths ending in the same particle sequences can be considered identical.

6.4 Summary

This chapter has described a new language modelling technique that captures dependencies in

language at a sub-word level using particles. Three different algorithms were proposed and

investigated for determining the particle units automatically. The data-driven particle selection

method was shown to perform best when the model built using its decompositions was combined

with a word model. The decompositions obtained using the data-driven word decomposition al-

gorithm performed similarly well to those obtained using the simple affix stripping algorithm.

The particle-based technique, which was motivated by the morphology of Russian words, has

also shown itself to be of use in modelling English. For English, the overall reduction in perplex-



Particle-based language modelling 125

ity was similar to that obtained with the one-sided class model. For Russian, the reductions in

perplexity were around half those obtained with the one-sided class model. However, combina-

tions of the word, one-sided class and particle models produced further reductions in perplexity

which showed that each component model had captured different dependencies.



7

Conclusions and further work

In this short chapter the main topics examined in this dissertation are first reviewed and the

original contributions and important results are highlighted. The chapter concludes with some

proposals for further work that have been prompted by the experiments conducted in this dis-

sertation.

7.1 Review of experimental work

The principal difference between the work in this dissertation and other work on language mod-

elling has been the examination and comparison of language models for Russian and English.

The work began with an examination of the characteristics of a Russian corpus, which had been

collected and prepared specially for the experiments, and a well-known English language cor-

pus. The investigation of the variation of OOV-rate and the perplexity of word trigram models

against vocabulary size established the basis of the subsequent experimental work. In particular,

for Russian it was shown that a very large 430k vocabulary was required to achieve the same vo-

cabulary coverage on held-out data as a 65k English vocabulary. A backoff word trigram model

employing permutations of the word history was developed to exploit the Russian language’s

potential for free word ordering. However, the model’s poorer performance together with the

observation that the
�

-gram hit-rates for both languages were similar indicated that localised

free word ordering did not pose a serious problem.

The remainder of the experimental work in the dissertation concentrated on reducing the

perceived data sparsity problems in both corpora by investigating alternative modelling units to

words for use in the
�

-gram framework.

7.1.1 Two-sided class language models

Two-sided class models have been the subject of considerable attention in the literature, how-

ever, the experiments in Chapter 4 were the first to apply such models to Russian and the first to

compare automatically derived classes against part-of-speech classifications in terms of perplex-

ity and word error rate.
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It was well known that the more general dependencies captured by the class model are able

to complement the specific nature of the word model if the two component models are com-

bined. The best linear combination of two-sided class and word model for Russian reduced the

perplexity by around twice as much (over 16%) as the best combination for English did. This

was attributed primarily to the greater sparsity of the Russian corpus where the class model’s

ability to generalise resulted in greater perplexity improvements. An interesting observation for

the Russian corpus was that the stand-alone 5004-class model had a perplexity 3.2% less than

the word model even though it contained 10% fewer parameters. In contrast, none of the class

models for the English corpus outperformed the word model. All experiments were necessar-

ily restricted to the 65k vocabularies for each language since the scaling characteristics of the

clustering algorithm for the two-sided model made it computationally impractical to cluster the

430k vocabulary.

In the second half of the chapter classifications obtained both automatically and using part-

of-speech information were compared in terms of perplexity and speech recognition perfor-

mance. When the class model was interpolated with the word model, the automatically gen-

erated classes were shown to be consistently superior to the linguistic classes in terms of word

error rate, and the best interpolated model had a 7% lower word error rate than the word model

alone.

7.1.2 One-sided class language models

The one-sided class
�

-gram model was developed in Chapter 5 as an extension of the work

conducted on the two-sided class
�

-gram model. For the two-sided model it was discovered

that the scaling properties of the clustering algorithm prevented the automatic classification of

the very large 430k Russian vocabulary in a reasonable time. The realisation that the clustering

algorithm for a one-sided class model scaled linearly in the number of vocabulary words and,

more importantly, linearly in the number of classes recommended this particular direction of

research. Moreover, although one-sided models had been mentioned occasionally in the litera-

ture, they did not appear to have been used in any experimental work, nor had the clustering

algorithm ever been investigated.

Having described the different language model tools that were necessary to implement this

class model and the new update procedure for the clustering algorithm, comparisons between

the performance of the one-sided and two-sided class models were then made. In addition,

one-sided class models were also built for the 430k Russian vocabulary for which classifications

could now be obtained efficiently. Combinations of word and class models were investigated

for the 65k vocabularies and significant improvements were obtained (up to 12.5% for Russian

and 5.3% for English), however, these were slightly less than had been obtained with the best

combination of two-sided class and word model. From this it was concluded that the two-

sided class model was able to generalise better than the one-sided class model due to the more

coarse-grained dependencies which it captures. In addition, large perplexity reductions (up

to 16.2%) were obtained using the 430k Russian vocabulary by combining the one-sided class
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model with the word model. This could not easily have been accomplished for the two-sided

class model and so represented a particularly significant result. Moreover, for the Russian corpus

the stand-alone one-sided 5004-class model outperformed the word model by the same amount

as the two-sided 5004-class model did, and also contained fewer parameters. Further perplexity

improvements were obtained for all one-sided class models by determining separate position-

dependent classification functions for each position of the context.

For situations where a very large vocabulary is required and where there is insufficient train-

ing data available, the stand-alone one-sided class
�

-gram model was shown to offer a com-

petitive alternative to the word
�

-gram model. When very large vocabularies are required and

two-sided class models cannot easily be generated, the favourable scaling properties of its clus-

tering algorithm also make the one-sided class model an attractive solution.

7.1.3 Particle language models

The modelling of sub-word dependencies in language using particles was proposed in Chap-

ter 6. Although the concept of modelling sub-word relationships was not new, the form of the

model and the way in which particles and word decompositions were determined automatically

was not known to have been investigated before. The motivation for particle-based language

modelling arose from knowledge about the productive morphology of the Russian language.

Nonetheless, the technique was also applied successfully to English and for both languages sub-

stantial reductions in perplexity were obtained when the particle model was combined with a

word model.

A linguistics-based affix stripping method was compared against two data-driven methods

which optimised the set of particles and word decompositions by maximising the likelihood of

the training data. The data-driven word decomposition algorithm optimised the decomposition

of each vocabulary word in turn given an initial decomposition for the word. This method

was shown to perform better than the affixes model for Russian and similarly well for English.

The second, data-driven particle selection algorithm selected particles iteratively according to

how much their inclusion contributed to increasing the training data likelihood. This method

was shown to perform best of the three methods on both languages. This was attributed in

part to the way the algorithm considered the change in likelihood that including a particle had

on all vocabulary words simultaneously. In contrast, the word decomposition algorithm only

considered the effect that changing the decomposition of one vocabulary word at a time had on

the likelihood.

The performance of the particle modelling approach in combination with word-based models

for English was similar to that of the one-sided class models and gave reductions in perplexity

of up to 5.4% (for a comparable particle model). The reductions in perplexity on Russian were

also significant (up to 7.5%) but not as large as those obtained with the one-sided class models.

However, combinations of word, one-sided class and particle models were found to give reduc-

tions in perplexity that were greater than those which either of the component combinations

gave. The results that have been obtained with particle-based
�

-gram modelling of language
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clearly show that the technique has much to offer.

7.2 Suggested further work

The examination of the Russian language that has been conducted in this dissertation has shown

a clear need for a new range of language modelling techniques that capture different kinds of

language dependencies. Progress has been made in this area with the development of a class

model formulation for which there was an efficient clustering algorithm, and also with the range

of particle modelling techniques that were investigated. Any further work must include an ex-

amination of the recognition performance of the models that have been proposed. In addition to

this, modelling language using particles has stimulated several ideas for other possible avenues

of research to exploit the language dependencies at a sub-word level.

7.2.1 Recognition performance of models

All the language models that have been investigated in this dissertation have been designed with

speech recognition applications in mind. However, the absence of suitable acoustic databases

prevented an assessment of the recognition performance of the models. Since the one-sided class

and particle modelling techniques have been shown to reduce perplexity on both the English

and Russian corpora, it would now be a relatively simple matter to apply the techniques to

other domains for which appropriate linguistic and acoustic data are available. Using class
�

-gram models to rescore lattices is no more difficult in principle than using a word
�

-gram

model (Odell and Niesler, 1996). Some care must be taken when incorporating a particle
�

-

gram model into the search to ensure that the search space of sentence hypotheses does not

become unmanageable when particle
�

-grams represent long word
�

-grams. However, the

standard techniques for efficient lattice rescoring, including path recombination and lookahead

calculations, can all be easily implemented for the class and particle
�

-gram models.

7.2.2 Improved automatic particle selection

In addition to the algorithms described in Chapter 6, several other methods for selecting par-

ticles and determining word decompositions are highlighted below which, it is believed, might

improve the performance of the combined word and particle model.

The affixes initialisation was not intended to define what could be achieved with a linguis-

tic approach to particle-based language modelling, primarily because of the simplicity of the

affix-stripping operation that was used. If suitable linguistically correct algorithms were to be

produced for stripping known affixes from arbitrary words in Russian and English this could well

improve the performance of the affixes model. However, the problem that the decompositions

are not optimised for the model they are used in still remains and this is likely to limit the ulti-

mate performance of a linguistics-based particle model. It is still unclear, for example, whether

better performance would be obtained by decomposing words into all constituent morphs or

into stems and inflections.



Conclusions and further work 130

The word decomposition method was found to be particularly sensitive to the way in which

it was initialised. When the affixes decompositions were used as the initialisation the optimi-

sation even resulted in a reduction in model performance so this was obviously not a good

initialisation. If sufficient computer memory and processor power were available, initialisations

could be generated using all particle sequences of all lengths and importantly could include

cross-word contexts. Not using cross-word contexts was a severe limitation to generating useful

initial decompositions for the algorithm. It would also be interesting to use the decompositions

obtained from the particle selection model to determine whether these could be improved by

the application of this algorithm.

The particle selection algorithm, which was found to be the best performing algorithm,

would undoubtedly benefit from a less restricted set of permitted particle replacements. These

would allow particles that had been selected already to be broken up so that more useful par-

ticles might be formed in their place. The set of particle replacements that was considered was

chosen due to the simplicity of the replacement operation. Changing this would increase the

complexity of the algorithm but performance would almost certainly improve.

Both data-driven algorithms optimised word decompositions using a particle bigram crite-

rion. Extending this criterion to higher order
�

-grams would take into account any longer-

distance effects which are present in the final model. Although the bigram criterion was shown

to be a good approximation for the final 6-gram models that were built, there is inevitably a

discrepancy in the dependencies which are formed. In connection with this, some form of cross

validation, parameter limiting or discounting scheme might also be incorporated into the algo-

rithms to improve a model’s ability to generalise to unseen data.

The use solely of the written orthography of words in determining particles and word de-

compositions may also limit the action of the data-driven algorithms. Much of the underlying

morphology of a language is obscured by spelling changes that occur over time and using a

purely statistical method to determine particles inevitably fails to exploit relationships hidden

in this way. For Russian, a set of transformations exists for mapping words into a regularised

orthographic form which largely removes the effect of spelling changes (Derwing and Priestly,

1980). Application of the transformations is simple and the use of regularised word forms in the

algorithm in combination with the other improvements proposed above would be expected to

improve the performance of the Russian particle
�

-gram models.

7.2.3 Particle trigger models

It is clear that the
�

-gram framework is perhaps not the optimal structure in which to employ

particles as modelling units. The reduced span of the particle
�

-gram model is the main detrac-

tor in the
�

-gram approach. Moreover, the relationship between adjacent particles is unlikely to

be as strong as that between adjacent words. In fact, strong relationships are expected to exist

between particles in adjacent words, which would generally be outside the span of many particle
�

-grams. For example, the relationship between boy and s in the sentence “The boy who kicks

the ball.” would not necessarily be captured by a particle trigram model but would be modelled
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implicitly by a word trigram model.

In Russian, agreement between morphological units in adjacent words is present to an even

greater extent than in English. For example, there are strong relationships between certain ver-

bal prefixes and the inflections of subsequent words, and between the inflections of all adjectives,

participles and nouns. A preliminary investigation of particles has been obtained with the lin-

guistic affixes method and used the average mutual information criterion (see Section 2.2.7.1)

to select candidate triggers. Precisely those particle-particle relationships which were expected

to be useful and many more intuitive ones besides were found using this method. Given the

nature of such triggers (mainly syntactic), a within-sentence trigger model or distance particle

bigram model (see Section 2.2.7) would both be suitable modelling frameworks since they per-

mit longer range relationships to be captured. Such models would still have to be combined

with one that could produce probabilities for whole words. This could be achieved with a com-

bination of particle
�

-gram and particle trigger techniques, for example. An alternative particle

selection scheme might also need to be considered to determine particles that are optimised for

use with the particle trigger model.

7.3 Final summary

The central thesis that different language modelling approaches were required for Russian has

been consistently demonstrated throughout this dissertation. The proposed techniques, two

types of class model and the particle modelling scheme, were shown to be useful for language

modelling of both Russian and English. This dissertation, in answering many of the questions

that were posed at the outset, has itself prompted many more. These will hopefully provide the

stimulus for further research in this area.



A

English and Russian affixes

Russian

The prefixes and suffixes stripped from words in the 430k Russian vocabulary are given in Ta-

bles A.1 and A.2 respectively. The affixes were chosen according to their perceived usefulness

in a particle
�

-gram model. A grammar of Russian (Offord, 1993) was used to aid selection.

����� ����� 	�
��
�� 	������
������� ���� 	���� �����
������� ����
���� 	������ �����

��������� ����
���� 	�������� �����
����� ������� 	���
 ��� �����
��
�� ��!�� 	���
 ����� �������

��
 ����� ��!���� 	������ �"���

Table A.1 Prefixes stripped from Russian words in the affixes model.

�$# �%��&�'(� �)
�' �*��' �*� &
�$#+# �%��, �)
�'-� & �*��'(. �*��/
�$#0��/ �%��' �)
�'1. �*��, �).
�$#0��/�� & �%��'(� �)
�! �2& �).�#
�$#3! �%��& �)
�!�
 �2&�4 �5#3!
�$#3!�� & �%��&�' �)
�!�
���/ �2&�' �5#3!�� &
�5� �%!�/�� & �)
�!�� & �2&�'6� �%/�#
�5��
 �%!�/ �)
�78/ �2&�& �%�
�5��
�' �%��&�'(� �)
�78/�� & �2&�&9��/ �%�:

�5��
�� �)
 �*� �2&�! �%�:4
�5��4 �)
�;�� �*��
 �2&�!�� & �%�<,
�5��� �)
�, �*��;� �%�='(� �%�='

Table A.2 Suffixes stripped from Russian words in the affixes model.
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English

The prefixes and suffixes stripped from all English words for use in the affixes particle model

are given in Tables A.3 and A.4 respectively. Affixes were chosen from an encyclopedia of the

English language (Crystal, 1995) according to their perceived usefulness in the particle model.

ANTI- EN- MEGA- POLY- TELE-

ARCH- EX- MINI- POST- TRANS-

AUTO- EXTRA- MIS- PRE- TRI-

BI- FORE- MONO- PRO- ULTRA-

CO- HYPER- MULTI- PROTO- UN-

CONTRA- IL- NEO- PSEUDO- UNDER-

COUNTER- IN- NON- RE- UNI-

DE- INTER- OUT- SEMI- VICE-

DEMI- INTRA- OVER- SUB-

DI- IR- PALEO- SUPER-

DIS- MAL- PAN- SUR-

Table A.3 Prefixes stripped from English words in the affixes model.

-’RE -ER -IC -LET -SHIP

-’S -ERY -IFY -LETS -SHIPS

-ABLE -ESE -ING -LIKE -STER

-AGE -ESQUE -ISE -LING -STERS

-AL -ESS -ISH -LINGS -TION

-ANT -EST -ISM -LY -TIONS

-ATE -ETTE -ISMS -MENT -WARD

-ATION -FUL -IST -N’T -WARDS

-DOM -FULS -ITE -NESS -WISE

-ED -HOOD -ITES -OCRACY -Y

-EE -HOODS -ITY -OR

-EER -IAL -IVE -OUS

-EN -IAN -IZE -S

Table A.4 Suffixes stripped from English words in the affixes model.
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