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Abstract

The most popular and successful acoustic model for speech recognition is the Hidden
Markov Model (HMM). To use HMM:s for speech recognition a series of assumptions are made
about the waveform, some of which are known to be poor. In particular, the ‘Independence
Assumption’ implies that all observations are only dependent on the state that generated them,
not on neighbouring observations. In this paper, a new form of acoustic model is described
called the Segmental Hidden Markov Model (SHMM) in which the effect of the ‘Independence
Assumption’ on the observation likelihood is greatly reduced. In the SHMM all observations
are assumed to be independent given the state that generated them but additionally they
are conditional on the mean of the segment of speech to which they belong. Re-estimation
formulae are presented for the training of both single and multiple Gaussian Inter Mixture
models and a recognition algorithm is described. Additionally it is shown that the standard
HMM, both in the single Gaussian mixture and multiple Gaussian mixtures cases, is just a
subset of the SHMM. The new model is shown to provide better recognition performance on
a wider set of synthetic data than the standard HMM.
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1 Introduction

The problem of creating a machine to recognise or respond to speech has been actively studied since
1950. There are many reasons for studying the problem, due to the large number of direct practical
applications. These include data retrieval, voice activated data entry, voice activated control, for
instance of wheel chairs, and dictation machines. The problems associated with voice-operated
systems are described below.

1. Between speaker variability. This may result from physical differences, such as length of
vocal tract, sex and age. In addition there are variations in pronunciation due to regional
dialects.

2. Within speaker variability. Speakers tend to alter their speech in situations of stress or
excitement. There are variations in an individual speaker depending on whether the speech
is being read, prompted or is free conversational speech. Also there is a certain amount of
stress deliberately added to the speech, particularly when uttering a question.

3. Environmental variations. Speakers will naturally adapt their speech according to the envi-
ronment, the well known Lombard effect [4]. The observed waveform may also be heavily
distorted by high level interfering background noise such as occurs on a factory floor, or in a
car. In addition there are problems associated with multipath. Speech sounds very different
if spoken in an anechoic chamber compared to a normal room. Moreover, the medium used
to record the speech tends to alter the speech.

4. There are also problems associated with fundamental confusability of speech. Given no
context, it is hard to differentiate between youth in Asia and Euthanasia. So context and
understanding must also be considered.

Ultimately any voice-operated system must be able to cope with all of the above problems.

This paper is concerned with the task of Automatic Speech Recognition (ASR), however it
does not consider all of the issues detailed above, but concentrates on the problem of modelling
the speech waveform in clean environments. Hence only the first two issues are addressed, those
of between speaker variability and within speaker variability in speech recognition systems. The
problem of ASR may be broken down into a series of stages. These are speech acquisition, speech
parametrisation, modelling and recognition and finally the understanding stage. Each stage is not
independent and tends to impact heavily on the other stages. Only the modelling and recogni-
tion stage of the task are examined here, the other aspects will be considered known and fixed.
Various approaches to ASR have been and are still being studied. These may be split into four
main approaches: template based, knowledge based, stochastic modelling and connectionist. The
approach adopted here is a stochastic one. In particular it is related to the most popular and
successful stochastic models in general use, the Hidden Markov Model (HMM).

This report is laid out as follows. The next section describes the standard HMM and the
assumptions behind its use in speech recognition. In addition some of the methods used to overcome
the problems associated with these assumptions are described. The third section introduces the
Segmental Hidden Markov Model (SHMM) and describes the various forms it can take. The
SHMM is then compared to the standard HMM and all forms of the standard HMM are shown to
be subsets of the SHMM. Re-estimation formulae are described in section b, where it is shown that
closed forms for re-estimating SHMMs are only possible if additional assumptions about the model
parameters are made. The re-estimation formulae are also compared to those of the standard
HMM. In section 6 the two methods of completing the data set are given. An approximation
to the multiple intra state model is described in section 7 and the alterations to the training
and recognition algorithms are detailed. Bayesian speaker adaptation is described within the
framework of the SHMM in section 8. The following section describes how, given the complete
data set, the Maximum Likelihood parameters may be found. Section 10 briefly describes the
software implementation and shows an example model. Results on synthetic data are given in
section 11, and finally, in section 12 the recognition performance on various dialect regions of
TIMIT are given.



2 The Hidden Markov Model

The HMM is the most popular and successful stochastic approach to speech recognition in general
use. Its popularity and success are due to the existence of elegant and efficient algorithms for
both training and recognition. However, the use of HMMs for speech recognition is dependent on
certain assumptions. These are

1. Speech may be split into segments, states, in which the speech waveform may be assumed to
be stationary. The transition between these states is assumed to be instantaneous.

2. The probability of a certain symbol being generated is only dependent on the current state,
not on any previously generated symbols. This is a first order Markov assumption and is
usually referred to as the ‘Independence Assumption’.

In order that the first assumption is as valid as possible, a model having many states would be
desirable, however this creates a problem in reliably estimating model parameters. Hence in any
real system, a small number of states are used. The second assumption is not valid and is the
major drawback to the use of HMMs for speech recognition.

2.1 Basic Theory

The basic theory for HMMs is presented here. A more detailed discussion of HMM theory and
application for speech recognition is given by Rabiner [12].
HMMs are characterised by

1. N, the number of states in the model. The states will be denoted as S = {Sy, S, ..., Sn}
and ¢;(t) indicates being in state S; at time ¢. In addition the concept of segments will be
used, a segment being defined as

si(ti, tg) = [qi(ti), qi(ti + 1), ., qi ()] (1)

A particular segmentation will be defined as sy = [s1(1,%1), si(t1 + 1,%2)..., sn(tx—1 +1,T)],
where K is the number of segments and states S; and Sy are the start and end states,
respectively.

2. A, the state probability transition matrix, where
aij = p(q;(t + 1)|g:(¢)) (2)
3. B, the output probability distribution, where

bj(ye) = p(yela;(t)) (3)

There are two general types of HMM split according to the form of their output distribution.
If the output distribution is based on discrete elements then the models are called Discrete
HMMs (DHMMs). Alternatively if the output distribution is continuous they are referred to
as Continuous Density HMMs (CDHMMSs). This report only considers CDHMMs. Usually
in CDHMMs, the output distribution used is a multivariate Gaussian distribution or mixture
of multivariate Gaussian distributions. For the multiple Gaussian mixture case

bi(ye) = Y eaN(¥e; i, Zin) (4)

4. 7, the initial state distribution, where

mi = p(gi(1)) (5)



For convenience the following compact notation will be used

M= (AB,n) (6)
There are many references dealing with the derivation of the re-estimation formulae, only the
results are of interest here. An observation sequence is defined as Yr = [y1,...., yr], where each
observation y, is an n-dimensional vector y, = [y7(1),y7(2), ....,yT(n)]. To be consistent with

later work a segment is defined as being a group of consecutive parametrised frames, Vi, =
[Vt:, ¥tit1, -, ¥i,]. The probability, P, of a particular observation sequence is given by

P=p(YrIM) = > p(Yr|Q M)p(QIM)

> p(QIM) [] py-lai(r), M) (7)

where s is over all possible segmentations and Q is the frame state alignment associated with that
segmentation. This is in fact a statement of assumption 2. Computationally equation 7 is very
expensive if implemented directly. Luckily there exist efficient algorithms for this calculation.

2.2 Viterbi algorithm

The probability calculation shown above is a summation over all possible state sequences. However
in HMMs it is usually assumed that for recognition and sometimes for training one sequence will
dominate, so a Viterbi decoder may be used. A new variable ¢;(7) is introduced.

Be(i) = max(p(Y., (1) M)] (8)

where s is over all possible state sequences. Values of ¢:(7) may be efficiently calculated using the
following recursive equation.

Geq1(j) = [nax, [6¢(1)aiz] bj(yet1) (9)

This algorithm is normally used for recognition and has a computational cost of O(T).

2.3 Forward Backward algorithm

An alternative to making the assumption that one state sequence dominates is to use the Forward
Backward algorithm. For this, it is necessary to define new variables

o (7)) = p(y1 - yeq;()|M) (10)
Bi(i) = p(yes1,-yrle;(t), M) (11)

Using these definitions it is possible to define iterative re-estimation formulae

ai1(j) = [Zat au] (Vo) (12)

1

Mz

6t(’) = azybg Yit1 ,6t+1( ) (13)

Jj=1
The probability of a particular observation sequence is now given by
P = Zzat 1) aijb; (yi41)Ber1(5) (14)
i=1j5=1

This algorithm again has a computational cost of O(T).

6



2.4 Re-Estimation Formulae

For the standard single Gaussian mixture HMM the re-estimation formulae are

Zi: Li(r)y-
A= g (15)
£
and
S L - ) — i)
2 = = 7 (16)
£ n0)
where
L;(t) = p(g; (1)[ Y1, M) (17)

There is a choice in the above expressions for the form of L;(t). If one state sequence is assumed
to dominate then L;(¢) € {0,1} and is given by the state sequence from equation 9. This will
be referred to as Viterbi re-estimation. If this assumption is not used and the full summation, as
defined in the Forward Backward algorithm, is used then

Li(t) = o ()60 (18)

This will be referred to as Baum-Welch re-estimation.

2.5 Compensating for the Independence Assumption

As mentioned in the previous section, a major drawback in the use of HMMs is the invalidity of the
‘Independence Assumption’. Various methods of overcoming this problem have been tried. Some
methods are related to this work and are described below.

2.5.1 Dynamic Coefficients

The simplest method of handling correlation between observation vectors is the addition of dynamic
coefficients [17]. These dynamic coefficients are added to the feature vector and are trained in the
same way as the static coefficients. Many forms of dynamic coefficients are used, ranging from
simple delta coefficients to acceleration coefficients to bandpass filtered coefficients.

The use of dynamic coefficients, or in a more general sense digitally filtered cepstral trajectories,
has been shown to reduce recognition errors. This indicates that the assumptions behind the
standard HMM using static coefficients are poor. However dynamic coefficients do not affect
the static coefficients, so do not really compensate for the ‘Independence Assumption’, but just
incorporate parameters which are less sensitive to it. In addition, the assumption of stationary
segments of speech with instantaneous transitions between states is broken by the use of digital
filtering of the cepstral parameters as the filters will run over the state boundaries.

2.5.2 Explicit Time Correlation Modelling

It is possible to modify the basic HMM assumption to allow improved modelling of speech. The
standard ‘Independence Assumption’ results in

p(ye|Yeo1,Q, M) = p(y:lgi(t), M) (19)



This may be modified to make the present observation conditional on the previous observation and
state in addition to the present state. Hence

p(yelYeo1, QM) = plyelyi—1,¢i(t), ¢;(t — 1), M) (20)

Models of this form have been studied by Brown [15] and Wellekens [2]. Indeed, if desired, the
probability may be made conditional on an arbitrary history of observations.

This method only partially overcomes the problem as the history over which the correlation is
taken tends to be short in order to limit the increase in the number of parameters.

2.5.3 Variable Frame Rate Analysis

In Variable Frame Rate (VFR) analysis [7] the problem of compensating for the independence
assumption is moved from a model adaptation process to a front end process. In this model, the
first frame is retained and is assumed to be representative of all subsequent non-retained frames,
until a frame is greater than some predefined distance from the previously retained frame. This
new frame is then retained and the process repeated. The probability of a segment, a group of
frames assumed to be represented by a single frame, is

P(Veie;si(ti, 1) IM) = Dty —ti + DN (ye,5 pi, 25) (21)

where D;(7) is the probability of being in state S; for duration 7, yu; and X; are the mean and
variance associated with that state. By varying the distance threshold it is possible to vary the
length of the segments and the effective frame rate.

This is a crude method of overcoming the correlation problem, as the first frame is assumed
to be representative of all subsequent frames until a new frame is retained. This is not true for
speech and results in the loss of acoustic information.

2.5.4 Stochastic Segment Model

One method of dealing with the independence assumption is to assume that the data is independent
on the phone or model level. One implementation of this form is the Stochastic Segment Model
(SSM) [13, 23].

Using the definition of the segment previously given, and stacking the observation vectors to
form one large composite observation

p(yt“tj,sz(tz,t])lM) = Dl(t] _t2+]‘)')\/’(yT)/"T;ET) (22)

where V. is the mapped form of };,;, the mapping is described later, and 7 is the number of
‘mapped’ frames. Here the observation probability parameters {y,,¥,}, are of dimension kT,
where k is the length of each observation vector at each time instance. Durational modelling is
not examined in this report, so D;(7) is not considered in the following work.

Two problems are associated with this style of model

Model | Covariance Style Number Parameters
HMM Diagonal NM(2k+1)

HMM Full NMk((k+1)/2+1)+1)
SSM Temporal Full E(r((m+1)/241))
SSM Spatial Full T(k((k+1)/241))
SSM Full kr((kr+1)/2+1)

Table 1: Number of Parameters per Model



1. Number of parameters. A comparison of the number of parameters in a full implementation
of a SSM with those of a standard HMM 1is shown in table 1. In the table 7 is the segment
length, M the number of mixtures and %k the length of the feature vector. A Temporal
Full covariance matrix is one in which the elements of the feature vector are assumed to be
spatially independent and correlated over time. The Spatial Full covariance case assumes
that the parameters are independent over time, but spatially correlated with one another.

From the table it can be seen that as 7 increases, the number of parameters increases rapidly.
In particular, this is a problem for the Full and Temporal Full covariance cases where the
number of parameters rises as O(72). Unfortunately these cases are of most interest, since
if the Spatial Full covariance model is used there is no obvious advantage over the stan-
dard HMM structure. Various other covariance styles may be implemented within the SSM
framework, such as a block diagonal covariance matrix, but these appear to nullify the major
advantages of the SSM over the previously mentioned schemes.

2. Varying length of Segments. In recognition and training there are a variable number of
frames allocated to each state or phone, due to variations in speaker rate. In the SSM, it is
assumed that the same number of frames are always allocated to each model. There are two
basic methods of doing this.

The first method takes the number of observed frames and maps it down to the required
number, either using some temporal interpolation measure, or according to some distance
measure [13]. This keeps 7 low, but reduces the information content in a way similar to VFR
analysis.

Alternatively, the number of frames can be mapped up to the required number of frames,
using an expected value for the unobserved frames given the observed frames [23]. This
maintains all the information of the waveform but greatly increases the value of .

The SSM may be used to model the correlation well, however it dramatically increases the
number of parameters to be estimated. This may result in problems in accurately estimating all
the required parameters given a limited training data set.

3 The Segmental Hidden Markov Model

A model which minimises the effects of the ‘Independence Assumption’ without significantly in-
creasing the number of parameters is required. To this end a new style of acoustic model is intro-
duced, the Segmental Hidden Markov Model (SHMM). In the SHMM all observations are assumed
to be independent given the state that generated them, but additionally they are conditional on
the mean of the segment of speech to which they belong. The idea behind this assumption is that
certain characteristics of the speech, such as speaker or stress condition, are fixed over the whole
segment. Hence, when the first frame in the segment is observed, some characteristics are known
and fixed. In standard HMMs this information is completely ignored. However, in making the
observations conditionally dependent on the mean of the segment, the SHMM takes these effects
into account, thereby making better use of the acoustic information.

With this new assumption it is necessary to calculate the probability of a segment given a
particular model. For each state of the model M the output probability distribution will no longer
be described by one distribution, but by two. One describing the distribution of the segment
mean, the ‘inter distribution’, the other the observation probabilities given that mean, the ‘intra
distribution’. For this and subsequent sections a shorthand notation is used of representing s; (¢;,; )
as s;, where the segment boundaries are obvious. The required probability is

p(Veus,lst. M) = / p(ulsi, M)p (Ve 1,11, 51, M) dt. (23)

R



Again D;(7), the probability of staying in state .S; for duration 7 is ignored. Using the assumption,
that given the mean of the segment, all the observations within that segment are independent

tj

pOhals M) = [ plalsss M) T wtorlis e M) (24)

Rn T=t;

The above expression and assumptions have also been used by Russell [14]. However he uses an
MAP approach to estimate the mean, this will be referred to as MAP SHMM. Here the full form
of the above expression is used.

Assuming that p(p|s;, M) and p(y-|u, si;, M) are both Gaussian probability distributions, the
output distribution is described by {Z, p., X}, the intra-state variance, the inter-state mean and
the inter-state variance respectively. Hence

POl M) = [ mexp(—éw—uc)z;l(u—ucﬁ)
H W eXP(—%(yT - WE Ny, —p)F)dp (25)

In appendix A the above equation is rewritten in terms of p,, and X1, which are independent of
i, to give the following form

1

log(p(Ve, t,lsi, M) = tlog(K) +log(Kc) —log(Kn) = 3G (Ve, e, M) (26)

where

ti
GWtiys M) = pe 2700 + Yy 27y — 25 (27)
T=t;
and

>t o= 2otz (28)
o= B (B0l +2704) (29)

2]
pio= >yl (30)
T=0;

where t = ¢; —1; +1, the segment duration, K, K. and K,, are the standard normalising constants
associated with X, ¥. and X, respectively. The above equation has been derived for the full
covariance matrix case. If it is now assumed that the covariance matrix is diagonal it is possible
to simplify G(V,¢,;, M) in terms of the model parameters

g(yt,,tjaM)

n tj

S O S 42 - Kt By T 2Hety s () Bei) Zii) + 150 Zei i)
i=1 Ec(ivi) 2(272) T=t; 26(272)2(272) (tzc(lvl) + 2(211))

B n 1 t; y s 2 s 2
i=1 2 T=t;

where
t
]C(si; Ec; 2) = (32)

B T 18,9

10



From equation 31 it can be seen that p(Vi,,|si, M) is dependent on the vector sum, the vector
squared sum and duration of the segment Vit 16 1s therefore sufficient to store these values for
each possible segment to calculate the probability.

The above analysis has been performed for Gaussian inter and intra distributions. Any form of
inter and intra distributions may be used. However, if only distributions where the inter distribu-
tion is a conjugate prior of the intra distribution are considered, closed forms for the probabilities
and sufficient statistics given the complete data set exist.

3.1 Relationship to MAP SHMM

The SHMM may be related to the MAP SHMM. For this section it is assumed that the feature
vector has dimensionality 1 so the index 7 is ignored. For the MAP SHMM

log(p(Ve, t;156, M)) = log(N(¢é; pe, Xec) Zlog (yr; 6, %))

. 1 . . 1 N
= log(K,) — 5 (¢ — pe)? + tlog(K) — S Z;(c —y)? (33)
where the target mean, ¢ is given by
. NCE + /iszc
SIS (34)
Substituting 34 into 33 and simplifying gives
kg kg CE + SEC
log(p(Vii,l5:, M) = tlog(K) +log(K.) — (”C + = Z HZ:L—tE))> (35)

This expression is identical to the probability equation for the SHMM proposed here, except for
the term log(K,). This normalisation constant may be written as

log(Ky,) = —% <log(27r) + log (%)) = log(K) + % (log(t) + log (1 + ;C)) (36)

This term is solely dependent on the length of the segment, not the observations within that
segment. Hence the use of the MAP estimate of the mean, instead of the true distribution for the
mean, results in a model dependent bias on the length of the segmentation.

3.2 Multiple Gaussian Inter Mixtures

The above analysis has been performed assuming a single Gaussian inter mixture probability
distribution for p(u|s;, M). If in fact this distribution is described by a multiple Gaussian mixture
distribution the same style of analysis may be applied. Letting

M
plplsi, M) = > emN (1 e, , Be,n) (37)
m=1
and substituting this in equation 24
. M tj
p(yt,‘,tj|8iaM) = Z CmN(/“;uchECm) Hp(y’r“‘tJSZJM)dl‘t
Rn m=1 T=t;
M tj
= Y om [ Wlpssien Ze,) T plyeliesis M) d (38)
m=1 R T=t;

It can be seen that the analysis for the single mixture case may be directly applied to the multiple
mixture case.

11



3.3 Multiple Gaussian Intra Mixtures

In the previous section multiple Gaussian inter mixture models are described. Multiple Gaussian
intra mixtures models occur when

M
p(yT|:ua SiaM) = Z Cm-/v(yr; Hm s Em) (39)

m=1

where p,, = p+A,,. The delta intra means, A,,, are stored as model parameters. By substituting
the above expression in equation 24 and assuming a single Gaussian inter mixture yields

tj M

p(Veoe,lsi, M) = /N'(u;uc,flc) 11 (Z cmN(yT;um,Em)) dp (40)
»n T=t; m=1

The analysis for the single intra mixture case can be seen to be inappropriate for the multiple

Gaussian intra mixture case, due to the product of the weighted sum of Gaussians. In fact there

are no sufficient statistics for the multiple intra mixture case [3].

4 Relationship to Standard HMMs

As previously stated the observation probability for a segment is given by

tj

pOkcls M) = [ plulsss M) TT ptselisse. M) (41)
Rn T=t;

If the inter mixture variance, X, is set to zero then p(u|s;, M) = d(pe — p), where §(.) is the Dirac

delta function, and the above equation may be simplified to

tj

p(yt,-,tjlsi:M) = H p(yT|N615iaM) (42)

T=t,;

This is the same expression as a standard single Gaussian mixture HMM with the mean set to the
interstate mean, ., and the variance set to the intra state variance, ¥. Hence, the standard single
Gaussian mixture HMM may be viewed as a subset of the SHMM.

Equivalent standard models for the multiple Gaussian inter mixture model described in sec-
tion 3.2 are also possible. By setting all the inter mixture variances to zero in equation 38 results
in

M 2
PVeitslsi M) = Zcm( p(yrlucm,si,M)> (43)

m=1 T=t;

So the multiple Gaussian inter mixture case with zero inter mixture variances is the same as the
standard multiple Gaussian mixture case with the added constraint that all observations in a
segment associated with a given state are generated by the same Gaussian mixture.

One popular form of standard HMM used is the multiple Gaussian mixture model. An equiv-
alent SHMM model would be of interest. Looking at equation 40 and setting 3. to zero

m=1

p(yt,,tj|3iaM) = l_J[ (Z CmN(Y'r;/lma 2m)) (44)

T=1;

where pty, = pe + Ay, This is identical to the standard multiple Gaussian mixture model and
so the standard HMM multiple Gaussian mixture model may be viewed as a subset of the single
Gaussian inter mixture, multiple Gaussian intramixture segment model.

12



So far only situations where the inter mixture variance has been set to zero have been considered.
It is also possible to set the intra mixture variance to zero. The physical requirement of this
zeroing is that all observations of a given segment are identical. A model of this form has already
been proposed by Ponting [7], VFR. As previously described, this model assumes that the first
observation of a segment is representative of the whole segment until an incoming frame is greater
than some threshold from the first frame. An improvement described by Russell [14] uses the
segment mean as representative of the whole segment. SHMMs and VFR trained models are not
quite equivalent, due to the form of the distance measure used to decide on the segment lengths.
In VFR a Euclidean distance measure is used. There is no easy mapping of this onto the segment

lengths used for the SHMM.

5 Re-estimation Formulae
In order to re-estimate the parameters of the SHMM an auxiliary function Q(M,M) is introduced
QM, M) = > p(Yr,sr|M)log(p(Yr,sr|M))
K

> p(Yr,sz|M) |_§:10g(1)(3’|8k, M) +log(p(sr|M)) (45)

=1

where the summation on s is over every possible segmentation of Y and K is the number of seg-
ments in sp. It is shown by Baum [9] that if Q(M, M) > Q(M, M) then p(Yr|M) > p(Yr|M).
For all the re-estimation formulae derived, diagonal covariance matrices are assumed and, for sim-
plicity of notation, n is assumed to be 1 so that the vector notation has been dropped. In addition,
the notation Y and s; to represent Vi, ¢, and s; (ti,t;) respectively will be used and the means
and variances will be assumed to relate to state S;. For the following analysis left-to-right models
are considered. Hence K = N and only one segment from each utterance is associated with a
particular state. This assumption is not necessary, but it further simplifies the notation.

5.1 Re-estimation for f.

Taking the partial derivative with respect to fi.

P
Bjic

(log(p(1si, M)))

. 0
QM, M) = Zp(YT,sﬂM)aﬂ

- L p(¥rsriM) [(e = £2) K51, 5, 9)] (46)

where ¢ is the length of the segment s;. Equating the above equation to zero and solving for p.

Zs:p(YT,sﬂM) [%K(si,f}c,f})]

He = .
Sp(Yr srlM) {K(si,Ec,E)]

(47)

It is necessary to find whether this is a maximum or minimum. Taking the second derivative

P QM) = =3 p(Yr st M) (e S 9) (48)

As K(s;, f]c, i]) > 0, and the second derivative is always negative, this is a maximum.
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5.2 Re-estimation for ﬁc

Taking the partial derivative with respect to .

9 - 8
QM M) = Zp(YT,sTMA)ai

¢ s ¢

(log(p(V1si. M)

3 PV salM) [K(si, B0 921 = 597 = Ko e 9] (49)

Equating the above equation to zero yields no closed form for ..

5.3 Re-estimation for 3

Taking the partial derivative with respect to by

O oM, M)

> p(¥r a7l M) i (1og(o(Y]s M) (50)

1 /JZ izK(Si:ic:ﬁ)z(ﬂct_NS)z
- ZpYT,STM/[ 5 lZyT—tZ}—i—EX} K(si, S, ) — ~t ;

Again equating the above expression to zero yields no closed expression for 3.

5.4 Approximate Solution

In the previous section closed form expressions for re-estimating all the parameters of the SHMM
were shown not to exist. It was only possible to find such an expression for fi.. Closed forms for
estimating ¥ and X. would be desirable. Rewriting equation 32

K(s5,50,%) = o (%) (51)
t%

If it is assumed that t3, > ¥, ie the between segment variability is far greater than the within
segment variability, then

1 ) ¥\
’C(S"’E“E):Ec(l_tzc (tEc) —> (52)

and by ignoring terms in (

§> and higher, K() is independent of the segmentation. Rewriting

equation 47 yields

S p(Yr,sp|M) [Ee]

o == Zsjp(YT;SﬂM) 3)

Looking at equation 49

(54)

8 ~ % Act_ s 2_Ec
S QMM = Y p(Yr sl M) [t (et = pis)

Setting the above equation equal to zero and noting that ¥, is independent of the segmentation
then

. %:p(YT,SﬂM)t%(ﬂct — )2
v 2 p(Yr,sr|M) (55)
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2
Finally rewriting equation 51 and additionally ignoring terms in (EE)

0
AQM,M Yr,
S ( Zp T

[Z (- )E “7] (56)

T=t;

Now equating the differential to zero and solving for Y

tj 2
2p(Yr,soIM) | 30 vf — 5
s T=t;

ijp(YT,sTIM)(t -1)

The proof that each of these estimates is a maximum is shown in appendix B.

5.5 Comparison with Standard HMM re-estimation Formulae

It was previously noted that the standard HMM is simply a subset of the SHMM. Having derived
re-estimation formulae and optimisation criteria for the SHMM, it is interesting to see what models
are generated if the HMM assumptions are true for a particular set of acoustic waveforms. The
impact of the ‘Independence Assumption’ from the viewpoint of the SHMM is that for all segments
E{yr} = pa, where p, is some fixed value, the mean of the underlying acoustic waveform. Here it
also assumed that the segments are long enough that

U
Ts ~ Pa (58)

If this expression is substituted in equation 47

S p(Yr,s7|M) [k si, Ze,5)

He = AN
2. p(Yr,s7|M) { (Si;ECJE):I
= #a (59)
Now substituting equation b8 in equation 49

0 (M, M)

- Zp Yo, s7/M) [ (5, Se, )2 (e — ra)? = K(s1, %, 5) |

c

|
|
N[ =
'G
;-<
~
um
=
S
fﬂ\
Nl
e
y;

(60)

Finding a minimum or maximum to this expression is not possible as IC(si,i]c, f]) > (0. Hence
the derivative is always negative. However, there are bounds on the possible values of Y. as the
variance must by definition be greater than or equal to zero. As the gradient is always negative
the maximum log probability will occur when Y. is at a minimuim, zero.

Finally rewriting equation 51 using equation 58 and the previous results

0

M) = DY M) [Zy,—tz wa] (61)

Setting the above expression to zero and solving for X

ti
Yp(Yr,sr|M) | 3 y7 — t#i]
s T=t;

XS:P(YT,STM’U [t]
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N 2Lyt 1) [1] (62)

tj
ZLj(ti:tj) [Z yZ — t/@]

where
1
Li(ti tj) = pp(Yr,si(ti, t;)| M) = p(si[Yr, M) (63)

and the s’ summation is over all possible s;.

These expressions may be compared to the standard re-estimation formulae given in section 2.
Comparing equation 15 with 59 it may be seen that they are identical provided a Viterbi re-
estimation scheme is used. The inter variance has already been shown to tend to zero as required
for a standard HMM. Comparing equation 16 with 62 and again by assuming Viterbi re-estimation
and additionally noting that £{(y, — u)?} = £{y2} — p? it may be seen that given long enough
segments the two equations will yield the same result.

In the above analysis it was assumed that the mean for each segment was the same, p,. In
reality, with finite length segments, this will not be true. There will be some variance on the
means of the segments, this variance being %—“, where ¢ is the length of the segment. Hence if
the re-estimation formulae are applied to real data the values obtained will be close to, but not

1dentical to the values of the standard HMM.

6 Segmental HMM Estimation Stage

As in the case of standard HMMs, the SHMM re-estimation formulae and recognition algorithms
are in terms of the complete data set. It is therefore necessary to estimate the complete data set
and iterate in a standard EM algorithm [1] style. Examining the number of possible segmentations
assuming no bounds on segment length, yields 27! to search over. It is not possible to search
over all these solutions, so some efficient algorithm similar to the standard HMM algorithms are
required. Again two options are available when estimating the complete data set. It may either be
assumed that one path, segmentation, dominates the probability calculation, or that all paths must
be considered. These will be referred to as Viterbi and Baum-Welch re-estimation respectively, in
a similar way to the standard HMM re-estimation formulae.

6.1 Viterbi Re-Estimation

For Viterbi re-estimation it is necessary to find the most likely state sequence through the model.
A new variable, ¢:(j, 7), is introduced.

¢:(j,m) = max[p(Yy,s;(t',1),;(t + 1)|M)] (64)

where ¢/ = ¢ — 7+ 1 and g; (¢ + 1) indicates that the model is not in state .S; at time ¢ + 1. Values
of ¢¢(j, 7) may be calculated using the following recursive equation

¢:(s,7) = max [¢r—7(1,7)ai;]| PVi—rt1,.4l55(t',2), M)D;(7) (65)

max
1<i<Ni#j [1<y<t—7
This recursive expression is similar to that of a semi hidden Markov model [20]. Taking the
maximum likelihood path through the model results in L;(#;,¢;) € {0,1}. In a left to right model
this will result in a maximum of N segments for each utterance.

Comparing the computational loads of the SHMM Viterbi re-estimation with that of the stan-
dard HMM, equation 9, shows a significant overhead for the SHMM. This overhead is due to the
need to look at all possible previous segmentations, which results in a cost of @(7?). This cost

may be reduced by assuming a maximum duration in any state. If the maximum duration is ¢,,4,
then the cost is O(Ttmay )-
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Viterbi estimation can also be used for the recognition stage of an SHMM in an identical way
to the standard HMM. For recognition equation 65 is used, so again there is a computational
overhead at recognition time of O(Ttmaz)-

6.2 Baum-Welch Re-Estimation

As mentioned in section 2 the standard HMM has an efficient algorithm for calculating the total
probability summed over all possible paths, segmentations, the Forward Backward algorithm. A
similar efficient algorithm for the SHMM is required. New versions of the o and /3 are defined for
the segment based model.

a/t(ja’r) = p(yl)";yt—T-I-la"aytasj(t_T+1:t):6j(t+l)lM) (66)
ﬁt(]) = P(Yt+1;--;YT|3j(t_T+1:t):§j(t+1 ;M)
= PYe41, - yrle;(), g;(t + 1), M) (67)

where 7 describes the length of the segment ending at time ¢. These segment model variables,a and
[, are analogous to the standard re-estimation variables in section 2. The iterative re-estimation
formulae for ay(j, 7) are

a(j,0) = Y (iat—r(iﬁ)> aij (68)

i=1,i#j \7=1
ar(§,7) = rr41(5, 0)Pp(Veerg1,els5, M)Dj(7) (69)

Similar iterative formulae may be generated for 8;(j).

N T—t
g = Y, (Z Bear (Dp(Ve t4rsi, M)Di(T)) ji (70)
i=1,izj \r=1
Hence
P(Yr, s5(ti, 1) | M) = o (4, (5 =t + 1)) B, (4) (71)

As with Viterbi estimation for the SHMM the Baum-Welch estimation has a significant overhead
compared to the standard HMM formulae of section 2. The SHMM algorithm has a cost of O(T?),
but again this may be reduced to O(T¢pqy) by assuming a maximum duration in any state.

7 Multiple Intra State SHMMs

Previously it was stated that there are no sufficient statistics for multiple intra mixture models.
However, a computationally tractable approximation to the multiple intra mixture case, using
multiple intra states, is possible. Multiple intra states occur when each segment, SHMM state,
has multiple states associated with it. Each segment, S;, is now defined by the parameter set
{pe, Be, {A, ., AL} {21, ..., B}, A}, where A! and X, are the delta intra mean and intra
variance associated with intra state {, and A is the intra state transition matrix.

7.1 The New Complete Data Set

In order to use multiple intra state models it is necessary to define a new complete data set. An
additional layer is added, such that the definition of Q is extended, so ¢:(7, ) indicates being in
intra state I;(i) of state S; at time ¢, where I(¢) = {I1(7), I2(¢), ..., I (¢)}, the set of intra states
associated with state S;, and L is the number of intra states associated with that state. A new
segmentation is defined

Sf(ti,tj) = [Qt,(i;jl)a~--;qtj(iajl)] (72)

This new segmentation, s¢, may be considered to have two components, a frame inter state/mixture

allocation, s;, and a frame intra state/mixture allocation, s’.
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7.2 Multiple Intra States Probability

For a given frame inter state/mixture allocation and frame intra state/mixture allocation it is
necessary to calculate the probability of a particular segment.

1 1
P(Vio;l55, M) = /—E rexp(— - (pu— p) B - pe)”)
U ACEHEN R

II ( I1 Wllzléexp(—;(yT — ) Sy — uz)T)) dp  (73)

T=1;

where gy = p+ A;. By tying all the intra state variances together, letting this tied variance be X,
and additionally defining

Yri=Yr — Ay (74)

it is possible to write

1 1 _
POl M) = [ e (e (- ) B 1 o))
(2m) = |Z.|2 2
Rn
ti

I Grytigis P 0m 1S =) ) (79

T=t;

This is identical to the standard SHMM, so eliminating u

. . . 1

log(p(Ve, ¢;157, M)) = tlog(K) + log(Kc) — log(Kp) — §G(yti,tja/\/‘) (76)

where

tj
GVt M) = 270+ vy BT yE = pn 35 (77)
T=t;
and
>t = 2ot 4zt (78)
pn = Za (B0 +270) (79)
ti
pio= D vk (80)
T=t;

K, K. and K, are the standard normalising constants associated with X, ¥, and X,, respectively.

7.3 Estimating the Complete Data Set

The probability of the multiple intra state model has been obtained given the segmentation. Ex-
pressions to obtain the frame inter state/mixture allocation given the probability of a segment,
P(Vi,,t,186, M), in either a Viterbi or Baum-Welch style, have been defined in the previous section.
Given this inter state/mixture allocation it is necessary to find the intra state/mixture allocation
that maximises the probability. The probability of the segment may be expressed as

p(yti,tjlsiaM)) = Zp(yt;,tjssllsiaM) (81)

{

where s is represents a particular intra state segmentation. There are no efficient algorithms

for obtaining the optimum frame intra state/mixture allocation over the complete summation.
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However, by only considering
PVt i, l56, M) = Hiéllx[p(yti,tj,sl|8i,-/\4)]
= max [p(s']si, M)p(Ve, 5, '|sf, M)] (82)
an iterative solution is possible. It has previously been shown that the SHMM is related to the
MAP SHMM, the only difference being the term log(X,). This term is independent of the frame

intra state allocation, so for the purpose of optimising the intra frame state/mixture allocation
may be ignored and the MAP SHMM may be considered. The MAP estimate of the mean, ¢, is

,U‘CE + ,Uszc
Y +1X,

¢ = (83)
Due to the new definition of us, equation 80, ¢ is dependent on the frame intra state allocation.
Using this estimate of the mean, the probability of the observation sequence, given that particular
complete data set, is maximised. Assuming that the covariance matrices are all diagonal and the
dimensionality is one

. 1 . .
log(p(yt,,t,-, 3[|3i, M)) =log(K.) — oy (¢ - /~LC)2 + F (¢, yry) — log(Kn) (84)
where
1 &
F(&,yra) = tlog(K) — 55 D (¢ = yr0)” +log(p(s' |51, M) (85)
T=t;

Given the current complete data set, hence estimate of ¢, the only term that is dependent on the
observations is F(¢é, y- ;). This term may be rewritten as a standard HMM probability calculation

Flé,ei) = tog(R) ~ o ( > (- ym) + log(p(s' i, M)) (36)

=1 T=t;

where gy = é 4+ A;. If the standard HMM form of duration modelling is used then it is possible
to find a new frame intra state allocation that maximises F (¢, y,) given the current parameter
set, by performing a standard Viterbi HMM estimation scheme. This yields F (¢, g, ), where g, ;
are obtained using the new intra frame state allocation. So far nothing has been mentioned about
what happens to the probability of the complete segment, only that

‘7:(6’ gT,l) > f(é; yT,l) (87)

However, Russell [14] has shown that for a given inter mixture segmentation the value of the
estimated mean, é, that maximises the value of the MAP SHMM segment probability is defined
by equation 83. Hence defining

H(¢,yri, M) =log(K,) — (6 = pe)® + F(é,yr1) — log(Ky) (88)

1
23,
then

%(énagT,l;M) 2%(61 gT,laM) ZH(éa yT,l:M) (89)
where
2]
ﬂcz + Ec E :')‘r,l
T=t0;
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A new complete data set has now been generated that is guaranteed not to decrease the probability
of the segment. It is therefore possible to find a local maximum for p(V;, +;[si, M).

As with all iterative schemes i1t is necessary to make an initial estimate of the intra frame
state/mixture allocation. With no prior knowledge, the frames may be assumed to be evenly
distributed over all intra states. Given the additional computational overhead of estimating the
optimal intra frame state allocation, this initial estimate may be used as the ‘best estimate’. If the
initial guess is used as the ‘best estimate’ then it is not necessary to tie all the intra state variances
together.

7.4 Approximation to the Multiple Gaussian Intra Mixtures

Using the multiple intra state model it is possible to obtain an approximation to the multiple
Gaussian intra mixture model. If an ergodic intra state transition matrix is used, then the multiple
intra state model may be mapped onto the multiple intra mixture model. As previously stated

PVritslsis M) = D p(s 1, M)p(Vr,e, 155, M) (91)

This expression has the same general form required for multiple Gaussian intra mixture SHMMs.
However, it is necessary to tie various parameters in the transition matrix A® together to obtain
the exact form. Setting

where w; is the weight associated with j** intra mixture [8], yields the correct form. In the previous
section a closed expression for p(J;, +,|s{, M) have been derived, so it is possible to calculate the full
probability for the multiple intra mixture case. The problem with this calculation is that there are
no efficient algorithms to calculate the summation over every possible intra state segmentation.
In a similar way to the multiple intra state case an approximation may be made where only
P(Ve,t, 15§, M) is considered. Using this approximation the method used to complete the data set
for the multiple intra state model may be used.

7.5 Multiple Intra State Parameter Estimation

It has already been shown that the multiple intra state case yields identical equations to the single
intra state case if the observations, y, are replaced by the transformed observations y.;, this
assumes that the complete data set is known. The re-estimation formulae derived for the standard
parameter set {y., X, X} may then be directly applied. It is only necessary to define re-estimation
formulae for the intra state delta means, A; and intra state transition probabilities, A‘.

Using the auxiliary function Q(M, M) previously defined then

9 . . 9 .
5a QMM = 3o p(Yrsil M) (log(p(Y1s5, M)

{

tp1—1 « A
ZP(YTa S%lM) l Z (y'r ;}Al) i (,LLCE + ‘uS;C) (tl _ tl+1 + 1) (93)

3]

where

ey ( $ Al)) o)

In re-estimating the state transition matrix A?, the standard HMM formulae may be used provided
that the new complete data set is known. Hence

S Pk Ml (kM)

= plas (. )1M)

T
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where dﬁ»j i1s the estimate of the element of the intra state transition matrix associated with state

Sk of model M.

8 Relationship to Bayesian Speaker Adaptation

The SHMM has so far been described in terms of the assumptions behind the model. An alternative
viewpoint is to consider the SHMM as an empirical Bayesian approach to speech recognition. The
inter distribution may be viewed as the prior probability distribution for the segment mean and
the intra distribution the observation distribution. Given this viewpoint, there are close analogies
with the Bayesian speaker adaptation work of Gauvain and Lee [10, 5]. If, instead of talking about
within segment and between segment variability, between speaker and inter speaker variability are
considered, it is simple to see how the SHMM could be applied to the speaker adaptation problem.

8.1 Implementation within the SHMM framework

As previously mentioned in order to implement speaker adaptation within the SHMM framework
1t is necessary to talk about inter speaker and intra speaker variability. To estimate the output
distribution parameters, {p., X, X}, for this model the auxiliary function, Q(M, M), is redefined
to be

QM M) = p(Yr,s7IM) LZ:lOg(p(ySp, sk|M)) + log(p(st |M)) (96)

=1

where Vs, is the composite segment of all frames belonging to a particular speaker. Hence the
new ‘segment’, Vs, consists of all frames of speaker, Sp, allocated to state ;. Again the auxiliary
function is based on the complete data set, so there is a choice of Viterbi or Baum-Welch re-
estimation. Using the above definition the only difference to the standard SHMM is the definition
of the ‘segment’. Therefore the previous parameter estimation schemes may be used.

8.2 Maximum A-Posterior Estimate of the Mean

The Maximum A-Posteriori (MAP) estimate of the mean is given in Duda and Hart [16]

HeX + ps X
= Pem T rste 97
hmap SEEN (97)
and
vy,
¥ e 98
MAP tS. + X (98)

These are identical to p, and ¥, as defined in appendix A. Given these MAP estimates of the
mean, speaker adaptation may be implemented in a variety of forms.

1. Observation level. The recognition stage may be implemented as a standard HMM with
parameters {guaprap, X}. The a-posteriori probabilities are now given by

ti
log(p(Ve, 115, A, M) =Y log(N (yr; parar, T)) (99)
T=t;

where A are the adaptation data. This expression has been used by Lee [10] for speaker
adaptation. However, the methodology for generating the prior distribution parameters
{pte, e, X} has not previously been used. This scheme has the advantage of low computa-
tional overhead compared to the alternatives.
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2. Segment level. The adapted SHMM may be used in the same way as Russell [14] implements
segment based recognition. Here the model has observation parameters {parap, Xarap, X}
and the a-posterior probability is given by

tj
log(p(Ve, 1151, A, M)) = log(N (tar aprs pir ap, Enrap)) + Y 1og(N (yr; parapr, X)) (100)
T=t;
where
2]
UsiarX +Xpmar Y Yr
T=t;

#MAP’ (101)

X+ taap
This has a computational overhead associated with it compared with the standard HMM,
see section 6.

3. Speaker level. The adaptation process is implemented on a speaker level. It should therefore
be possible to implement the recognition on a speaker level. The probability should therefore
be calculated on the basis of every segment from a particular utterance of a speaker allocated
to a particular state. The model output probability parameters are again {u.,X., X} and
the probability is given by equation 100. However now

T
prmrarE + Xnrap Y yrp(qi(7))
,UMAP’ = TT_l (102)
Y4+ Xpmar 3, pli(7))

7=1

Implementation in this form requires that the complete segmentation for the whole utterance
is known before any probabilities may be calculated. If implemented directly this causes a
computational explosion. However, if used in a merge and split style scheme [22] or to reorder
an N-Best scheme speaker level adaptation is implementable.

All the above schemes have assumed the complete data set for the adaptation data is known. There
are a variety of ways of completing the data set on the adaptation data. The method proposed and
implemented by Gauvain [5] uses an iterative EM style algorithm. An alternative to this approach,
which is not iterative, is to use the decoder of Russell [14]. In this technique the new adapted
models are automatically taken into account on a segment basis.

A single Gaussian inter mixture has so far been assumed. If a multiple inter mixture SHMM is
to be used, then the new mixture weights, given the adaptation data, must be estimated

M
P(yt,-,tj|3i,-AJM) = Zp(yti,tja7n|5i;AuM)

m=1

M
= Zp(yti,tj|8i;7n;A;M)p(7n|8iaAaM) (103)

m=1

where M 1s the number of inter mixtures.

plmlsi, A, M) = DA s A0l M) (104)

p(Alsi, M)

All the above may be calculated, since p(m|s;, M) = ¢, and the probabilities of the adaptation
data may be calculated in one of the three ways detailed here. This ‘adaptation’ of the mixture
weights 1s not performed in any Bayesian style, it is a Maximum Likelihood estimate of the mixture
weights.
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8.3 Bayesian Approach

The MAP approach detailed above assumes that the variance on the estimate of the mean is small.
This may be in fact be false. The probability is now given by

tj

p(yti,tj|5i)AaM) = /'/V(H;NMAP;EMAP) H N(yT;#JE) dﬂ (105)

T=t;

This equation is directly analogous to equation 24 and the analysis previously given may be applied.
This probability calculation cannot be implemented on the observation level. For the segment level
the above implementation is directly applicable. Again for the speaker level the definition of V¢, ¢
is altered to be a composite segment of all the frames within the utterance allocated to a particular
model state.

8.4 Discussion

The previous subsections have briefly described how the SHMM may be modified and applied to the
process of speaker adaptation. There are limits to its use in speaker adaptation. The adaptation
so far described has purely concentrated on the means of the observation distribution. The SHMM
as described is limited to this process. The variances and mixture weights may be compensated
in a similar style as described by Lee [10]. However, the estimation of the prior parameters is far
more complicated. Only single intra-mixture models have been looked at. The multiple intra state
model may also be used in a similar way for speaker adaptation.

9 Maximisation Stage of the SHMM

In section 5 various forms for the re-estimation formulae for maximising the parameters of the
SHMM given the complete data set were obtained. These are discussed in greater detail here.

9.1 Approximate Solution

If it is assumed that ¢, > 3 then closed forms for the re-estimation of all the parameters of the
SHMM have been derived. Hence the implementation of this method is straightforward for both
Viterbi and Baum-Welch re-estimation formulae. Similar to standard HMMs; it is only necessary
to keep running totals for the denominator and numerator on a per state basis.

9.2 True Maximisation

It is not necessary to make the assumption used in section 9.1, since it is possible to maximise the
auxiliary function using standard optimisation techniques, gradient descent, conjugate gradient
descent etc. For these optimisation techniques it is generally necessary to store sufficient statistics
to calculate the value and gradient, or higher derivative, at any point, if the true local maximum
for a given complete data set is to be found. Hence the duration, sum and sum of squares of the
feature vector for every possible segment need to be stored, so no sufficient statistics of a fixed
dimension are available. However, if Viterbi re-estimation is used, with left to right models, there
are at most N segments generated for each utterance. Thus for small training data sets using
Viterbi re-estimation it is possible to use this true maximisation procedure.

9.3 Approximate True Maximisation

If there is not enough memory, or Baum-Welch re-estimation is to be used, an alternative form
for the maximisation, which does not require sufficient statistics of arbitrary dimension, is needed.
If knowledge is restricted to knowing the value, gradient and possibly higher derivatives, of the
function at the present estimate of model parameters, then sufficient statistics of a fixed dimension
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are available. Standard optimisation procedures, such as gradient descent or quick-prop [19], exist
for the task where only this limited knowledge is available. These techniques have been used
previously for Maximum Mutual Information training of HMMs [15]. In general they work by
making a ‘best guess’ at a new parameter set given the present point in space, the derivatives at
that point and possibly previous step information. These statistics may be calculated on a per
state basis, giving sufficient statistics of a fixed dimension. Optimisation of this form will converge
more slowly than the true maximisation scheme as, after each estimation step, it is not guaranteed
to increase the probability. Secondly, depending on the probability surface of the function being
optimised, the ‘best guess’ may or may not be close to the local maximum.

9.4 Parameter Constraint Implementation

It is necessary to enforce constraints on the variances, as these are, by definition, positive. For
the approximate solution this is not required as the variances are positive from the re-estimation
formulae. However for the other maximisation options the variances must be constrained to be
positive. This can be achieved in two ways. The first is to optimise the standard deviation and
square the resultant value, guaranteeing that the variance is positive. Alternatively the log of the
variance may be maximised. Since the log function increases monotonically, maximising the log
of the variance maximises the variance, with the added constraint that the variance is positive, as
the exponent is positive when the value of the log is real.

10 Software Implementation

All software was implemented within the framework of the Hidden Markov Model Toolkit (HTK) [21].
The model syntax was modified to incorporate the SHMM features. An example model is given
below.

<BeginHMM>
<NumStates> 3 <VecSize> 10 <MFCC_E_D> <nullD> <diagC>
<StreamInfo> 1 10
<State> 2 <NumMixes> 2
<Mixture> 1 0.5
<NumIntraMixes> 1
<Mean> 10
0.0 0.00.00.00.00.00.00.00.00.0
<Variance> 10
1.01.01.01.01.01.01.01.01.01.0
<IntraVariance> 10
1.01.01.01.01.01.01.01.01.01.0
<IntraGConst> 1.0
<Mixture> 2 0.5
<NumIntraMixes> 2
<Mean> 10
0.0 0.00.00.00.00.00.00.00.00.0
<Variance> 10
1.01.01.01.01.01.01.01.01.01.0
<IntraMixture> 1 0.5
<IntraMean> 10
0.00.00.00.00.00.00.00.00.00.0
<IntraVariance> 10
1.01.01.01.01.01.01.01.01.01.0
<IntraMixture> 2 0.5
<IntraMean> 10
0.00.00.00.00.00.00.00.00.00.0
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<IntraVariance> 10
1.01.01.01.01.01.01.01.01.01.0
<TransP> 3
0.0 1.0 0.0
0.0 0.9 0.1
0.0 0.0 0.0
<EndHMM>

Standard HMMs may still be described by the syntax given above.

11 Synthetic Data

In order to test the training algorithms and the Viterbi decoder, artificial data was generated using
a set of three SHMMs. A total of 1000 utterances were generated, approximately evenly distributed
over the three models, using the underlying assumptions of the SHMM. These were then split into
a training set of 500 utterances and a test set of 500.

11.1 Training Procedure

The following training procedure was used to generate the models. The number of emitting states
in all cases was set to 3, the same as all the source models.

1. Generate a standard HMM, having the same number of states as the SHMM to be trained.
For the modelling process a single Gaussian mixture model, was used initialised using uniform
segmentation.

2. Using the segmentation generated by the standard HMM as the initial estimate for the
complete data set, the models were updated using a Viterbi style estimation scheme, as
described in section 6. The model parameters were estimated using the true maximisation
scheme, detailed in section 9.3. Hence it was necessary to store information on a per segment
basis. The maximisation was performed using conjugate gradient descent optimisation. The
initial start point for the maximisation was obtained from the approximate estimate. For
these experiments the transition matrix, A, was not updated and was set to the correct value.

11.2 Results on Synthetic Data

| Model Number Miztures (Intra) | % Recognition Rate
Source Model 1(1) 77.2
HMM 1 51.6
HMM 2 57.4
SHMM 1 (1) 78.2

Table 2: Synthetic Data Performance from SHMM data

From table 2 it can be seen that if the source model is in the form of a SHMM it is not possible
to dramatically increase performance by adding additional mixtures to a standard HMM. In fact
even if the three mixture standard HMMs are trained on all the data, including the test data, the
performance is still only 58.6%. The models for this test were optimised with both Viterbi and
Baum-Welch re-estimation. It can also be seen that the training routine performs well, giving a
performance only marginally worse than that of the source model.

As a comparison, a set of standard HMMs were then used as the sources. The above procedure
was repeated and a set of HMMs and SHMMs were generated.

The performances of all three models are approximately the same. When trained, the SHMM
set all the inter variances to low values, the largest inter to intra ratio being 0.07. This agrees with
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| Model Number Miztures (Intra) | % Recognition Rate
Source Model 1 95.9
HMM 1 96.0
SHMM 1(1) 95.8

Table 3: Synthetic Data Performance from HMM data

the discussion in section 4 where the HMM is stated to be equivalent to the SHMM when the inter

variance 1s zero.

12 Preliminary Results on TIMIT

12.1 Model Training

The training procedure used for the synthetic data was repeated on various dialect regions of
TIMIT [6]. For these experiments the 48 KFL phone set [11] , using a standard folding from
the TIMIT labels, was used. In addition to the optimum training, the suboptimal, approximate,
training was also implemented, where it was assumed that t¥X. > Y. The transition matrix A
was not updated in either the standard HMMs or SHMMs, the value being set identically over all
models. Three emitting state models were used for all phones. The speech was parametrised using
Mel-Frequency Cepstral Coefficient (MFCC) [18] including the energy and delta coefficients. This

resulted in a 26 element feature vector.
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Figure 1: Maximum Likelihood Training of ¢h on Dialect Region 1

Figure 1 shows the log likelihood against training iteration for a single mixture standard HMM
from iteration 1 to iteration 19. The segmentation of this standard HMM is used to initialise the
training of a single inter, single intra Gaussian distribution SHMM from iteration 20 to 29.

The standard HMM has a maximum log probability of -561.3. This may be compared with the
maximum for the SHMM of -487.2. It is worth comparing this with the maximum log probability
of a 3 Gaussian mixture standard HMM, which has twice the number of parameters of the SHMM,
of -545.2. The SHMM converges to a far higher log probability for the training data than the
standard HMM. This is true for all the phones trained and given the fact that the standard HMM
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is a subset of the SHMM it should always be true provided that there is not a local minima problem
with the SHMM training.

12.2 Recognition Performance

The segment based models were tested on subsets of TIMIT. The 48 KFL phone set was folded down
to the standard 39 phone set for scoring. In order to reduce the computation time, a maximum
possible duration,t,,., in any one state was set. For these experiments a maximum duration of
40 frames was used. This was assumed to be sufficient for all models other than the silence model.
Hence it was necessary to map multiple observations of silence onto a single observation. All the
results given include the SA sentences in both training and testing.

| Model No Miztures (Intra) | %Correct | %Accuracy
HMM 1 56.87 50.94
SHMM, 5 1(1) 53.98 47.61
SHMM 1 (1) 55.99 19.87

Table 4: Recognition performance on Dialect Region 1 of TIMIT

The first dialect region examined was dialect region 1. The sub subscript indicates that the
models were generated using the suboptimal training routine. From the results in table 4, it can
be seen that the SHMM does not improve the performance over a standard single mixture HMM.
In addition the optimal training was superior to the suboptimal training. Though the recognition
results are worse for the SHMM, the log likelihoods for the test sentences were higher than for the

standard HMM.

| Model | No Miztures (Intra) | %Correct | %Accuracy |
HMM 1 61.85 56.25
SHMM 1(1) 58.44 52.12
HMM 2 63.10 57.54
SHMM 2 (1) 61.14 53.51

Table 5: Recognition performance on Dialect Region 2 of TIMIT

Recognition experiments were then performed on dialect region 2, which is approximately twice
the size of dialect region 1. The results are shown in table 5. Again the SHMM does not perform
as well as the standard HMM.

| Model | No Miztures (Intra) | %Correct | J%Accuracy |
HMM 1 60.74 56.09
SHMM 1(1) 57.08 52.10

Table 6: Recognition performance on the training data for Dialect Region 2 of TIMIT

In addition the models were tested on the training data to see if the SHMM was over training.
The results in table 6 indicate that the SHMMs are not over trained.

13 Conclusions

A new acoustic model for speech has been proposed, the SHMM. Both re-estimation formulae and
recognition algorithms have been derived for this new model. It has been shown that the standard
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HMM, both single and multiple gaussian mixtures, are a subset of the SHMM. For synthetic
data the new model has been shown to perform better on a wider set of acoustic waveforms
than standard HMMs, even when the standard HMM has over twice the number of parameters.
However the performance on real data is disappointing. The most likely reason for the poor
performance is the lack of inter segment mean correlation modelling. If independence is assumed
on a phone or model level, such as for the SSM, good performance may be achieved. In the SHMM
independence is assumed on a segment level, where the typical segment length is less than a phone.
The same assumption is used for standard HMMs, however in the SHMM, by making the segment
probabilities conditional on the segment mean, the information from intra state variations are
weighted far more. In order to overcome this problem, an extension to the standard SHMM has
been proposed in the form of the multi intra state SHMMs. Using the multiple intra state model, it
is possible to assume independence on a phone or model level whilst having multiple states within
the model. Work on this style of model is currently under way.
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A Segmental HMM Likelihood Derivation

The aim 1s to make the probability independent of u.

p(yt,‘,tjlsia M) = /
Rn

Taking the log probability
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B Proof of Maximisation for Approximate Solution

It is necessary to prove that, given the assumption tX, > 3, there is only one turning point of
Q(M,M) and that turning point is a maximum.

To prove that only one maximum exists it is sufficient to show that all the coefficients of the
differential are positive. Hence there may be only one point at which the equation equals zero if
the equation is linear in the variable of interest.

B.1 Proof for p.

It has already been shown in section 5 that for fi,. the function is strictly concave.

B.2 Proof for Y.

c

g M, M) = > p(Yr,s7|M) l% (et fis)z_zcl (118)

It is necessary to show that there is only one turning point for the above equation. The
denominator, 2“ , may be ignored as this is independent of the segmentation, so the expression is
linear in X.. Examlnlng the coefficients

1,
et — ) > 0 (119)

and the probability by definition is positive. Hence provided that for some segmentation p(Yr, sy |M) >
0 for the state of interest, there is only one turning point as defined in equation 55.
To show this is a maximum equation 118 is differentiated

92 -
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At the turning point described in equation 55 the above expression may be reduced to

82

1
5 ——Q(M, M) Zp Yr,s7|M) [ ] (121)

232
As the variance is positive,by definition, this expression is negative.
B.3 Proof for X

O o(m, M)
>

2
ZpYT,sTM/l ZyT t—12—’;—5 (122)

Again the denominator, 22(2: is ignored and examining the coefficients

2

ti
dovio> ”7 (123)
T=t;

and ¢ > 1. The probability is also positive. Hence provided that some segment is longer than one
sample, and not all elements in that are identical, then there is only one turning point.
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Differentiating equation 122

52 .
W—EQ(M,M) Z (Yg,sp|M) l
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s T=t;

Again examining the turning point described in equation 57

0? S (t—1)

As ¢t > 1 and the variance is positive, the above expression is negative.
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