

ATK
An Application Toolkit for HTK

Version 1.6

Steve Young

Email: sjy@eng.cam.ac.uk

Date: 1
st
 June 2007

Machine Intelligence Laboratory

Cambridge University Engineering Dept

Trumpington Street, Cambridge, CB2 1PZ

mailto:sjy@eng.cam.ac.uk

 2

Acknowledgements

The original ATK core was written by Steve Young in 2000/2001 following a student project

undertaken by Khe Chai Sim. In addition to a variety of bug fixes and enhancements, Matt Stuttle

implemented the Linux version in 2004 and restored HTK’s N-best output functionality in 2005. Hui

(KK) Ye implemented and tested the CMLLR support in 2005. The contribution of the EU-sponsored

Talk Project and the CMI-sponsored SCILL project during the years 2004/06 are gratefully

acknowledged.

Release 1.6 marks a significant upgrade with the inclusion of new support for synthesis and

asynchronous audio i/o management. To enable out of the box synthesis for US English, an

implementation of Alan Black’s Flite is included in the ATK distribution.

Matt Stuttle, now at the Toshiba Cambridge Research Lab, continues to assist with Linux issues and he

assisted with the preparation of this release.

SJY June 2007

 3

Contents

1 Overview .. 5

1.1 The ATK Library .. 5

1.2 Example ATK Configurations .. 6

1.3 Building an Application .. 8

2 Packets .. 13

2.1 Generic Packet Properties ... 13

2.1.1 Programming .. 13

2.2 Empty Packets .. 14

2.2.1 Programming .. 14

2.3 String Packets ... 14

2.3.1 Programming .. 14

2.4 Command Packets .. 15

2.4.1 Programming .. 15

2.5 WaveData Packets .. 15

2.5.1 Programming .. 16

2.6 Observation Packets ... 16

2.6.1 Programming .. 16

2.7 Phrase Packets .. 16

2.7.1 Programming .. 18

3 Buffers .. 19

3.1 Programming .. 19

4 Components .. 21

4.1 Programming .. 21

5 The Monitor .. 25

5.1 Programming .. 27

5.2 Configuration Variables ... 27

6 System Components ... 28

6.1 Audio Input (ASource) ... 28

6.1.1 Configuration Variables.. 29

6.1.2 Run-Time Commands ... 30

6.1.3 Programming .. 31

6.2 Coder (ACode) ... 32

6.2.1 Configuration Variables.. 33

6.2.2 Run-Time Commands ... 34

6.2.3 Programming .. 35

6.3 Recogniser (ARec) ... 36

6.3.1 Configuration Variables.. 39

6.3.2 Confidence Scoring .. 40

6.3.3 N-Gram Language Models ... 41

6.3.4 Run-Time Commands ... 41

6.3.5 Programming .. 41

6.4 Synthesis (ASyn) .. 42

6.4.1 Configuration Variables.. 42

6.4.2 Run-Time Commands ... 42

6.4.3 Programming .. 43

7 Resources (ARMan) ... 44

 4

7.1 Resources and Resource Groups .. 44

7.1.1 Configuration Variables.. 45

7.1.2 Programming .. 45

7.2 Dictionary (ADict) .. 46

7.2.1 Configuration Variables.. 46

7.2.2 Programming .. 46

7.3 Grammar (AGram) ... 47

7.3.1 Configuration Variables.. 47

7.3.2 Programming .. 48

7.4 N-Gram Language Model (ANGram) .. 49

7.4.1 Configuration Variables.. 49

7.4.2 Programming .. 50

7.5 HMMSet (AHmms) .. 50

7.5.1 Configuration Variables.. 50

7.5.2 Programming .. 50

8 The AIO Asynchronous Input/Output Control Component .. 52

8.1 Configuration Variables ... 53

8.2 Run-Time Commands ... 54

8.3 Programming .. 54

9 Using ATK ... 56

9.1 Initialisation and Error Reporting ... 56

9.2 No-Console Mode... 56

9.3 Resource Incompatibility Issues ... 57

9.4 ATKLib and Test Programs.. 57

9.5 Using ATK with Windows MFC .. 58

9.6 Tuning an ATK Recogniser .. 60

10 ATK Application Examples ... 61

10.1 AVite - an ATK-based version of HVite .. 61

10.2 Simple Spoken Dialogue System (SSDS) .. 62

10.3 Asynchronous Spoken Dialogue System (ASDS) .. 65

Index ... 66

 5

1 Overview

ATK is an API designed to facilitate building experimental applications for HTK. It consists of a C++

layer sitting on top of the standard HTK libraries. This allows novel recognisers built using customised

versions of HTK to be compiled with ATK and then tested in working systems.
1
 Like HTK itself, it is

supported on both Linux and Windows (both as a terminal application and an MFC application
2
).

ATK is multi-threaded. It allows a variety of components to be connected together to implement

different architectures and applications. Efficiency is a relatively low priority but the pipeline structure

is designed to reduce latency to a minimum to enable highly responsive systems to be built.

In addition to recognition using HTK models, ATK supports basic speech synthesis in English by

embedding the CMU Flite package.
3

ATK is a flexible programming environment for building spoken dialog systems and related

applications. The use of ATK requires a reasonable level of competence in C++, experience in

building applications on Linux or Windows, and a basic understanding of speech recognition

technology.

ATK is not designed for newcomers to speech recognition or for novice programmers.

1.1 The ATK Library

The module structure of the ATK Library is shown by the dependency diagram in Figure 1. The

library modules AHTK, AGram, ANGram, ADict, and AHmms provide wrappers around the basic

HTK resources: grammars, n-grams, dictionaries and acoustic models. The modules ARMan and

AResource provide a manager for these resources.

The modules APacket, ABuffer, ATee and AComponent provide the basic types for creating

components and plumbing them together:

 Packet: is a chunk of information. Packets are used for transmitting a variety information between

asynchronously executing components. In particular packets are used to convey various forms of

user input and output signals (speech, event markers such as mouse clicks, etc). In these cases,

each packet has a time stamp to define the temporal span to which it relates. The types of data that

a packet can carry include text strings, waveform fragments, coded feature vectors, word labels

and semantic tags.

 Buffer: is a fifo packet queue. Buffers provide the channel for passing packets from one

component to another. Buffers can be of fixed size or unlimited size. Components wishing to

access a buffer can test to see whether the buffer operation would block before committing to the

operation.

 Component: is a processing element. Each component is executed within its own individual

thread. Components communicate by passing packets via buffers. In addition, components have a

command interface which can be used to update control parameters during operation and thereby

modify the runtime behaviour of the component.

1
 ATK uses its own version of the standard HTK libraries. These have been extended to support the

extra functionality needed by ATK. In addition, a new HTK module called HThreads provides basic

platform independent thread support. The ATK HTK libraries cannot be used to compile HTKTools,

however, every attempt is made to keep them consistent with the latest HTK release (currently V3.4).
2
 MFC support is currently rudimentary and largely untested.

3
 See http://www.speech.cs.cmu.edu/flite

 6

ASource, ACode and ARec then provide the three core components needed to build a speech

recogniser. ATK also provides a simple interface to the FLite synthesiser via ASyn and a simple

component called ALog for data logging.

Building an ATK application typically involves instantiating the needed resources and components,

connecting them together and then providing application level code to control the components and

process in-coming and out-going packets. As in HTK, all ATK modules can be configured by setting

variables in a configuration file.

For spoken dialog applications, a module called AIO is provided which does the required

plumbing and also implements synchronisation between speech input and output to enable barge-in and

rejection of non-speech sounds. AIO is dealt with in more detail in section 8.

Figure 1 - ATK Module Structure

The ATK library is supplied in source form. For Windows, it includes .sln and .vcproj files for

direct loading and building under Visual Studio. For Linux, it includes basic makefiles. There is just

one version of the sources for both platforms. The compiler directive WIN32 must be set under

Windows and the directive UNIX must be set for Linux.

1.2 Example ATK Configurations

Figure 2 shows a basic system set-up for using ATK for speech input only. The application

communicates directly with the Audio component to start and stop “listening”, and it communicates

directly with the recogniser to control the recognition process, in particular, the application will

typically load a new recognition grammar prior to each user utterance.

The recogniser component itself depends on various resource objects (AResource). The three

main resource object types are: dictionary (ADict), grammar (AGram) and HMM set (AHmms). A

dictionary object defines the way each vocabulary item is pronounced and it is usually initialised by

reading from an external file. A grammar object defines a finite state network of allowable word

sequences: it can be loaded from a file or created on the fly. Each finite state network can be defined in

terms of lower level sub-networks and any word, or sub-network can be given a semantic tag. Word

 7

transitions can be given probabilities and additionally, an n-gram language model
4
 can be added using

an optional fourth resource object type (ANGram). A HMM set contains the HMMs used for the

acoustic models and it is always initialised from a file.

HMM sets, dictionaries, grammars and n-gram language models are stored in a resource database

managed by a recognition resource manager object (ARMan). Resources can be stored in this

database, edited and deleted. Within the database, resources can be assigned to logical resource

groups. When the recogniser is executing, its operation depends on a network compiled from the

information stored in a specified resource group. The application can change this resource group as

required.

At runtime the recogniser can be configured to run in a variety of modes. These modes control

the conditions under which the recogniser starts and stops, whether it restarts automatically or

manually, and the method of returning results. With regard to results, the recogniser can return results

immediately in the form of its current best guess, as soon as each word becomes fully disambiguated,

and in a batch once the end of the utterance has been detected. The recogniser can also return an N-

best list of alternatives.

The initial configuration of component objects is determined by a global configuration file which

is read once at start-up. This file is also used to configure the HTK libraries. Once the component

objects are executing, further configuration changes can only be made via the run-time command

interface.

Audio Input

(ASource)
Buf

Coder

(ACode)

Buf

HMMSet

(AHmms)

Dictionary

(ADict)

Grammar

(AGram)

Recogniser

(ARec)
Buf

Resource

Group

Application

Run-Time Commands

Flow of speech data packets

ARMan

Figure 2 - Basic recognition system

As an example of a more complex configuration, Figure 3 shows a system which uses the AIO

component to orchestrate a full spoken language interface. For simplicity the recogniser resources and

the buffers have been omitted from this diagram. Solid lines indicate buffer connections and dotted

lines indicate message-based control connections.
5

4
 ATK supports bigram and trigram word-based and class-based language models.

5
 The message interface actually also uses packets and buffers but it is built-in to the component base

class.

 8

ASource

ACode

Application

ATee

ALog
log

file

ASyn ARec

AIO

Figure 3 - A more advanced recogniser configuration using AIO

AIO handles all communication with the application and it coordinates the activities of the

recogniser and the synthesiser. AIO sends messages to the synthesiser to issue a prompt and then

enables the recogniser. If the user starts speaking before the prompt is finished, AIO first lowers the

output volume and once it is sure that the user really is speaking (and not for example coughing), it cuts

off the prompt and notifies the application. All recognition output is channelled back to the application

through AIO.

Finally it should be noted, that although the examples here focus on the type of interface one

might use in a spoken dialogue system, ATK is a general purpose interface and it can be used for

building a variety of real-time applications which use HTK-derived recognition resources.

1.3 Building an Application

For many simple applications, interfacing to ATK requires little more than instantiating the required

objects and then handling the resulting answer packets from the recogniser. As an example, consider a

very simple digit recogniser which might be used in a hands-free dialling program. In this case, the

required dictionary and grammar are fixed and can be prepared off-line. The dictionary would contain

pronunciations for each digit e.g.

ONE w ah n
TWO t uw
etc

 9

The grammar file would define a simple digit loop as illustrated in Figure 4. In HTK SLF format, this

would be represented by a text file containing a list of grammar nodes (the words) and the links needed

to loop them together.
6
 The following fragment illustrates the basic idea

VERSION=1.0

N=16 L=25

I=0 W=!NULL

I=1 W=SIL

I=2 W=!NULL

I=3 W=!NULL

I=4 W=ONE

I=5 W=TWO

...

I=15 W=!NULL

I=7 W=OH

J=0 S=0 E=1

J=1 S=1 E=2

J=2 S=2 E=4

...

J=24 S=14 E=15

The third required resource is a set of HMMs. These would be prepared off-line using HTK, and then

stored in any of the supported formats. In this case it will be assumed that the file HMM.list contains

the model list and the file HMM.mmf contains the actual models.

one

two

three

four

zero

SIL SIL

1 2 3

4

5

6

7

13

14 150

Figure 4 - Simple digit recognition grammar

Each of the three required resources can be defined as entries in a configuration file which is loaded at

start-up time. Such a file will also typically contain the specification of the coding parameters. The

following configuration file is sufficient for this example.

6
 The HTK SLF format is described in the HTK Book.

 10

define coding/feature parameters

 SOURCEFORMAT = HAUDIO

 SOURCERATE = 625

 TARGETKIND = MFCC_E_D_N_A

 TARGETRATE = 100000.0

 USEPOWER = F

 NUMCHANS = 24

 CEPLIFTER = 22

 SILFLOOR = 50.0

define needed resources

HMMSET: HMMLIST = "HMMS.list"

HMMSET: MMF0 = "HMMS.mmf"

ADICT: DICTFILE = "dialer.dct"

AGRAM: GRAMFILE = "dialer.net"

Note that the ATK module names where given refer to object instances rather than class names as in

HTK.

Having assembled the various resources needed, the required programming is straightforward.

The main program must initialise ATK, and the underlying HTK libraries by calling InitHTK as in

 if (InitHTK(argc,argv,version)<SUCCESS){

 printf("Error: cannot initialise HTK\n"); exit(-1);

 }

where version is a string giving version information in the standard HTK format
7
 eg

char *version = "!HVER!MyApp: 1.1.39 [SJY 31/02/05]";

The various objects are then instantiated in the usual way. The architecture will be similar to that

shown in Figure 2. First the buffers are defined

ABuffer *auChan = new ABuffer("auChan"); // waveform data

ABuffer *feChan = new ABuffer("feChan"); // features

ABuffer *ansChan = new ABuffer ("ansChan"); // recognition output

and then the source and coder components can be instantiated, connected by the appropriate buffers

ASource *ain = new ASource("AIn",auChan); // auChan connects source to coder

ACode *acode = new ACode("ACode",auChan,feChan); //feChan connects coder to reco

Before a recogniser can be instantiated, a resource manager must be created and the various needed

resources must be stored in it:

AHmms * hset = new AHmms("HmmSet"); // create HMM set called HmmSet

ADict *dict = new ADict("ADict"); // create a dictionary called ADict

7
 Note that since an ATK application may not always have a command line interface, the version info

normally printed by the -V option can also be obtained by setting the configuration variable

PRINTVERSIONINFO=T.

 11

AGram *gram = new AGram("AGram"); // create a grammar called AGram

ARMan *rman = new ARMan; // create a resource manager

rman->StoreHMMs(hset); // store the resources in rman

rman->StoreDict(dict);

rman->StoreGram(gram);

Note that the actual files used to define the HMM set, dictionary and grammar are defined in the

configuration file. The needed resources can now be formed into a resource group and the recogniser

instantiated

ResourceGroup *group = rman->NewGroup("dialer");

group->AddHMMs(hset);

group->AddDict(dict);

group->AddGram(gram);

ARec *arec = new ARec("ARec",feChan,ansChan,rman); // create recogniser

Note that the recogniser has its input connected to the coder output and its output is sent to the buffer

called ansChan. The application will read recogniser output via this latter buffer.

The final step is to start up the components

ain->Start(); acode->Start(); arec->Start();

Note that these Start() commands only start the thread executing. They do not necessarily start the

component operating. For example, the recogniser enters an idle state on initial start-up. It can be

made to start recognising by sending the component a start command message as in

arec->SendMessage("start()");

The command "start()" is an ATK run-time command which is interpreted by the receiving ARec

component at run-time, it is a text message which is passed to the recogniser .

Once the recogniser starts receiving packets from the coder, it will send recognition results back to

the application. These are retrieved by extracting packets from the ansChan buffer. For example, the

following loop would just print out the packets on the terminal device. Real applications might do

something more sophisticated with the recognition results!

while(running) {

 APacket p = ansChan->GetPacket();

 p.Show();

}

Finally, ATK provides a monitor component which can be used to monitor and control the

behaviour of the other components. If used this should be instantiated and started before starting any

other components. The code to do this is straightforward

 AMonitor *amon = new AMonitor; // create a monitor

 amon->AddComponent(ain); // add the components to monitor

 amon->AddComponent(acode);

 amon->AddComponent(arec);

 amon->Start(); // then start it

 12

As the above illustrates, a simple application of using ATK requires very little code to implement.

For more realistic tasks, the main extension to the above code will often be to change the grammar

prior to recognising each utterance. The simplest way to do this is to load multiple grammars and then

switch them. For example, if an application required three grammars G1, G2, and G3, they would be

instantiated as objects as in the example above, and each assigned to its own resource group

ResourceGroup *group1 = rman->NewGroup("group1");

group1->AddHMMs(hset); group1->AddDict(dict); group1->AddGram(gram1);

ResourceGroup *group2 = rman->NewGroup("group2");

Group2->AddHMMs(hset); group2->AddDict(dict); group2->AddGram(gram2);

ResourceGroup *group3 = rman->NewGroup("group3");

Group3->AddHMMs(&hset); group3->AddDict(&dict); group3->AddGram(&gram3);

Notice that each resource group shares the same HMM set and dictionary but has its own unique

grammar. Given the above, the recogniser’s grammar can be switched by sending a command to it of

the form

arec->SendMessage("usegrp(group2)");

when the recogniser receives this command, it takes no immediate action. However, next time that the

recogniser is re-primed to start a new utterance, it will load the new grammar. This example illustrates

the simplest form of grammar modification. ATK allows multiple grammar objects to be stored in a

resource group and then combined in parallel. It also allows grammars to be copied, saved/restored,

edited and created from scratch.

The above overview is intended to give a flavour of what ATK is, and how it is used. The

remainder of this manual describes ATK in some detail. It starts with a description of the core classes

on which ATK is built, packets, buffers and components. It then describes the main system

components, audio source, coder, recogniser and synthesiser, followed by resources and the resource

manager. For many applications, it will be appropriate to program these directly. However, as noted

above, for spoken dialogue systems, an asynchronous i/o module called AIO can greatly simplify

design. This is described in section 8. There is then a section describing various issues relating to

HTK such as code differences, usage conventions and resources supplied with ATK. Finally, in

section 10, a few example applications are described, the source code for which is included in the

ATK distribution.

 13

2 Packets

2.1 Generic Packet Properties
A packet is a chunk of information passed from component to component. It is polymorphic in the

sense that its inner data container can hold a variety of types. Since a packet can have multiple readers,

a reference count is also maintained for each packet instance to enable proper memory management.

Packets can therefore be passed between asynchronous threads without the need for explicit garbage

collection.

2.1.1 Programming
A Packet actually consists of 3 parts: an outer wrapper (APacket), an inner wrapper containing data-

independent property information (APacketHeader) and an inner data-specific container (a derived

class of APacketData). The outer class APacket is actually just a pointer to the inner wrapper and its

methods are forwarded to the inner wrapper. The purpose of this arrangement is to ensure that packets

can be passed around the system and properly disposed when no longer needed. Thus, no purpose is

served by creating packets with new and referencing them indirectly by pointers. Rather packets

should be instantiated as static variables and copied as needed.
8

The APacket class (conceptually) provides the following data members

StartTime Start time to which the data in this packet refers r/w

EndTime End time of which the data in this packet refers r/w

Kind Kind of this packet (Wave, Observation, Phrase, ….) r

Data Pointer to inner data packet r

All packet properties XXX can be read via the methods GetXXX. Properties marked as r/w can also

be written via the methods SetXXX. For example, GetStartTime() will return the start time of the

packet and SetStartTime(t) will set the start time to t (in HTK time units ie. 100ns units). Note that

start and end times make sense when the packet holds temporal data such as a segment of waveform.

In other cases, the start and end times will be the identical.

A packet is created by first creating an inner data container of the required kind e.g. for storing a

string, the following would be needed

AStringData *s = new AStringData(“A String”);

Then the packet variable itself can be declared giving the data packet as an argument to its constructor.

APacket p1(s);

Note that as mentioned above, although the inner data container is allocated using new, instantiating

the actual packet via new should be avoided.

There are a variety of packet kinds and documentation for each follows in subsequent sections.

There is also a special packet kind called AnyPacket. This is used in the context of packet filtering to

indicate that any packet kind is allowed (see ABuffer in section 3 below).

Once created, the packet may be manipulated in the usual way. For example, the start time of p1

could be printed by

printf(“Packet start time = %f\n”,p1.GetStartTime());

8
 Copying is very cheap since only a pointer is being copied.

 14

When copied, the inner packet (both header and the data container) is shared. Thus, after

APacket p2 (p1);

there is just one copy of the string data with two packets referencing it. The same applies for

assignment. Thus, after

p3 = p2;

the packets p2 and p3 (and p1) share the same inner packet and data container. This inner data will be

disposed of when all of p1, p2 and p3 expire. For debugging purposes, the simplest way to view a

packet is via the packet's Show() method.

2.2 Empty Packets
An empty packet contains no data at all. It is used occasionally for signalling purposes. The only

operations provided for empty packets are the generic operations described above.

2.2.1 Programming
An empty packet is created by default when the packet declaration has no initialiser. For example, in

APacket e1; APacket e2(e1)

Then e1 and e2 refer to a single empty packet. The packet’s start and end time can be set as follows

e1.SetStartTime(10000); e1.SetEndTime(25000);

Note that internally, ATK uses HTK’s 100ns time unit, hence 10000 in the above is equivalent to 1ms.

Executing the e1.Show() method would result in output of the form

Empty Packet[007B1500] refs=2; time=(1.00-2.50) ms

Data: <>

The reference in square brackets is the packet’s address; the refs value shows that the packet has two

references and that it spans the period 1.00 to 2.5 ms. This first line printed by Show() is common to

all packet types. The remainder of Show’s output depends on the particular data stored, in this case

none.

2.3 String Packets
A string packet contains a single string stored in a data container of type AStringData . It is used for

general message passing and reporting.

2.3.1 Programming
The simplest and most common way to set up a string packet is to give the required string as an

initialiser. When a packet is received, the data it contains can be accessed using the GetData method.

Since this method must be coerced to the expected type, it is usually a good idea to check the packet

kind first

APacket pkt = buffer.GetPacket(); // see Buffers section below

 15

if (pkt.GetKind() == StringPacket){

 AStringData *sd = pkt.GetData();

 string s = sd->data;

 if (s.find(“help”) != string::npos) { // help message received

} else

String packets are frequently transmitted by ATK components to mark specific events. These so-called

marker packets have the format “SOURCE::EVENT”. For example, an ASource component called

“ain” would send the marker “ain::START” to its output channel when it starts audio sampling. To

simplify handling of marker strings, the AStringData class provides the methods GetSource() and

GetMarker() to extract the two components from a marker string.

2.4 Command Packets
Command packets are used to implement the component command interface. The data container of a

command packet holds a command name plus an array of command arguments. Each argument is

either a string, an integer or a float.

2.4.1 Programming
The inner container of a command packet is of type ACommandData and it is initialised with the

command name. Command arguments can then be added using the overloaded AddArg method. For

example, a packet containing the command “find(click,5)” would be created by

ACommandData *cd = new ACommandData(“find”);

cd->AddArg(“click”); cd->AddArg(5);

APacket cmdPkt(cd);

On receipt, of a command packet, methods are provided to get the command name, the number of

arguments, the type of the arguments and the arguments themselves. Hence, for example, the above

packet received via a buffer might be decoded as follows

APacket p = inbuffer.GetPacket();

ACommandData *cd = (ACommandData)p.GetData();

string cmd = cd->GetCommand();

if (cd->NumArgs() != 2) error ...

if (cd->IsString(1) && cd->IsNumber(2)){

 string item = cd->GetString(1);

 int count = cd->GetInt(2);

} else

 error

In practice, command packets are rarely used by application programmers. They are provided

primarily for the implementation of the SendMessage command interface to components.

2.5 WaveData Packets
The inner data container of a wave data packet is of type AWaveData and it contains an array of shorts

called data for storing 16bit waveform data plus a count wused indicating how many samples in data

are actually used. Both of these data members are public and can be accessed directly.

 16

2.5.1 Programming
Given a packet p1, the contained wave data can be accessed as follows:

AWaveData * w = (AWaveData *)p1.GetData();

for (int i =1; i < w->wused; i++) printf(“%d ”,w->data[i]);

although an easier way to see the data is to use p1.Show() which might generate as output

Wave Packet [007A1910] refs=3; time=(200.00-208.50)ms

Data: 860/1000 samples

 0 85 90 94 93 98 9 55 59 42

 85 95 67 36 38 58 19 28 11 13

 72 98 65 -20 -64 -33 -70 -26 -25 -77

 ...

which shows that the packet with ref 007A1910 has 3 references. The time span of this packet is from

200.0 to 208.5ms. The packet contains waveform data, 860 sample slots of the 1000 sample packet are

filled and the first few samples are as shown.

2.6 Observation Packets
An observation packet contains a single HTK format observation.

2.6.1 Programming
The inner data container of an observation packet is of type AObsData and it contains a single HTK

format observation. No special methods are provided for manipulating an observation since it will

normally be created and manipulated entirely by HTK. For example, the recogniser component ARec

contains code similar to the following:

if (pkt.GetKind() == ObservationPacket){

 AObsData *od = (AObsData *)pkt.GetData();

 ...

 // recognise observation

 ProcessObservation(vri,&(od->data),-1);

 ...

}

This code extracts the inner AObsData structure and then passes its observation stored in the data

field to the HTK HRec function ProcessObservation. Observation packets are provided primarily

for implementation of the coder to recogniser interface, and application level programmers will rarely

need to use them. One possible exception to this is to note that unlike HTK, ATK needs to mark each

observation as being either silence or speech. Since ATK does not support discrete HMMs, it stores

the speech silence decision in the first element of the vq vector stored in an observation. Hence, for

example, if an application wants to know whether ATK has marked an observation packet as silence or

speech it can do the following:

Observation *o = &(od->data);

if (o->vq[0] == 1) // then it is speech

2.7 Phrase Packets

A phrase packet stores recognition result information generated by the recognition process. It is

designed to allow complex data structures such as N-best lists and confusion graphs to be passed from

 17

a recogniser back to the application “in pieces”. This provides flexibility and it allows an application

to initiate its response before the utterance has finished and the final recognition result computed.

Each phrase packet contains one of the following seven types of information:

Start indicates the start of the utterance

End indicates the end of the utterance

OpenTag the opening bracket of a tagged phrase, an OpenTag packet can also point to a

packet indicating an alternative phrase hypothesis starting at approximately the

same time

CloseTag the matching closing tag to the OpenTag

Word a single word, with optional semantic tag

Null indicates a null node in the grammar, since null nodes can have semantic tags,

null phrase packets should not necessarilty be ignored.

Quit a special packet sent to indicate that the user has requested a “quit”

In addition to timing information, phrase packets contain the following information fields, all of which

can be accessed directly:

ptype The type of the phrase as listed above

seqn sequence number of this packet

pred sequence number of preceding packet

alt sequence number of alt packet (OpenTag kind only)

word word or phrase

tag semantic tag

ac log likelihood of acoustic score

lm log likelihood of language model score

score total log likelihood of the word

confidence confidence score in range 0.0 -> 1.0 (-1.0 if score is not valid)

nact number of active models during the decode of this word/phrase

When the recogniser is operating in its standard default mode, a recognised string is returned as a

sequence of packets where each packet has a pred value equal to the sequence number of the preceding

word (or bracket) and all the alt values are zero. When the recogniser is set to generate N-best lists,

then each hypothesis in the list is enclosed in brackets. The opening bracket has an alt equal to the

sequence number of the opening bracket of the next hypothesis and a tag of the form “n/N” meaning

that this is the n’th hypothesis in a list of N hypotheses. Finally, when the recogniser is set to generate

confusion graphs
9
, then each span of the confusion graph is sent as a bracketed list of words. The

opening bracket of each span has a pred value equal to the sequence number of the preceding closing

bracket. Within each bracket, the words link to each other via their alt fields. Section 0 describes

these structures in more detail.

9
 Confusion graphs have not been implemented yet.

 18

2.7.1 Programming

The data container of a phrase packet is of type APhraseData. A Phrase packet is initialised by giving

the kind, the sequence number and the predecessor. The remaining fields are set by direct assignment

as the following illustrates

// Create a word phrase packet

APhraseData *pd = new APhraseData(Word_PT,thisseqnum,predseqnum);

pd->ac = ac; pd->lm = lm; // set recognition scores

pd->score = score; // set total score

pd->confidence = confidence; // set confidence level

pd->word = word; // set identity of word

pd->tag = tag; // set semantic tag if any

APacket p(pd); // create the packet

p.SetStartTime(start); // set times to show temporal span of

p.SetEndTime(end); // the recognised word

Scores, confidence levels and HTK times are floating point numbers; words and tags are strings.

 19

3 Buffers

Buffers provide the interface via which components send and receive packets. They are also used to

implement the run-time command interface. At the system level they are used to safely pipe the output

from one asynchronous component into another asynchronous component.

3.1 Programming
The basic methods provided by Buffer objects are:

Method Description

PutPacket(pkt) Put a packet into the buffer

pkt=GetPacket() Get next packet from buffer

IsFull(), IsEmpty() Booleans indicating full/empty state

NumPackets() Returns number of packets in buffer

pkt=PeekPacket() Like GetPacket, but leaves the packet in the buffer

PopPacket() Like GetPacket but extracted packet is just discarded

GetFirstKind() Return kind of next packet in buffer

SetFilter(PacketKind) Restrict buffer to only accept packets of a given kind

When a buffer is created it is given a name and an optional size. If a size is given, then calls to

PutPacket will block if the buffer is full. Calls to GetPacket will block if the buffer is empty. The

integer function NumPackets and the Boolean functions IsFull and IsEmpty can be used to test the

state of the buffer before committing to a call which might block. The GetFirstKind and PeekPacket
methods allow the next packet in the buffer to be examined before actually removing it from the queue.

PopPacket can then be used in place of GetPacket to simply discard the next packet in the buffer.
By default a buffer will accept packets of arbitrary data kinds. Where a buffer should accept only one

specific type of data packet, SetFilter can be used to enforce this.

The following illustrates the use of buffers. The code

ABuffer * b = new ABuffer(“mybuf”);

b->SetFilter(StringPacket);

creates a buffer suitable for passing strings from one task to another. A receiving task might extract

string packets by

if (!b->IsEmpty()) {

 APacket p = b->GetPacket();

 AStringData sd = (AStringData *)p.GetData();

 string s = sd->data;

}

Here the packet contents can be safely cast to string data without checking because the buffer has been

initialised to only accept string packets. Note, however, that for general purpose plumbing between

system components, a variety of packet types are needed. Hence, SetFilter is not used in these cases

and packet kinds should always be tested. .

Because buffers provide the primary communication channel between asynchronous processes, it

is commonly the case that reading packets from a buffer will be just one of several tasks that a receiver

 20

process will have to perform. For example, a component process may have several input buffers and it

may wish to read the next packet received via any of them. With the methods described above, the

only option for such a process is to poll all the buffers continuously until one is found to be non-empty.

However, polling is inefficient and hence ATK allows a process to receive an HTBUFFER event
10

whenever a packet is put into a buffer. For example, suppose that a process has two input buffers. It

can request buffer events to be generated by calling the RequestBufferEvents(id) method where the

id is an arbitrary integer which is chosen by the receiver process in order to identify which buffer

generated the event. For example, the following code creates two buffers and requests events from

them.

const int eva = 1;

const int evb =2;

ABuffer *a = new ABuffer("abuf");

ABuffer *b = new ABuffer("bbuf");

a->RequestBufferEvents(eva);

b->RequestBufferEvents(evb);

Now suppose that the receiver process receives an event using

e = HGetEvent(0,0);

it might handle it as follows

switch(e.event){

 case HTBUFFER:

 switch(e.c){

 case eva: pkt = a->GetPacket(); break;

 case evb: pkt = b->GetPacket(); break;

 }

 break;

 case // handle other events

Note however that since the sequencing of events is not always entirely reliable it would be good

programming practice to check that a buffer for which there is a pending event really does have a

packet in it.

10

 Events can be accessed via the platform independent HTK/HGraf mechanism or directly via platform

specific OS event handlers.

 21

4 Components

Unlike Packets and Buffers which support the direct creation of instances, the AComponent object is

an abstract type from which actual components are derived. A further difference is that a component

encapsulates an asynchronously executing thread rather than a passive data structure.

Figure 5 shows the structure of a typical component. Each component is normally initialised with

a name and references to its input and output buffers.

Once any internal data structures have been initialised by the constructor, the Start method is

called. When the calling thread has started up all its tasks, it will then typically wait for each to

terminate by calling the Join() method.
11

Once the component task is executing, it can receive data via its input buffer and output results to

its output buffer. In addition, every component task monitors its message buffer and executes any

pending commands. The actual commands supported are specific to each component except that all

components support commands to suspend and resume execution, and to terminate.

Constructor

AComponent

task

Start (task)

Join()

Component

Data Structures

msg

buf

SendMessage(cmd)

ChkMessage()

Buffer a

CompX("X",a,b)

Buffer b

Figure 5 - Structure of a Component Object

4.1 Programming
The Start method of a component class has the following declaration:

void Start(HPriority pr, TASKTYPE (TASKMOD *task)(void *));

11

 Threading in ATK is implemented by the HThreads module which is an ATK specific enhancement

to the HTK library.

 22

Its arguments specify a priority and a function to execute. Assuming that ATask is a component class

derived from AComponent, the task itself should have the form

TASKTYPE TASKMOD ATask_Task(void *p)

{

 ATask *thisComp = (ATask *)p;

 ...

}

When this task is executed, a pointer to the class instance is passed as argument. Within the task,

component a member x can then be referenced via thisComp->x. To give the task unrestricted access

to its associated class instance, it is usually declared as a friend of the class.

The Start method is usually called by the application’s main program. When the latter has

nothing further to do, it can call the component’s Join method. This will suspend the calling thread

until the component task terminates. Thus, in a multi-component system, the structure of main will

typically be something like

ABuffer *ab = new ABuffer(“ab”); // buffers to link a -> b

ABuffer *bc = new ABuffer(“bc”); // etc

....

ABuffer *za = new ABuffer(“za”);

// Asynchronous Task Class

class ATask : public AComponent {

 ATask(const string &name, ABuffer *inb, ABuffer *outb);

 ...

private:

 friend TASKTYPE TASKMOD ATask_Task(void *p);

 ABuffer *in;

 ABuffer *out;

 ...

};

// The task itself, a friend of ATask

TASKTYPE TASKMOD ATask_Task(void *p)

{

 ATask *thisComp = (ATask *)p;

}

// declare some task instances

ATask *a = new ATask(“a”, ab, za);

ATask *b = new ATask(“b”, bc, ab);

....

// start up the tasks

a->Start(HPRIO_NORM,ATask_Task);

b->Start(HPRIO_NORM,ATask_Task);

...

 23

// wait for them to finish

a->Join();

b->Join();

...

}

Tasks communicate in two ways. Firstly, they send data to each other via buffers. Thus, in the

example above, each task has an input and an output buffer via which it will send and receive packets.

The second communication method is designed for run-time configuration and control. Each task

derived from AComponent has a message buffer via which it can receive command packets

containing commands of the form “cmdname(arg1,arg2,...)”. The AComponent class supports this

command interface via the following methods

Method Description

SendMessage(msg) Send msg to task component (called by external task)

ForwardMessage(c) Forward current message to component c

ChkMessage(wait) Check for pending messages (called by internal task)

ExecCommand(msg) Virtual function defined for each derived class

GetIntArg(int&,lo,hi) Get next argument as an integer in range lo to hi

GetFltArg(float&,lo,hi) Get next argument as a float in range lo to hi

GetStrArg(string&) Get next argument as a string

The external interface is via the single method SendMessage. For example, a task can suspend some

other task t by executing

t.SendMessage(“suspend()”);

All tasks support the standard commands “suspend()”, “resume()” and “terminate()”. All other

commands are task specific and are provided by the task using the ExecCommand method. This

commonly takes the form of a nested if statement as in

void ATask::ExecCommand(const string & cmdname)

{

 if (cmdname == "foo")

 FooCmd();

 else if (cmdname == "fum")

 FumCmd();

 else

 printf("Unknown command %s'\n",cmdname.c_str());

}

The ExecCommand method is called by ChkMessage after first making sure that the command is

well-formed and that the command is not one of the standard commands. The argument to

ExecCommand is the command name itself. Inside the actual commands, the GetXXXArg routines

can be used to retrieve arguments, these return false if an error occurs. For example, if FooCmd
expects a single integer argument in the range 0 to 100, it would have the form

 24

void ATask::FooCmd()

{

 int i;

 if (GetIntArg(i,0,100)) {

 // implement foo(i)

 }

}

In this case, the command does nothing if there is an argument error. An alternative would be to

display a message on the Monitor message panel as explained in the next section.

 25

5 The Monitor

The AMonitor class encapsulates a special system task which can be used to monitor all other tasks

created via the AComponent class. Once an instance of the AMonitor class has been created, regular

component tasks are added to it and then the monitor task is started.

Once started, the monitor task displays a window as illustrated in Figure 6. This contains a panel for

each task added via AddComponent() (see below). Each of these panels contains two coloured

indicators, a command input box and a message output box.

Figure 6 - The Monitor Window

The first (leftmost) indicator shows the running state of the task according to the following convention:

green task executing

red task is waiting for a lock whose name is given in the indicator

orange task is executing inside a critical region

light grey task is initialised

dark grey task is terminated

The second indicator is normally light grey, when it goes yellow, it indicates that the task is waiting for

a signal. Since a task must be suspended inside a critical region to wait on a signal, the signal indicator

will only be yellow when the first indicator is red. As an example, in Figure 6, tasks AIn and ACode

are executing but task ARec is in a critical region controlled by lock “ARec:mbuf:lock” waiting for

signal “ARec:mbuf:NotEmpty”.
12

When a message is typed into the command box, it is passed to the corresponding task via the

SendMessage interface. This facility allows a running system to be controlled at run-time. In Figure

6, task ARec has been suspended by typing in the command “suspend()”. When text is being entered

into a command box it appears in black, once the command is sent (by pressing the enter key), it is

greyed out. The message output panel enables a running task to display a message. This is done by

calling the HPostMessage function in the underlying HTK HThreads library.

12

 This actually indicates that ARec is waiting to receive a command from its input message buffer.

This situation arises when a task has been suspended and the only action it can then take is to wait for a

resume() command.

 26

The monitor task can also be used to provide a set of virtual terminal devices for displaying the

output of printf 13
statements. This is done by enlarging the message output panels to provide a display

for each component, and adding a further display panel at the bottom for displaying terminal output

from the main thread. For example, Figure 7 shows a monitor panel used in the TBase test program

included in the ATKLib software directory (see sect ion 9.1). This simple program exercises the core

ATK classes. It consists of 3 small windows holding a number of red balls. Each task is connected to

another in a circle a->b->c->a. When a window is clicked, it passes a ball to its neighbour via the

buffer. Every time a task passes or receives a ball it prints out a single line in its own message box

simply by calling printf.

Figure 7 - Monitor display showing terminal output

13

 Since ATK is so heavily dependent on HTK which is written in C, ATK itself uses C-like terminal

i/o in preference to C++ streams.

 27

5.1 Programming
Typical code for initialising and invoking the monitor is as follows:

 AMonitor amon;

 amon.AddComponent(&a);

 amon.AddComponent(&b);

... etc

 amon.Start();

The AMonitor class also provides a method called FindComponent(name). This will return a

pointer to the component called name. This only works for components which have been added to the

monitor via calls to AddComponent. If the component name is not found, FindComponent returns a

null pointer. FindComponent is used mostly to locate a component object so that a run-time

command can be sent to it.

To use the monitor for terminal output, the HTK subsystem is initialised using

NCInitHTK("name of config file",version);

rather than the standard

InitHTK(argv,argc,version) ;

(see sect 9.1). In addition, the number of display lines to be allocated for each component must be

given as a second argument to the component constructor. For example, in the TBase program, the

tasks are instances of an ABalls class which is itself derived from the AComponent class. The

constructor for the ABalls class is as follows where the second argument to AComponent (i.e. 5)

allocates 5 display lines to each task (the default is 1):

ABalls::ABalls(const string & name, int initBalls, ABuffer *inb, ABuffer *outb)

 : AComponent(name,5) {

 numBalls = initBalls;

 in = inb; out = outb;

 width = 100; height=100; size = 10;

}

5.2 Configuration Variables

The monitor display can be sized and positioned by setting the following configuration variables:

Module Variable Default Meaning

AMONITOR DISPXORIGIN 30 top-left x origin of display

AMONITOR DISPYORIGIN 20 top-left y origin of display

AMONITOR DISPWIDTH 460 width of a display panel

 28

6 System Components
All system components are derived from AComponent and system component instances are normally

registered with a monitor task. System components rely heavily on HTK libraries for their operation

and much of their configuration is determined by a HTK-style configuration file which is read-in on

start-up. This configuration file will contain definitions for both HTK and ATK variables. In the

component descriptions which follow below, all relevant ATK variables are listed plus the most

relevant HTK variables (standard HTK variables described in the HTKBook are indicated by asterisks).

In addition to configuration variables, each component description also lists the run-time commands

provided by the run-time SendMessage command interface. The commands available for each

system component are also listed.

6.1 Audio Input (ASource)

The primary function of the audio input object ASource is to capture input speech. In basic

operation, samples from the input audio device are grouped into wave packets and forwarded to its

output buffer. ASource can also be programmed to source audio from a single waveform file or a set

of waveform files in order to facilitate off-line testing. Despite its name, ASource also provides

facilities for simultaneously outputting audio, controlling the output volume, aborting the output and

sending a notifying command packet when an output terminates
14

.

Figure 8 shows how ASource is configured in full duplex mode. It uses 3 separate buffers: one

for speech input from a microphone; one for speech output to a speaker; and a third for sending

acknowledgements back to the source of the audio output.

Figure 8 - ASource Audio I/O Channels

As shown in

Figure 9, the audio input object can optionally display a window showing a start/stop button and a

simple volume meter.

14

 These facilities are, for example, heavily used by the AIO module.

 29

Figure 9 - ASource Volume Meter Control

Pressing the start button will start the source sampling. Pressing again will stop sampling. The name

of the button changes between “Start” as in the figure and “Stop” to reflect the current state.

6.1.1 Configuration Variables

An audio object is configured by setting the following variables:

Module Variable Default Meaning

 SOURCERATE 625* set the sampling rate (in 100ns units)

ASource DISPSHOW T show the volume meter (VM) control

ASource DISPXORIGIN 30 initial position of VM (top left corner)

ASource DISPYORIGIN 10 initial position of VM (top left corner)

ASource DISPHEIGHT 30 initial height of VM

ASource DISPWIDTH 120 initial width of VM

 SOURCEFORMAT HAUDIO* set to a file format (eg HTK) to switch source

to a pre-recorded file.

ASource WAVEFILE “” define name of source wave file

ASource WAVELIST “” list of source wave files

ASource FLUSHMARGIN 0 duration of zeros inserted on Stop Cmd

ASource NORMALVOLUME 100 set normal output volume level

ASource MUTEDVOLUME 50 set muted output volume level

ASource EXTRABUTTON name create an extra button with given name

Note that although class names are shown for configuration variable prefixes (e.g. ASource in the

above), in practice, the instantiated object name should be used. For example, if the invoked source

object is called “AIn”, then a directive to set DISPWIDTH in the corresponding configuration file

should be

AIN: DISPWIDTH = 200

This use of instance names rather than class names (as in HTK) is to allow multiple instances of the

same component to be individually configured. It applies to all configurable ATK components. Where

a variable does not have a default value, the “default” column gives a recommended or typical setting

and it is starred.

Normally, ASource is used to provide a real-time stream of sampled data from a microphone or

similar audio source. However, to facilitate testing, ASource can be made to read from a single audio

 30

file by setting the configuration variable WAVEFILE. Alternatively, for evaluating performance on a

database of test files. the configuration variable WAVELIST can used to identify a file containing a

list of waveform files. In either case, the SOURCEFORMAT should be changed to indicate the file

format (eg. HTK or NIST).

When ASource is reading from files, it must be sent a start command (see next section) prior to

reading each file. Once started, ASource sends a string packet to the output containing the marker

“AIN::START(filename)” and then sends the data for that file. When the end of the file is reached, the

marker “AIN::STOP” is sent and ASource stops. When reading a list of files, the string marker packet

“AIN::ENDOFLIST” is sent once all files have been transmitted to the output.

In either audio or file source mode, a period of silence (i.e. zero sequence) can be inserted by

setting FLUSHMARGIN equal the required duration.

Setting the EXTRABUTTON variable adds an extra button to the ASource widget . When the

button is pressed, ASource sends a string to the output buffer of the form “ASource::ButtonName”.

6.1.2 Run-Time Commands

In addition to the standard “suspend()”, “resume()”, and “terminate()” commands, the audio source

object supports the following run-time commands:

Command Description

start() Start input sampling (or start reading next input file)

stop() Stop input sampling

startout(ss) Start the outputting the message with sequence number ss

abortout() Abort the output audio

muteout() Reduce the volume of the output audio from the NORMAL

volume to MUTEDVOLUME (see config variables)

unmuteout() Restore output audio to NORMALVOLUME

statusout() Returns the command “playing()” or “idle()” to the caller

The effect of executing the start and stop commands is identical to pressing the Volume Meter

start/stop button ie the audio capture is started and stopped, respectively. In addition, when the start

command of an ASource component called “AIn” is executed, a string packet is sent to the output

containing the marker “AIN::START”. Similarly, when a stop command is executed, the marker

“AIN::STOP” is sent. As noted above, when reading from a file, the name of the file is appended to

the preceding start marker.

Audio output is sent to an ASource component via a buffer and controlled by sending commands

to ASource’s message interface. The state of the output is indicated by “ack” messages returned to the

component controlling the output. Each chunk of audio output must be given a sequence number. It is

entered into ASource’s speech output buffer in the form of a string packet containing the string

“ss:nnnn” where ss is the sequence number, followed by nnnn samples of waveform data stored in one

or more waveform packets. Audio output is started by sending the command “startout(ss)” and

ASource will reply by sending the “started()” command if all is ok, otherwise it returns “error()” via

the ack buffer. When output finishes normally, the command “finished()” is returned. Output can be

aborted by sending the “abortout()” command to which the response will be “aborted()” or “idle()”

depending on whether the audio output was still in progress. The status of the audio output can be

determined at any time by sending the “statusout()” command which returns either “playing()” or

“idle()”. All ack responses also have three arguments: sequence number, samples played and total

samples.

 31

6.1.3 Programming
Initialising the audio source requires only that the constructor be given a name and a pointer to the

input waveform packet buffer. For example, the following creates an audio source called “audio”

// Create audio input buffer

ABuffer *auIn = new ABuffer("auIn");

// Create Source

ASource *audio = new ASource("audio",auIn);

Once created, the source is started in the normal way, ie.

audio->Start();

The sample rate of a source can be found using the method GetSampPeriod. This returns a HTK-

style time (ie a floating point number representing time in 100ns units).

In addition to the above, ASource provides two specialist constructors. Firstly, the volume

indicator used in the stand-alone display window can be incorporated into another (HGraf) window

using the constructor:

ASource *audio = new ASource("embeddedAudio", auIn, win,cx0,cy0,cx1,cy1);

This will create an ASource object called " embeddedAudio " with input buffer auIn. It will also

create and display a volume control in the rectangle defined by cx0,cy0,cx1,cy1. Note that when

using this form of the ASource constructor the configuration variable SHOWVM should be set false.

The second specialist constructor has the form

ASource *audio = new ASource("filesrc", auIn, "filelist");

where "filelist" serves the same function as setting the WAVELIST configuration variable. It is

provided to allow filelists to be supplied from the command line (see for example the AVite sample

application in section 10.1).

If audio output is required, the output buffer and the associated ack buffer must be added to the

ASource object as follows

// Create additional buffers for output

ABuffer *auOut = new ABuffer("auOut");

ABuffer *auAck = new ABuffer(“auAck”);

audio->OpenOutput(auOut, auAck, sampPeriod);

Once audio->Start() has been called, output packets can be put into auOut and then audio output

activated by sending the message the “startout” command. For example, if wavepkt is a packet

containing 1200 samples of audio waveform, this could be output as follows:

 32

AStringData *hdr = new AStringData(“01:1200”);

APacket hdrpkt(hdr); // header packet must precede wave output data

auOut->PutPacket(hdrpkt); auOut-> PutPacket(wavepkt);

audio->SendMessage(“startout(1)”);

6.2 Coder (ACode)

The function of an ACode component is to convert speech waveform data into feature vectors.

ACode gathers incoming wave packets and passes them to the HTK module HParm to convert them

to feature vectors. Thus, setting up ACode mostly involves setting up the relevant HParm

configuration variables. ATK uses a special version of HParm which is functionally similar to the

standard HTK module working in buffer mode. However, the implementation of silence detection is

different and ATK's HParm also supports real-time cepstral mean normalisation. For the latter, a

default cepstral mean vector 0 is loaded initially and then a running average cepstral mean is

computed using

' = (- x) + x

where ' is the updated cepstral mean, x is the input cepstral vector and is a time constant.

Figure 10 - ACode FeatureGram Display

As illustrated by Figure 10, an ACode component can optionally generate a grey scale

featuregram display.
15

 This display scrolls from right to left during processing. Each vertical stripe

represents the amplitude of each component in a single feature vector, indexed from the top

downwards. The green/yellow bar at the bottom of the display indicates the speech/silence decision. A

vertical green bar indicates the receipt of a start marker from the audio source, and a vertical red bar

indicates the receipt of a stop marker. Underneath the scrolling feature-gram display, the feature kind

and the current time are displayed. Next to the time is shown the status of the HParm parameter

buffer: normally this will show as either yellow to indicate that it is calibrating the silence detector or

green to indicate that it is running normally. At the bottom of the display, the current silence detector

settings are listed. The latter can be recomputed, by pressing the calibrate button.

15

 Note that the fonts used in ATK component displays may vary from those shown here.

 33

6.2.1 Configuration Variables

The configuration variables available for setting up ACode are shown in the table below. The ACode

specific variables are mostly concerned with specifying the size and location of the feature-gram

display. By default all features will be displayed including any delta and delta-delta coefficients, the

variable MAXFEATS can be used to restrict the display to the first few features. For example, in a

conventional 39 feature MFCC_E_D_A type front-end, setting MAXFEATS to 13 would limit the

display to just showing the static features. NUMSTREAMS is used to set the number of feature

streams (usually 1).

CALWINDOW is used to set the number of speech frames to include in the speech/silence

detector calibration window. This is the window over which a histogram of energy levels is computed,

silence identified and its energy level measured. The actual speech/silence detection threshold is set to

SPEECHTHRESH + sil where sil represents the energy in silence as determined by the calibration

procedure. SILDISCARD is an energy threshold below which frames are ignored. This is useful if the

source can generate very low values (eg all zeros) which should not be mistaken for background

silence. SPCSEQCOUNT and SILSEQCOUNT determine the windows over which the signal must be

designated as speech or silence respectively, in order to change the current speech/silence

classification.

If the speech coding includes "_Z", then cepstral mean subtraction must be applied. To enable

such a mean to be computed in real time, ACode first loads a default mean vector from the file named

by CMNDEFAULT. This file must contain a cepstral mean vector (static coefficients only) of the form

<MEAN> 13

6.34 -4.25 2.01

that is it consists of the label "<MEAN>" followed by the number of elements in the vector (13 in the

example above) followed by the vector itself. In operation, this mean is updated every input frame

according to the formula given above where the time constant is set by CMNTCONST. To prevent

a mean being estimated from too little data, updating only starts once CMNMINFRAMES have been

processed. Finally, when a STOP marker is received via the wave packet input buffer, it is sometimes

appropriate (eg when testing on a set of pre-recorded speech files) to reset the cepstral mean vector

back to the default and also reset the frame count. CMNRESETONSTOP enables this.

It is also possible to supply separate configuration variables for each instantiation of ACode.

An ACode object can be given a different parameterisation module name via the constructor. If no

parameterisation name is supplied, the default value of “HPARM” will be used instead. Any

configuration variable not preceded by a module name (e.g. “TARGETRATE=10000” rather than

“MPARM:TARGETRATE=10000”) will be used by all ACode instantiations.

The remaining configuration variables in the table are all described in the HTK book.
16

Module Variable Default Meaning

 TARGETRATE 10000* set the sampling rate (in 100ns units)

HPARM TARGETKIND MFCC_E_D_A_N* set the coded feature kind

HPARM ENORMALISE FALSE* dont attempt to normalise energy

HPARM NUMCHANS 22* number of filter bank channels

HPARM NUMCEPS 12* number of cepstral coefficients

HPARM CALWINDOW 40* num frames to calibrate spdet

HPARM SPEECHTHRESH 10.0* threshold relative to the estimated silence

level above which signal is deemed to be

speech

16

 But remember that ATK uses a special version of HParm which has more efficient buffer handling, a

different silence detection/calibration strategy and running-average cepstral mean normalisation.

 34

HPARM SILDISCARD 10.0* ignore frames with lower energy

HPARM SPCSEQCOUNT 10* num frames needed with energy above

detector threshold in sequence in order to

classify the incoming audio as speech

HPARM SILSEQCOUNT 100* num frames needed with energy below

detector threshold in sequence in order to

classify the incoming audio as silence

HPARM SPCGLCHCOUNT 0* when looking for SILSEQCOUNT

frames with energy below threshold,

max number of frames above threshold

which can be ignored

HPARM SILGLCHCOUNT 2* when looking for SPCSEQCOUNT

frames with energy above threshold,

max number of frames below threshold

which can be ignored

HPARM CMNDEFAULT "" name of file holding the default cepstral

mean vector

HPARM CMNMINFRAMES 10 minimum number of frames required

before updating of the running average

starts

HPARM CMNTCONST 0.995 running average time constant

HPARM CMNRESETONSTOP T reset the running cepstral mean to the

default value, and set frame counter to 0

every time a STOP packet is received via

input wave packet buffer

ACODE NUMSTREAMS 1 number of streams

ACODE DISPSHOW T enable featuregram display

ACODE DISPXORIGIN 420 top-left x origin of FG display

ACODE DISPYORIGIN 80 top-left y origin of FG display

ACODE DISPHEIGHT 220 FG display height

ACODE DISPWIDTH 400 FG display width

ACODE MAXFEATS 1000 Max number of features to display

6.2.2 Run-Time Commands

In addition to the standard “suspend()”, “resume()”, and “terminate()” commands, the coder object

supports the following run-time commands:

Command Description

calibrate() Calibrate the speech/silence detector

resetcmn() Reset the cepstral mean back to its default value

The effect of executing the "calibrate()" command is identical to pressing the FG Calibrate button. The

"resetcmn()" command forces the running cepstral mean to be reset back to its default value i.e. it is the

same as the coder receiving a STOP packet when CMNRESETONSTOP is set true.

 35

6.2.3 Programming

Initialising a coder object requires only that the constructor be given a name and pointers to the input

waveform packet buffer and the output observation packet buffer. All of the detailed configuration is

determined from the configuration file.

For example, the following creates a coder object called “ACode”

// Create Input/Output Buffers

ABuffer *auChan = new ABuffer("auChan");

ABuffer *feChan = new ABuffer ("feChan");

// Create a coder object called ACode

ACode acode("ACode",auChan,feChan);

As mentioned previously, it is possible to supply a parameterisation name for an ACode object via the

constructor:

 ACode acode("ACode", auChan, feChan, "MYPRM");

The fourth argument is a string containing the configuration name to be used. In this case, the coder

will be initialised using all variables preceded by “MYPRM:”, eg “MYPRM:TARGETRATE=10000”.

Once created, the coder is started in the normal way, ie.

 acode.Start();

Since it is possible to embed an input transform as a macro in the HMM macro set, it is also possible to

register the hmm with the coder. This is only required if the HLDA transform is included in the model

set
17

.

AHmms *hset = new AHmms("HmmSet");
acode.SetCodeHMMSet(hset);

The ACode class has no other methods for manipulating an ACode object. However, it does provide a

method called GetSpecimen for providing a specimen observation data container (type AObsData).

This method is used to enable the compatibility of potential consumers to be checked (see section 7.4).

17

 The standard practice is to load input transforms from a seperate file which has been specified in the

configuration file (eg HPARM:MATTRANFN=”transformfile”)

 36

6.3 Recogniser (ARec)

The ARec component provides similar functionality to the standard HTK Viterbi decoder
18

. It is

supplied with a resource group containing the required HMMSet, dictionary, a grammar, and optionally

an n-gram language model. It then decodes incoming feature vectors accordingly.

An ARec component can optionally generate a display of the form illustrated in Figure 11.
19

 The

main part of this display is a scrolling record of each recognised utterance prepended by the time it

started. The smaller panel below the scrolling list displays the currently recognised utterance. This is

updated in real-time as the recognition proceeds to show the current best hypothesis. Finally, at the

bottom of the display are various status indicators: the recogniser status, the current time, a score

indication, the identity of the best current HMM, the number of active models and the current operating

mode.

Figure 11 - ARec Recogniser Display

In operation, the recogniser is always in one of five possible states as indicated by the following table

and the state diagram shown in Figure 12. The recogniser changes state, dependent on the settings of

the operating modes listed in the following table. The ARec display shows the current mode as a

sequence of 4 characters: representing the settings for CYCLE(1=oneshot, C=continuous), FLUSH

(I=immed, M=tomark, S=tospeech), STOP(I=immed, M=tomark, S=tosilence), RESULTS (I=immed,

A=asap, E=atend, X=all).

Status Indicator Meaning

WAIT Red Idle state

PRIME Orange Initialised but not running

FLUSH Yellow Flushing input packets

RUN Green Recognising

ANS Mauve Computing a recognition result

18

 The standard HTK decoder (ie HVite) is built on two main HTK library modules HNet and HRec.

These latter two modules have been significantly extended in ATK to provide full tri-gram language

model support, background model-based confidence scoring and additional lattice processing

functions.
19

 Note that the fonts used in ATK component displays may vary.

 37

Mode Options Flag Meaning

CYCLE

oneshot (1) 0001 return to WAIT state after ANS state

continuous(C) 0002 return to PRIME state after ANS state

FLUSH

immed (I) 0010 move immediately to RUN state from FLUSH state

to mark (M) 0020 discard input until START marker found, then move to RUN state

to speech (S) 0040 discard input until speech frame received, then move to RUN state

STOP

immed (I) 0100 stop recognising and move immediately from RUN state to ANS

state

at mark (M) 0200 stop recognising when STOP marker received and move to ANS

state

at silence (S) 0400 stop when silence observation received and move to ANS state

RESULT

at end (E) 1000 output full results when in ANS state

immed (I) 2000 output best guess in RUN state, this may be updated later

asap (A) 4000 output results in RUN state as soon as disambiguated

all (X) 7000 output as much information as possible

On creation, an ARec object is placed in the WAIT state. When in the WAIT state, the recogniser

waits for a “Start()” command to be issued via its command interface. When this Start() command is

received, the recogniser moves to the PRIME state in which it loads the recognition resources specified

by the current resource group. It then moves immediately to the FLUSH state where it takes packets

from its input buffer and discards them until it is ready to start recognising as determined by the flush

mode setting. This can either be immediately, when a START marker is received or as soon as the

incoming observation packet has a frame marked as speech. Once, in the RUN state, the recogniser

recognises incoming packets until either a STOP marker is received, a speech frame is received which

is marked as silence or a Stop() command is issued. In the ANS state, the recogniser cleans up the

recognition processing and then returns to either the WAIT or PRIME states depending on the setting

of the CYCLE mode.

WAIT PRIME FLUSH RUN

ANS

idle
discard

packets
recognise

packets

Start()

Stop()

load

resources

compute

answers

oneshot

mode

continuous

mode

STOP_IMMED or

STOP marker received or

Silence Frame received or

Stop()

RUN_IMMED or

START marker received or

Speech Frame received

Figure 12 – ARec recogniser state transition diagram

 38

The recogniser sends results to its output buffer in the form of phrase packets . As described

earlier in section 2.7, phrase packets can contain start and stop markers, words, null nodes, open tag

markers and close tag markers. The start and stop markers are generated automatically and the

remainder depend on the recognition grammar (see section 7.3). Thus, a user input of “I want three

pizzas” might be returned by the recogniser output as a sequence of 8 separate packets as shown in

Figure 13 where the arrows indicate that the predecessor field of the packet refers back to the sequence

number of the preceding packet and where the quantity “THREE” has been bracketed and marked with

the semantic tag “qty”. Note that words and nulls can also have semantic tags although none are

shown here.

Figure 13 - Example of simple 1-best ASR output

When in the RUN state and the asap RESULT flag is set, the recogniser performs partial

traceback every few input frames (determined by the TRBAKFREQ configuration variable – see

below). Result packets sent in this mode are guaranteed to be correct. When the recogniser moves to

the ANS state, it computes the final recognition hypothesis and returns any remaining packets which

have not already been sent. If the asap flag is not set, then all of the phrase packets are sent on

completion with the one exception of the start packet which is always sent immediately the recogniser

enters RUN mode. Thus, from the applications point of view, the sequence of phrase packets received

back from the recogniser will be the same whether or not the asap flag is set. The only difference is

that the early parts of the utterance may be returned before the speaker has stopped speaking when the

asap flag is set. These early results are obtained at the cost of a small increase in computational load.

When the immed flag is set, then the recogniser returns its current best guess as it progresses

through the utterance. In this case, the application may receive multiple phrase packets covering the

same segment of the utterance since an early hypothesis which scores well initially is not guaranteed to

be part of the final best global hypothesis. In this case, it is up to the application to decide how to

interpret the information. In general, the immed mode is only useful for displaying progress

information.
20

When the recogniser is set to generate N-best output, then each hypothesis n is returned within

enclosing brackets tagged with “n/N”. The alt field of each opening bracket refers to the next

alternative in the list. A simple example is shown in Figure 14. Note that apart from the start and end

packets which are always returned first and last, the order in which all other packets are returned to the

application is not defined. Hence, the application must ensure that it checks the sequence numbers and

links and reassembles the N-best lists properly. Currently the recogniser will only output n-best

information at the sentence end. That is, n-best recognition will only work with the atend flag set.

20

 For example, ARec uses the immed mode to drive its display.

 39

Figure 14 – ASR format for returning N-best lists

6.3.1 Configuration Variables

The ARec configuration variables are listed in the following table. They are mostly concerned with

setting the display dimensions and the recognition parameters as described in the documentation for

HVite in the HTK Book. Otherwise, the RUNMODE variable is used to specify the initial run mode of

the recogniser and the GRPNAME variable can be used to specify a default resource group. This is

over-ridden by the usegrp() command described below in section 6.3.2. The TRBAKFREQ variable

sets the frequency with which traceback for the asap and immed modes described above should be

computed. Finally, the configuration variables CONFOFFSET, CONFSCALE, CONFBGHMM and

CONFMEMSIZE are concerned with computing word confidence measures and these are described in

the next section.

Module Variable Default Meaning

AREC DISPSHOW T display recognition processing and status

AREC DISPXORIGIN 420 top-left X coord of RD Window

AREC DISPYORIGIN 280 top-left Y coord of RD Window

AREC DISPHEIGHT 120 height of display window

AREC DISPWIDTH 400 width of display window

AREC TRBAKFREQ 1 default traceback freq for RD

AREC NTOKS 1 number of tokens (>1 for trigram language

models and/or multiple hypotheses)

AREC LMSCALE 1.0 grammar network scale factor

AREC NGSCALE 0.0 n-gram language model scale factor

AREC PRSCALE 1.0 pronunciation scale factor

AREC WORDPEN 0.0 word insertion penalty

AREC GENBEAM 225.0 general beam width

 40

AREC WORDBEAM 175.0 word beam width

AREC NBEAM 225.0 n-best token beam width

AREC MAXBEAM 0 max number of active nodes (0=disabled)

AREC RUNMODE 01222 set run mode (atend+cont+tomark+atmark)

AREC GRPNAME “” default resource group name

AREC NBEST 0 n-best output at utterance end

HNET ALLOWCXTEXP T* Allow phone context expansion

HNET ALLOWXWRDEXP F* Allow cross word triphone expansion

HNET FORCECXTEXP F* Force phone context expansion

HREC FORCEOUT F* force output even when no best path

HREC CONFSCALE 0.15 confidence measure scale factor

HREC CONFOFFSET 0.0 confidence measure offset factor

HREC CONFBGHMM "" background HMM for confidence measure

HREC CONFMEMSIZE 2000 # frames to retain for confidence measure

Setting NBEST greater than 0 will enable N-best output. Although there is no external difference

between setting NBEST = 0 and NBEST = 1, internally the latter involves some extra computation and

should be avoided.

6.3.2 Confidence Scoring

ARec supports a simple method of confidence scoring. Every frame, the acoustic log likelihood (ie

acoustic score) of the best matching model state and the best matching background model state is

saved. When a word is recognised, these best-state and background state scores are summed to form a

best-possible-acoustic score (bs) and a background score (bg) over the segment of the waveform for

which the word is being hypothesised. A raw confidence score in the range -1 to 1 is then computed as

2

)(bgbs
acrawconf

where ac is the actual acoustic log likelihood of the word. The confidence for that word is then

computed as

xx

x

ee

e
conf

where x is the scaled rawconf score

 rawconfx .

The constant sets the slope of the confidence curve and sets the operating point. Their values are

set by the configuration parameters CONFSCALE and CONFOFFSET, respectively, with default

values of 0.15 and 0.0
21

.

The background model is usually stored in a separate HMM definition whose name is

determined by setting the configuration variable CONFBGHMM. Once loaded, this HMM is used to

21

 These values are good defaults for ZMFCC model sets.

 41

compute the background state probability. Note that the transition matrix of the background HMM is

completely ignored in this process. Instead, the probability of the current speech vector is computed

for each state of the background HMM, and the maximum log probability used as the background state

score. If no background model is loaded, then the average score across all model states is used as a

surrogate.

6.3.3 N-Gram Language Models

ATK can support N-gram language models. These must be read from a file (e.g. generated by the

HLM toolkit) and stored as an n-gram recognition resource object using the ANGram class. When an

instance of this class is included in a recognition resource group, the recogniser will give each new

word hypothesis w a language model score (ie a log probability) computed as

WordPenNGSCalehistwPLMScalelinkP)|(log)(log

Here P(link) represents the network transition probability attached to the link from the previous node to

current node and P(w|hist) represents the n-gram probability of the new word w given the preceding

one or two words (depending on whether a bigram or trigram language model is used). Note that

intervening null nodes are ignored by the n-gram model in computing word histories whereas the link

probability is not. In general, LMScale is set to 0 when an n-gram language model is being used but

there is no compulsion to do this.

6.3.4 Run-Time Commands

In addition to the standard “suspend()”, “resume()”, and “terminate()” commands, the ARec

recognition object supports the following run-time commands:

Command Description

start() If the recogniser is in the WAIT state, it moves to the PRIME state.

Otherwise the command is ignored

stop() If the recogniser is in the FLUSH state, it is returned immediately to the

WAIT or PRIME state depending on the CYCLE mode. If the recogniser

is in the RUN state, it is moved immediately to the ANS state.

setmode(m) The integer m is regarded as a set of flags with meanings as defined in the

mode table above. This command can be issued at any time and it will

have immediate effect. Note that if m has a leading 0, it is interpreted as

an octal number.

usegrp(grpname) Set the current resource group to grpname. This command can be issued at

any time, however, it will have no effect until the next time that the

recogniser moves to the PRIME state.

setnbest(n) Set the NBEST parameter to n. This allows the number of alternatives

returned by the recogniser to vary dynamically during use.

6.3.5 Programming

An ARec recognition component is instantiated with a name and pointers to an input buffer, an output

buffer and a resource manager. It has no methods other than the usual Start() method. The following

example shows the typical code used to instantiate and start a recogniser component

 42

ARec *arec = new ARec("ARec", feChan, ansChan, rman);

arec->Start();

The setting up and use of the resource manager is described in the next section.

6.4 Synthesis (ASyn)

The synthesiser component ASyn provides a simple generic interface to a text-to-speech synthesiser.

Speech is generated by simply sending a text string via a SendMessage command. This text string is

converted to a waveform and forwarded to the audio output component. In addition, ASyn provides

facilities to mute, unmute and abort the current output message. When any message is muted or

aborted, ASyn returns a message to the application given the last whole word output and the

percentage of the waveform output at that point. These features facilitate barge-in and provide an

application with the ability to decode the point at which the user barged-in. Thus, for example, an

application can output a list and know when a user barges-in with a response such as “I want that one”.

6.4.1 Configuration Variables

Apart from the standard TRACE variable, ASyn has no configuration variables.

6.4.2 Run-Time Commands

ASyn is controlled by sending SendMessage commands as given in the following table:

Command Description

talk(text) Synthesis and output text in spoken form

abort() Abort the current output message

mute() Reduce the volume of current output waveform

unmute() Restore the volume of the current output waveform

Every command is accompanied by an explicit acknowledgement message as shown in the following

table:

Command Normal Reply Error Reply

talk (text) started(ss,n) error(ss)

abort() aborted(ss,idx,word,ff) idle()

mute() muted(ss,idx,word,ff) idle()

unmute() unmuted(ss,idx,word,ff) idle()

(output finishes) finished(ss) --

where ss is an integer sequence number automatically generated by ASyn, n is the number of samples

in the output waveform, idx is the index of the last word output at the point of aborting or muting (the

first word is index 1), word is the word itself and ff is a floating point number giving the percentage of

the waveform output at the point of aborting or muting.

 43

To generate an output utterance, the “talk()” command is used. For example,

syn->SendMessage(“talk(Hello world.)”);

would cause the synthesiser component syn to convert the supplied text string to audio and then send

the audio directly to the audio component. If all is well, it will also respond with a message of the form

“started(12,23056)”, where the first number 12 is the sequence number and the second is the number

of samples in the synthesised audio waveform. If an error occurs, then the message “error(12)” would

be returned instead. Eventually, when the complete waveform has been output, a further message

“finished(12)” will be sent to the application.

6.4.3 Programming

As explained above, an ASyn synthesis component uses the standard SendMessage interface for

receiving synthesis commands, however, since it also returns acknowledgments, a reply buffer must be

supplied. In addition it needs to be passed pointers to the two buffers that connect it to the audio device

and the audio component itself. Finally, it needs to be supplied with a pointer to an actual synthesiser.

ATK supplies an implementation of the Flite synthesiser which can be used for the latter.

ASyn has no methods other than the usual Start() method. The following example shows the

typical code used to instantiate and start a synthesiser component:

// configure an audio component

Buffer * waveIn = new ABuffer("waveIn"); // aud -> audio input

ASource * aud = new ASource("aud",waveIn);

// create a synthesisiser eg Flite

FSynthesiser *synDevice = new FSynthesiser();

// create buffers needed by ASyn

Buffer * waveOut = new ABuffer("waveOut"); // syn -> aud for synth playing

Buffer * synAck = new ABuffer("synAck"); // aud -> syn for acks

Buffer * synRep = new ABuffer("synRep"); // syn -> application replies

// finally create the ASyn component

ASyn *syn = new ASyn("syn", synRep, waveOut, synAck, aud, synDevice);

// … and start it

syn->Start();

Note that ASyn itself takes care of connecting the audio output buffer waveOut to the audio

component.

 44

7 Resources (ARMan)
The basic role and function of the resource manager ARMan was introduced in section 1. It maintains

a database of recognition resources. An application can create resources (HMMs, dictionaries and

grammars) and store them in the database. Once loaded, dictionary and grammar resources can be

saved, edited and restored.

Each stored resource can be made a member of one or more resource groups. At any one time,

the recogniser is using a HMM set and a network compiled from one specific resource group. If the

resource group is changed or if any member of the group is edited, the network is recompiled and

reloaded the next time the recogniser enters the PRIME state (see section 6.3).
22

Figure 15 illustrates typical use of ARMan. In this example, one HMM set, two dictionaries and

three grammars have been stored. These have then been assigned to two resource groups RG1 and

RG2 with Gram1 and HMMs belonging to both. Initially, the recogniser component ARec loads a

HMM set and a recognition network from resource group RG1. Later, a usegrp(RG2) command is sent

to the recogniser. The next time that the recogniser enters the PRIME state, it will compile a new

network representing RG2 and load it. If sometime later, the recogniser switches back to RG1, then it

will reload the previously computed network. If however, the application has edited, say Gram2, then

the recogniser will notice that Gram2 has been updated and it will recompile the network representing

RG1 before reloading it.

Gram 1

Gram 2

Gram3

Dict 1Dict

HMMs

Store

 HMMs

 dicts

 grams

OpenEdit

 edit cmds

CloseEdit

AVite

HMM

SetNet1 Net2

ARMan database
resource group

RG1 RG2

Figure 15 - ARMan Resource Database

7.1 Resources and Resource Groups
AResource is an abstract type from which concrete resources are derived. It provides a name for the

resource, a version identifier and a resource lock. It has no methods.

A resource group is represented by the ResourceGroup class. It provides methods for adding

resources to the group, and making a HMM set and a network from the group. When a resource group

contains more than one dictionary, they will be concatenated together in the order supplied. Any

duplicate entries replace existing ones. This allows a small application dictionary to be loaded on top

of a larger system dictionary to provide application dependent pronunciations. When a resource group

contains more than one grammar object, all of the grammar objects are combined together in parallel.

22

 The HMM set is however loaded just once and cannot be changed.

 45

7.1.1 Configuration Variables
The ARMan configuration variables are listed in the following table.

Module Variable Default Meaning

ARMAN AUTOSIL T enable the automatic addition of a silence

model at the start and end of the utterance

ARMAN TRACE 0 set tracing

When the AUTOSIL variable is true, a silence model is automatically inserted at the start and end of

the grammar. This is particularly useful when grammars are joined in parallel since it allows silence

before and after an utterance without introducing a set of parallel competing silences.

7.1.2 Programming
A resource group is created by calling the NewGroup method of ARMan. For example,

ARMan *rman = new ARMan();

ResourceGroup *rg1 = rman->NewGroup("RG1");

Once created, resources can be added to the group using the ResourceGroup methods AddXXX. For

example, RG1 in the Figure 15 would be populated by

rg1->AddHMMs(hmms);

rg1->AddDict(dict);

rg1->AddGram(gram1); rg1->AddGram(gram2);

where it is assumed that the individual resources had previously been created and added to rman, as in

for example

ADict *dict = new ADict("dict");

rman->StoreDict(dict);

Once a resource has been stored, then it can be found by name using the FindXXX methods. For

example,

ADict * d = rman->FindDict(“dict”);

would return a pointer to the dictionary object created above.

Once a group has been constituted, an ARec recogniser component can use it to create a HMM

set and a network by calling the MakeHMMSet and MakeNetwork methods of the group.

MakeHMMSet is called just once when the recogniser component starts. The first resource group

created within ARMan is designated as the “main” group and this is the group which is used to create

HMM sets. MakeNetwork is called every time that the recogniser enters the PRIME state. If there is

no configuration variable GRPNAME defined for the recogniser, then by default, the main group will

be used for network creation until a usegrp() run-time command is issued. The compiled networks are

saved inside the object to avoid unnecessary recompilation.

When MakeNetwork is called, every component and the group itself is locked. Thus, if an

application is currently editing a resource used by the currently active resource group, the recogniser

itself will block. It is up to the application to minimise this effect by minimising the time it locks

resources.

 46

In addition to the NewGroup command, ARMan also provides methods for returning a pointer to

the main group (MainGroup) and for finding a group by name (FindGroup).

7.2 Dictionary (ADict)
The ADict class is derived from the abstract Resource class and an instance of the ADict class is used

to store a pronunciation dictionary. Logically a pronunciation dictionary can be viewed as a list of

word entries where each word entry contains the orthography for the word and a list of pronunciations.

Each pronunciation consists of a list of phones, a probability and an output symbol. The latter is

optional but if present, recognition output will use the output symbol rather than the word itself.

A dictionary can be created empty and then filled via programmed actions, or more commonly it

is loaded from an external file. In either case, a loaded dictionary can be edited by adding/deleting

words and changing the pronunciations of existing words.

7.2.1 Configuration Variables

An ADict object supports the following configuration variables, as always, the module name ADICT in

the following table should be replaced by the object’s instance name

Module Variable Default Meaning

ADICT DICTFILE “” name of external dictionary file to load from

ADICT TRACE 0 set tracing

7.2.2 Programming
Two constructors are provided for dictionary objects,

ADict *dict = new ADict(“name”);

This creates a dictionary object called “name”. If there is a DICTFILE configuration variable set for

this instance, then the dictionary object will be loaded from the named file. Otherwise, an empty

dictionary object will be created. Alternatively, an external load file can be named directly as in

ADict *dict = new ADict(“places”, “dicts/placenames”);

A dictionary consists of a set of WordEntry objects where each word entry consists of the word and

one or more pronunciations. Each pronunciation is represented by a Pronunciation object which

consists of a list of phones plus an output symbol and a probability. For example, the following code

adds the word “either” to the dictionary dict. The word has two pronunciations which are created first,

then a word entry object is created, passing the two pronunciations as arguments to the constructor.

Finally, the newly created word entry is actually added to the dictionary by calling the UpdateWord

method of the dict object:

Pronunciation p1(“either1",”iy dh ax”,0.6);

Pronunciation p2("either2",”ay dh ax”,0.4);

WordEntry *we = new WordEntry(“either”,p1,p2);

dict->OpenEdit();

dict->UpdateWord(we);

dict->CloseEdit();

 47

Notice in the above that, as is the case for all resources, any modifications to a dictionary object must

be bracketed by calls to OpenEdit and CloseEdit. These calls are necessary in order to prevent the

recogniser asynchronously using the dictionary whilst it is being edited. As with editing any kind of

resource object, the time during which a resource object is locked in this way should be minimised.

An existing word entry in the dictionary can be found using FindWord, modified if desired and then

the underlying HTK entry updated by calling UpdateWord. A word can be deleted using

RemoveWord. For example,

dict->OpenEdit();

WordEntry we = dict->FindWord(“zebra”);

dict->RemoveWord(&we);

dict->CloseEdit();

If FindWord fails because the word is not in the dictionary, then the corresponding HTK Word type

field “w” will be NULL. For example,

WordEntry we = dict.FindWord(“zebra”);

if (we.w == NULL) ... // “zebra” not in dictionary

For convenience any word can be tested for inclusion in the dictionary directly via the function

HasWord. For example the following is identical to the above

if (!dict->HasWord(“zebra”) ... // “zebra” is not in the dictionary

The data fields of the principal types (ie Pronunciation and WordEntry) used to represent

dictionary entries are public and can be manipulated directly. Apart from constructors and Show,

these types have no other methods. It is important to stress that the ATK data structures are just a

mirror of the underlying HTK data structures. If any changes are made to a word entry via ATK, then

the underlying HTK dictionary entry for that word must be synchronised by calling the dictionary

method UpdateWord.

7.3 Grammar (AGram)

A grammar object contains a grammar network defined in HTK SLF format. It consists of a set of

nodes connected by arcs (ie links) to form a finite state network. Nodes can hold a word, a call to a

sub-network, or they can be empty. The latter are called null nodes. Null nodes can be used to reduce

the number of links in a network, they can also be used to mark a point in the network with a semantic

tag.

All nodes can have an associated semantic tag. These are preserved by the recogniser and

returned with the recognition results. They are particularly useful for tagging phrases and recording the

identity of sub-networks which are called from different places for differing semantic purposes. For

example, a sub-network of place names could be used in a “to place” and a “from place” context. If the

first call is tagged with “toplace” and the second call is tagged with “fromplace” then the resulting

recognition results would be of the form “TO (Manchester)toplace FROM (Liverpool)fromplace”

avoiding the need for the application to re-parse the output.

7.3.1 Configuration Variables
An AGram object supports the following configuration variables, as always, the module name

AGRAM in the following table should be replaced by the instance name

 48

Module Variable Default Meaning

AGRAM GRAMFILE “” name of external grammar file to load from

AGRAM TRACE 0 set tracing

7.3.2 Programming

As in the case of dictionaries, two constructors are provided for grammar objects,

AGram *gram = new AGram(“name”);

creates a grammar object called “name”. If there is a GRAMFILE configuration variable set for this

instance, then the grammar object will be loaded from the named file. Otherwise, an empty grammar

object will be created. Alternatively, an external load file can be named directly as in

AGram *gram = new AGram(“digits”,”grams/digits.net”);

An empty grammar file is also created if the second argument is an empty string.

Editing of grammar files follows the same model as for dictionaries, except that the associated

types and methods are rather more complex. A grammar consists of a top-level network plus zero or

more sub-networks. In ATK both are represented by the same GramSubN type. Grammar editing

consists of finding or creating the appropriate subnet and then modifying its nodes and arcs. For

example, suppose the grammar file “digits.net” contained a single level digit grammar in which the ten

digits zero to nine are placed in a loop. It is required to modify this grammar by replacing the word

“zero” by a subnet tagged by “zero” and containing alternative ways of saying zero ie “zero”, “oh” and

“nought”.

The first step is to open gram for editing and create a new sub-network

gram->OpenEdit();

GramSubN * zeros = gram->NewSubN("zeros");

The required words “zero”, “oh” and “nought” can now be added to this subnetwork along with null

nodes for entry and exit using the NewXXXNode methods of the GramSubN class.

GramNode * zero = zeros->NewWordNode("zero");

GramNode * oh = zeros->NewWordNode("oh");

GramNode * nought = zeros->NewWordNode("nought");

GramNode * start = zeros->NewNullNode(0);

GramNode * end = zeros->NewNullNode(1);

The subnetwork is completed by adding arcs to link the entry nodes to the words, and the words to the

exit node.

zeros->AddLink(start, zero, 0.33); zeros->AddLink(start, oh, 0.33);

zeros->AddLink(start, nought, 0.33); zeros->AddLink(zero, end, 1.00);

zeros->AddLink(oh, end, 1.00); zeros->AddLink(nought, end, 1.00);

 49

The next step is to get the main top-level network which is always stored in the main field of the

grammar object instance, then find the word “zero” and its predecessor and successor nodes. For the

latter, it is assumed that there is only one predecessor and one successor

GramSubN *main = gram->main;

GramNode *wzero = main->FindbyWord("zero");

GramNode *s1 = wzero->pred.first(); // assume only one predecessor

GramNode *e1 = wzero->succ.first(); // and only one successor

Finally, the zero word node is deleted and replaced by the subnet tagged with zero

main->DeleteNode(wzero);

GramNode *subnet = main->NewCallNode(“zeros”,"zero");

main->AddLink(s1,subnet); main->AddLink(subnet,e1);

Finally, close the grammar object for editing

gram->CloseEdit();

The above illustrates the typical style of grammar operations and introduces some of the main methods.

In addition to FindbyWord, methods are provided to find a call node by name (FindbyCall), a null

node by its numeric id (FindbyNullId) and any node by its semantic tag (FindbyTag).

When a grammar is built from scratch, it is necessary to explicitly identify the start and end

nodes. This is done using the SetEnds method of GramSubN. SetEnds can be called with explicit

start and end nodes or it can be called with no arguments, in which case the start node is assumed to be

the one with no predecessor and the end node is assumed to be the one with no successor. The integrity

of a subnetwork can be checked using the IsBroken function which returns zero if the subnetwork is

well-formed otherwise it returns a positive error code. Finally, a subnetwork can be normalised by

calling the NormaliseProbs function. The application described in section 10.2 provides further

examples of manipulating grammars.

7.4 N-Gram Language Model (ANGram)
An N-Gram language model is loaded from a file in standard ARPA format as generated by the

HTK/HLM tools. Once loaded, an N-gram language model object cannot be further manipulated.

7.4.1 Configuration Variables
An ANGram object supports the following configuration variables, as always, the module name

ANGRAM in the following table should be replaced by the instance name

Module Variable Default Meaning

ANGRAM NGRAMFILE “” name of external n-gram file to load from

HLM RAWMITFORMAT F ignore HTK escaping conventions

HLM UPPERCASELM F convert LM to uppercase on loading

ANGRAM TRACE 0 set tracing

 50

7.4.2 Programming

As in the case of grammar objects, two constructors are provided for loading n-gram language models,

ANGram *ngram = new ANGram(“name”);

creates a n-gram language model object called “name” and loads an n-gram from the file specified by

the NGRAMFILE configuration variable. This configuration variable must be set for this instance

otherwise an error will be generated. Alternatively, an external load file can be specified directly as in

ANGram *ngram = new ANGram(“lm”,”mytrigram”);

Note that the default value for the n-gram language model scale factor (NGSCALE) is zero and must

therefore be set explicitly in the configuration file.

7.5 HMMSet (AHmms)

An instance of the AHmms class is used to store a HTK HMMSet and it is a required resource of every

HTK recogniser. Once created, a HMM set is currently a static object. ATK also supports the use of

HTK speaker adaptation transforms. Both MLLR and CMLLR transforms are implemented.

7.5.1 Configuration Variables

AHmms is supported by the following configuration variables

Module Variable Default Meaning

AHMMS HMMLIST “hmmlist” name of HMM list file

AHMMS HMMDIR “” name of directory to look for HMMs

AHMMS HMMEXT “” HMM file extension

AHMMS MMF[0-9] “” name of one or more MMF files

AHMMS XFORMNAME “” Name of model transforms

HMODEL ALLOWOTHERHMMS True allow mmfs to include hmm definitions not in

hmmlist

AHMMS TRACE 0 trace flag (see AHmms.cpp)

The AHmm configuration variables are the analogues of the corresponding command line arguments

used in HTK tools. Where MMF files are specified, they must be assigned to variables MMF0,

MMF1, etc in ascending order. The ALLOWOTHERHMMS configuration variable is used to allow or

disallow model sets to be loaded for which the HMM list specifies only a subset.

7.5.2 Programming

 A HMM set object is created simply by giving it a name. All of the detailed configuration is

determined from the configuration file. For example,

 51

AHmms *hset = new AHmms("myhmmset");

will create a HMM set configured according to the information given in the configuration file. The

HMM set object is essentially read-only. Once loaded, its basic properties can be determined by

calling one of AHmm’s GetXXX() methods, where XXX is

NumLogHMM Number of logical HMMs

NumPhyHMM Number of physical HMMs

NumStates Total Number of HMM states

NumSharedStates Total Number of shared states

NumMix Number of mixture components

NumSharedMix Number of shared mixture components

NumTransP Number of distinct transition matrices

ParmKind Parameter kind (should be same as for Coder)

Kind HMM set kind (normally SHAREDHS)

Compatibility of the loaded HMM set can be tested using the CheckCompatible method. For

example,

 AObsData *od = acode->GetSpecimen();

 if (hset->CheckCompatible(&(od->data))) // then ok

Here, specimen observation data is extracted from a coder object called acode and this is then checked

for compatibility with the HMM set object hset.

There is also an alternative constructor for HMM sets which names the MMF files and the value of

TRACE directly via parameters. This is used by AVite in order to allow these values to be set via

command line parameters analogous to HVite.

In order to use HTK-style transforms, the standard practice is to load the transforms from a

separate file which has been specified in the configuration file. For example, the config file might

contain a line such as

AHMMS: XFORMNAME=mytransforms

It is also possible to load or update the transforms by calling AddXForm. For example,

AHmms *hset = new AHmms(“HMMSET”);

hset->AddXForm(“mytransforms”);

 52

8 The AIO Asynchronous Input/Output Control
Component

As explained in section 1.2, the AIO component provides a packaged solution to implementing a basic

spoken dialogue system
23

. The structure it generates is shown in Figure 16. Internally, it also

implements a timer which is used to time-out requests to the user for information.

Figure 16 - Component structure of AIO

Once configured, AIO accepts SendMessage commands, and returns recognition results, time-

outs and synthesis status messages via a return buffer. The two basic commands are “ask(prompt)” and

“tell(prompt)”. Both cause the synthesiser to output the given prompt, however, “ask” additionally

activates the recogniser to take input from the user. AIO configures the audio and coder components to

be always on. When recognising, a two stage speech/silence detection strategy is adopted. When the

energy-based speech detector inside the coder detects speech, AIO starts listening. However, it does

not commit to recognising the audio input until a complete vocabulary word is recognised. This

mechanism is enhanced by supplying AIO with a list of filler words such as “um”, “er”, etc. These are

added in parallel with the application vocabulary and can be used to absorb unwanted back channel and

non-speech sounds made by the user.

AIO supports fully synchronous input and output which means that the user can barge-in and

speak at any time. However, when the application is expecting the user to speak following an “ask”

command, AIO starts a timer. If it has not received input when the timer expires, it sends a time-out

message to the application.

Each time an output prompt is completed, a notification is returned to the application. When the

recogniser is in listening mode, the output prompt is muted if the user appears to be barging in. Once, a

real word is recognised, the muted prompt is aborted. However, if the user input is a false alarm (eg

the user coughs), then the prompt is restored to full volume. Additionally, when the user does barge-in,

the point of interruption is returned to the application.

23

 Note that AIO is used in the statistical spoken dialogue systems developed by CUED and

demos are usually available for download from http://mi.eng.cam.ac.uk/research/dialogue.

 53

 In operation, AIO can optionally generate a status display as shown below in Figure 17. This

status bar consists of two scrolling coloured bars. The upper bar shows the status of the synthesiser and

the lower bar that of the recogniser. The meaning of the colours is explained in the figure.

Figure 17 - AIO Status Display

8.1 Configuration Variables

The AIO component provides the following configuration variables. Note that AIO makes use of two

simple subsidiary components ALog and ATee, which also need to be configured:

Module Variable Default Meaning

AIO DISPSHOW F Enable the status display

AIO DISPXORIGIN 420 top-left x origin of display

AIO DISPYORIGIN 80 top-left y origin of display

AIO DISPWIDTH 400 width of display panel

AIO DISPHEIGHT 220 height of display panel

AIO DISPSTEP 5 display scrolling step size

AIO DISABLEBARGEIN F disable barge-in

AIO LOGDATA F enable data logging if app supports it

AIO TIMEOUTPERIOD 3000 set recognition timeout period (msecs)

ALog LOGDIRNAME - directory to store log files

ALog HOSTID - name used to prefix session directory

ALog USERID name used to prefix log files

 54

8.2 Run-Time Commands

AIO is controlled by sending SendMessage commands as given in the following table:

Command Description

tell(prompt) Send given prompt to the synthesiser

ask(prompt) As for tell, but additional ly expect a respsonse

setgroup(rgroup) Set the given resource group in the embedded ARec component

closedown() Closedown all of AIO’s subcomponents

The messages returned to the application are as follows:

Message Description

synFinished() the synthesiser has stopped outputting current prompt

synInterrupted(idx,word,f) synthesiser was interrupted after idx’th word which

represents f percent of the waveform

asrTimeOut() the recogniser timed out following an ask command

terminated() the AIO component has been terminated

In addition, all phrase packets received from the recogniser which are considered to be valid

recognition results (eg filler words are not returned), are returned via the same buffer without

modification.

8.3 Programming

Typical code for initialising and invoking AIO in its simplest form is as follows:

// Create buffer to receive messages from AIO

inChan = new ABuffer("inChan");

// Create AIO instance

aio = new AIO("aio",inChan);

// Define filler words

aio->DefineFiller("ER"); aio->DefineFiller("SIL"); aio->DefineFiller("OH");

// Create Monitor, attach it to AIO and start them both

AMonitor *amon = new AMonitor();

aio->AttachMonitor(amon);

amon->Start(); aio->Start();

Note however that instantiating AIO in this way hides the recogniser from the application. This is fine

where the recogniser uses a static grammar defined in the configuration file, but otherwise it prevents

 55

the application from switching grammars on the fly. To allow the latter mode of operation, a resource

manager must be invoked separately by the application and then passed to AIO via its constructor. For

example, the following code is used in the ASDS example application (see section 10.3).

 // create a resource manager

 rman = new ARMan;

 // create global fixed resources

 hset = new AHmms("HmmSet");

 dict = new ADict("ADict");

 ggrm = new AGram("GGram","global.net");

 rman->StoreHMMs(hset);

 rman->StoreDict(dict);

 rman->StoreGram(ggrm);

 ResourceGroup *main = rman->NewGroup("main");

 main->AddHMMs(hset); main->AddDict(dict); main->AddGram(ggrm);

 // now we have resources, create aio

 aio = new AIO("aio",inChan,rman);

 aio->DefineFiller("ER");

 aio->DefineFiller("SIL");

 aio->DefineFiller("OH");

 // finally create Monitor and attach it to AIO

 amon = new AMonitor;

 aio->AttachMonitor(amon);

 56

9 Using ATK
This chapter draws together some of the main practical issues in using ATK. Most of the points

covered here have been mentioned previously but not in full detail.

9.1 Initialisation and Error Reporting

The HTK libraries which underlie ATK must be initialised before any other processing can take

place. As mentioned in section 5.1 there are two ways to do this depending on whether or not the

application is run from a terminal window or not.

Traditionally HTK software expects a terminal window, hence the standard initialisation is

performed by calling InitHTK, typically using the following incantation in the main program:

if (InitHTK(argc, argv,version)<SUCCESS){

 ReportErrors("Main",0); exit(-1);

}

With this method of initialisation, standard HTK command-line arguments can be passed to HShell. In

particular, the required configuration file must be passed explicitly when using this initialisation, eg a

typical invokation might be

atkprog -A -D -C config

When no terminal window is available, then HTK must be initialised as follows

if (NCInitHTK("config",version)<SUCCESS){

 ReportErrors("Main",0); exit(-1);

}

where in this case the configuration file name is given explicitly. This form causes all output generated

by printf to be printed on the Monitor display panel instead of the terminal. Note also that when using

this form, access to HShell's default command line parameter handling is lost.

Error handling throughout ATK/HTK uses the standard HShell function HRError in order to

report errors. This error function simply buffers an error message and low level routines typically

report an error via HRError and then return a failure code. At some point the higher level function

reports an error via HRError and then it raises an exception.

In order to display the chain of error messages resulting from an ATK/HTK exception, the top

level of every thread should be protected by an exception handler with catch statements for both

ATK_Error and HTK_Error i.e. every thread main should have the form

try {

 // main thread code here

}

catch (ATK_Error e){ ReportErrors("ATK",e.i); }

catch (HTK_Error e){ ReportErrors("HTK",e.i); }

where the ReportErrors function outputs all pending HRError messages and then exits.

9.2 No-Console Mode

As noted in the last section, when HTK is initialised using the NCInitHTK function, all subsequent

output from printf statements is displayed on the monitor panel instead of being sent to the terminal.

The way this works is that printf is renamed as ATKprintf via a global macro and ATKprintf sends all

of its output to a buffer associated with the calling thread. The monitor process (if running) notices

 57

when these buffers are updated (via a dedicated event) and copies the contents to its display panels.

Note that this only causes printf to be diverted in this way, if any code uses say fprintf(stdout, ...) or

C++ streams, the output will be lost.

One obvious implication of this is that a monitor component must be invoked in order to see any

diagnostic or error output from an ATK-based application running in no-console mode.

Although crude, use of this facility for non-console applications is strongly encouraged since

there are many ways for HTK to fail at the initialisation stage, and without a diagnostic message,

subsequent debugging of the set-up is virtually impossible.

9.3 Resource Incompatibility Issues

The representation of words in grammar files must match the representation of words in the dictionary

exactly. ATK does not do any case translation or fuzzy matching when attempting to find the

pronunciation for a word. If an N-Gram language model is also used, the representation of words in

the LM must also match exactly.

9.4 ATKLib and Test Programs

This document is not (and never will be) complete. It is always assumed that ATK programmers will

inspect the header files for the various ATK classes and occasionally inspect the implementations in

order to understand some of the detailed semantics.

As well as all the header and source files, the ATKLib directory in the software distribution also

contains a number of test programs which are good examples of simple ATK application programs.

All of these programs should be run in the Test directory inside ATKLib which contains the necessary

configuration files and resources.

The ATKLib test programs are:

TBase: this is a simple program which uses only the core ATK classes (ie APacket, ABuffer and

AComponent). When executed it displays 3 boxes called a, b and c holding red balls,

when you click on a box, one ball is moved to the next ball in the sequence. You can also

type a command into the monitor command box to create n new balls ("new(n)") or pass n

balls ("pass(n)"). Each box is in instance of ABalls which is a class derived from

AComponent. The tasks are connected by buffers in a round-robin fashion and each ball is

passed as a packet via the buffers. It is configured using the file TBase.cfg

TSource: this program creates a source component and reads its output buffer from main. The wave

packets generated are stored and displayed on the terminal as they are received. When the

source is stopped, the stored wave data is replayed (using HTK audio output). It is

configured using the file TSource.cfg

TCode: this program creates a source component and connects it to a coder component. It is

configured using the file TCode.cfg

TRec: this program creates a basic recogniser consisting of source, coder and recogniser. Packets

output by the recogniser are simply printed out by the main thread. It is configured using

the file TRec.cfg which loads resources stored locally in the Test directory. The grammar is

a simple digit dialing task allowing one to say "Dial 123 456" etc.

TGram: this program takes as argument the name of a word network file and randomly generates

conforming sentences. An option is provided to also load a dictionary, in which case, the

program lists all words used in the network which are not in the dictionary. As well as

testing AGram and resource handling, this program is also useful in application

development for checking out recognition grammars and dictionaries before using them.

TSyn: this program creates a source component and connects it to a synthesiser component. It

repeatedly sends prompts to the synthesiser, enables audio input and then randomly issues

mute and abort requests. It is configured using the file TSyn.cfg

TIO: this program configures the AIO component to implement a simple digit dialing task with

barge-in. It is configured using the file TIO.cfg

 58

9.5 Using ATK with Windows MFC

ATK can be used with Microsoft's Foundation Classes (MFC) and since MFC applications have no

concept of a terminal, this is obviously a case where NCInitHTK must be used.

The major problem with integrating MFC and ATK is connecting the recogniser's output buffer to

the users widget class (typically a CDialog class). The problem arises because MFC is entirely event

driven and hence, recognition output can only be read by an event-driven handler. However,

unfortunately thread events in MFC can only be handled by CWinThread classes (for the very good

reason that MFC has no information as to which window to send the event to). This section offers

some advice on how to deal with this issue - it assumes that the reader is familiar with MFC

programming.

A strategy for using ATK in MFC applications is as follows. Assuming that a recogniser is

created by:

arec = new ARec("ARec",feChan,ansChan,rman);

output from arec will be in the form of packets sent to ansChan. If the call

ansChan->RequestBufferEvents(ANSCHANNEL);

is made, then an event defined by

#define WM_HTBUFFER 9998

will be generated each time that a packet is put into ansChan. A handler for this event should be

declared as follows:

afx_msg void OnATKBuffer(UINT id);

the body would then look something like

void OnATKBuffer(UINT id)

{

 // find the actual interface obj and ansChan buffer

 ATKinterface *self = theApp.atkintf;

 ABuffer *bp = self->ansChan;

 // read the pending packets

 for (int i=0; i<bp->NumPackets(); i++){

 APacket p = bp->GetPacket();

 // process packet p

 }

 if (all_spoken_words_decoded){

 Execute_Spoken_Command();

 }

}

In order to get this handler to work properly, it must be in the CWinThread class hierarchy, eg in the

main app (see below). The event is linked to the handler by placing the following in the appropriate

message map:

ON_THREAD_MESSAGE(WM_HTBUFFER, OnATKBuffer)

All that remains now is to link this handler to the code in the user derived window class (derived

from CWnd and therefore not in the CWinThread hierarchy) where the results can be processed. In

MFC, class objects are instantiated dynamically at runtime using the DECLARE_DYNCREATE and

 59

IMPLEMENT_DYNCREATE macros. This means that it is not straightforward for one object to

locate another. Normally, MFC programmers are not concerned with this since the mapping of the

predefined message set handles all of this behind the scenes for them.

Although this is not Microsoft best practice, the simplest way to interface ATK to an MFC

application is to follow these guidelines:

a) define the needed ATK variables (eg asource, acode, arec, rman, etc) inside the main application

(i.e. directly inside theApp, perhaps wrapped in a class for convenience). For example, define a class

something like the following:

#define ANSCHANNEL 1

class ATKinterface

{

public:

 ATKinterface();

 ~ATKinterface();

 // Information Channels (plumbing)

 ABuffer *auChan; // carries audio from source to Coder

 ABuffer *feChan; // carries feat vecs from Coder to Recogniser

 ABuffer *ansChan; // carries answers from Rec back to Application

 // Active components (threads)

 ASource *ain; // audio source

 ACode *acode; // coder

 ARec *arec; // viterbi recogniser

 AMonitor *amon; // system monitor

 // Global resources (loaded from external files defined in config file)

 ARMan *rman; // resource manager for dict, grammars and HMMSet

 AHmms *hset; // HMM set is global since it never changes

 ADict *dict; // ditto dictionary (though it can be edited if desired)

 AGram *ggrm; // global default grammar

 // Operations

 // TODO add ops to create context specific grammars,

 // each with its own group name

 void StartRecogniser(char * groupname);

 // Load the specified group (ie grammar) and send start message to ARec

 // Message handler

 afx_msg void OnATKBuffer(UINT id);

 // this will be called everytime the recogniser puts a packet into ansChan

 // the id should be equal to ANSCHANNEL

};

and in the main application class include

 ATKinterface *atkinf;

and in theApp.InitInstance execute

 atkintf = new ATKinterface();

The constructor for ATKinterface can then allocate all of the objects and components as required.

Since the class instance is in the main App, it can be referred to from any other class in the application

by simply declaring theApp as an extern, and calling the required ATKinterface method directly, eg

 60

extern CMyApp theApp;

theApp.atkintf->StartRecogniser("main");

This same direct route can be used by any widget wishing to call any ATKinterface method including

for example inserting extra marker packets into the audio stream. Thus, a mouse click handler might

encode the click position into a string packet "clickinfo" and call

 theApp.atkintf->auChan->PutPacket(clickinfo);

The final question then is how to implement Execute_Spoken_Command(); ie, once a spoken

command has been decoded, how does the ATKinterface access a method in the appropriate CWnd or

CDialog class (CMyView, say)? There are several possibilities for this, depending on how ATK is

being used and what style of multi-modal interactions are being programmed:

a) Use CMyView::OnFirstUpdate() to initialise a pointer to itself called viewp (ie viewp =
this) in the ATKinterface. This pointer can then be used to access a method or post a

message

b) Use a call-back routine, eg by passing a function pointer as a second argument to

StartRecogniser.

c) Encode a pointer to CMyView in the packet inserted into auChan.

d) If the class name eg CMyView is known, use the RUNTIME_CLASS macros.

9.6 Tuning an ATK Recogniser

The real-time performance of an ATK-based recognition system depends on a variety of factors.:

a) type of acoustic model used, especially cross-word sensitivity and number of mixture

components. Note that using more mixture components does not necessary incur a speed

penalty since the extra precision can allow more aggressive pruning parameters.

b) type of grammar/language model constraints used. As with mixture components, the use of a

trigram language model may not carry a significant speed penalty if it substantially reduces

the task perplexity and allows more aggressive pruning

c) the number of tokens allowed per state. Multiple tokens are only needed when either a

trigram language model is used or multiple hypotheses are required
24

.

d) compilation optimisation.

However, as a guide, it should be possible in most cases to obtain real time performance or better on a

1GHz Pentium on tasks of around 1k word vocabulary, trigram language model and 6 mixture word

internal acoustic models.
25

To get the best performance for any given application the following steps are advised:

i. use an optimised version of the code (e.g. on Windows use the release rather than debug

version)

ii. set the pruning thresholds to be as low as possible without causing excessive search errors.

The default settings are a good place to start but do not rely on these.

iii. if multiple tokens are required, experiment with the number required for best performance.

Between 4 and 8 should be adequate to give good trigram language decoding.

24

 Note that although HRec computes multiple hypotheses, ATK does not yet provide a specific

mechanism for accessing them.
25

 Note that in order to retain flexibility and compatibility with HTK, ATK deliberately avoids many of

the optimisations performed in commercial speech recognisers. In particular, it computes Gaussians

exactly and makes no assumptions about the parameter kind. Also, it makes no assumptions about

recognition network topology.

 61

10 ATK Application Examples

10.1 AVite - an ATK-based version of HVite

AVite is designed for evaluating speech recognition performance on off-line test sets. It uses the

standard ATK ASource, ACode and ARec components to set up a recognition processing pipeline.

Its main purpose is to ensure that an ATK-based recognition system is giving similar recognition

performance to the equivalent off-line HTK-based system.

AVite implements a subset of the functionality provided by HVite and for most purposes it is plug-

compatible. The main limitations of AVite compared to HVite are that the input must be waveform

data, only continuous-density HMMs are supported, forced alignments at the model and state level are

not supported, adaptation is not supported and the output MLF formatting is limited to the HTK default

format (ie start, end, label, score) and the options S (suppress score) and N (normalise scores per

frame). In addition, AVite provides an output format flag F which causes the normal log probability

scores to be replaced by confidence scores (see 6.3.2).

AVite is invoked from the command-line in an identical fashion to HVite, i.e.

AVite [options] VocabFile HMMList DataFiles...

where VocabFile is the name of a dictionary, HMMList is a list of HMMs and DataFiles are the speech

files to test, the latter are normally listed in a .scp file input via the -S option. The supported options

are

-i s output transcriptions to MLF s

-g s load n-gram language model from file s

-o s output label formatting (F=conf scores, S=suppress, N=normalise)

-p f set inter-word transition penalty to f

-q f n-gram language model scale factor

-r f pronunciation scale factor

-s f set link grammar scale factor to f

-t f set genereral pruning threshold to f

-u i set the maximum number of active models to i

-v f set word end pruning threshold to f

-w s recognise from network defined in file s (recognition mode)

-A print command line args

-C cf load config file from cf

-D display configuration variables

-H mmf load hmm macro file mmf (NB at most 2 mmf files can be loaded)

-I mlf load master label file (alignment mode)

-S f set script file (.scp) to f

-T N set tracing to N

 62

For normal operation, a recognition network must be supplied via the –w option. If the –w option is

omitted and an mlf is supplied via the –I option, then AVite operates in alignment mode. Each speech

file must then have an entry in the mlf. Prior to recognising the file, this entry is used to construct a

linear recognition network consisting of the words in sequence. Thus, every file is recognised using its

own recognition network and that network forces a word level alignment.

In the absence of an N-gram language model, the results computed by AVite should be very similar to

those computed by HVite but they will not be identical for the following reasons:

a) AVite uses a special version of HParm which has no "table mode". When HParm computes delta

and delta-delta coefficients over a fixed utterance, it uses a modified formula for the final few frames.

Since AVite only works in "buffer mode", it uses an alternative strategy of padding the signal with

silence.

b) If the target parameterisation includes "_Z" then cepstral mean normalisation is required. HVite

calculates the cepstral mean on a per utterance basis by computing the mean over the whole utterance

and then subtracting it from every vector. AVite uses running average cepstral mean normalisation

and resets the running-mean back to the default at the start of every input utterance. Some adjustment

of the time constant set by CMNTCONST may be necessary to get satisfactory performance.

c) If an n-gram language model is used, then there is no direct comparison with HTK since the HTK

decoder does not support n-grams. Using a bi-gram language model with a word loop in ATK should

give similar results to using a bigram network and no language model in both HTK and ATK.

d) HTK uses a word-pair approximation when computing multiple hypotheses (i.e. when NTOKS > 1).

ATK computes multiple hypotheses using a trigram approximation.

10.2 Simple Spoken Dialogue System (SSDS)

SSDS is a simple demonstration dialogue system in the scenario of ordering a pizza over the telephone.

It is provided as an example of how user interations can be programmed in ATK and as an example of

grammar manipulation. It does not use the synthesis components but instead just sends text output to

the terminal.

SSDS is invoked using the configuration file called ssds.cfg as shown in the screen shot of

Figure 18. On starting, SSDS will display the standard ATK display windows. Press the start button

on the audio source volume meter and start answering the questions as shown in the screen shot.

SSDS's understanding of each response is printed after each question along with the confidence score.

If the latter falls below a threshold then a confirmation is requested, otherwise the system proceeds to

ask the next question. When both the type of pizza and the quantity are determined, the required order

is displayed and the cycle repeats. When confirming, the user can either say "Yes" or "No", or make a

correction such as "No, I want two pizzas". Also, at any time the user can say "Cancel" to start over,

"Repeat" to request that the question be repeated or "Help" to get help. The screen shot in Figure 18

and the corresponding recogniser display window in Figure 19 show a simple dialogue to order three

Ham and Cheese pizzas.

 63

Figure 18 Terminal window showing execution of the Simple SDS demo program

Figure 19 - Recogniser display corresponding to terminal window snapshot

A key part of this demonstration program is the way that the recognition grammars are constructed.

The underlying dialogue representation consists of a sequence of slots. Each slot has a value and a

status of {unknown, unconfirmed, grounded, cancelled}. In the program, each slot is an instance of

a QA class. The top level control consists of executing the GetSlot method of each QA instance in

turn. The GetSlot method uses an Ask method to ask for a value and a Check method to confirm and

possibly correct the current slot value. Each QA instance is provided with a prompt, a help string and a

grammar when created. The prompt is output when the Ask method is called and the grammar is used

to recognise the result. In addition, a global grammar containing the "Help/Cancel/Repeat" commands

is placed in parallel. As an example, Figure 20 shows the contents of the global grammar file

global.net and Figure 21 shows the slot specific grammar topping.net for determining the required

type of pizza. Note that the topping grammar uses standard preamble and postamble subnetworks

defined in global.net.

 64

command

main

HELP

CANCEL

REPEAT

command

YES

confirm

global.net

GIVE

ID

preamble

ME

LIKE

PLEASE

postamble

Figure 20 - global.net grammar file

preamble postambletopping

main

topping.net

HAM

CHEESE

AND

AND

PEPPERONI

CHEESE

TOMATO

HAM

topping

Figure 21 - topping.net grammar file

The grammar for confirmation and correction is synthesised within the program by inserting the

word "No" before the slot specific grammar and then placing the confirm grammar in parallel. The

result is the grammar network shown in Figure 22. Inspection of the constructor code QA::QA in

ssds.cpp will reveal that this synthesis requires just a few lines of code.

 65

main

NO

preamble postambletopping

confirm

Figure 22 - Synthesised confirmation and correction grammar

Finally, interpretation of the recognition results depends on identifying the semantic tags

corresponding to the subnetwork grammars and is straightforward.

10.3 Asynchronous Spoken Dialogue System (ASDS)

ASDS is similar to the SSDS pizza ordering dialogue system except that this version uses the AIO

asynchronous i/o component to give full speech input/output with barge-in. It is invoked in a similar

way to SSDS.

Note that when running this example, it is important to make sure that the audio output is not fed into

the audio input since ATK currently does not provide echo cancellation and when running in an “open-

mike” configuration, feedback from the output will trigger a false recognition.

 66

Index

abort(), 42

aborting speech output, 42

ACode, 32

configuration variables, 33

ACommandData, 15

AComponent, 21, 22, 23, 28

adaptation transforms, 51

AddArg, 15

AddComponent, 25

AddDict, 45

AddGram, 45

AddHMMs, 45

AddLink, 48

AddXForm, 51

ADict, 6, 46

AGram

configuration variables, 47, 49

programming, 48

AHmms, 6, 50

configuration variables, 50

AIO

barge-in, 52

filler words, 52

programming, 54

status display, 53

time-outs, 52

AIO, 52

ALLOWOTHERHMMS, 50

ALog, 6, 53

AMonitor, 25

ANGram, 7

programming, 50

ANS, 36

AnyPacket, 13

AObsData, 16

APacket, 13

APacketData, 13

APacketHeader, 13

APhraseData, 18

ARec, 16, 36, 44

configuration variables, 39

programming, 41, 43

state transition diagram, 37

AResource, 6, 44

ARMan, 7, 44

configuration variables, 45

example of use, 44

programming, 45

resource database, 44

ask(), 54

ASource, 28

asrTimeOut, 54

AStringData, 14

ASyn, 42

ATask, 22

ATee, 53

ATKinterface, 59

ATKprintf, 56

audio capture, 28

audio input, 28

audio output, 28

audio source

programming, 31

run-time commands, 30

AUTOSIL, 45

AVite, 61

AWaveData, 15

background HMM, 41

barge-in, 52

barge-in, 42

best-state, 40

buffer, 5, 14

blocking, 19

events, 20

filtering, 19

input/output, 23

message, 23

name, 19

size, 19

waveform packet, 31

calibrate(), 34

CALWINDOW, 33

cepstral mean normalisation, 32

time constant, 32

CheckCompatible, 51

ChkMessage, 23

class names

in config files, 29

closedown(), 54

CloseEdit, 47, 49

 67

CMNDEFAULT, 34

CMNMINFRAMES, 34

CMNRESETONSTOP, 34

CMNTCONST, 34

coder

programming, 35

run-time command, 34

command

run-time, 11

command interface, 19

component, 5, 21

monitor, 11

CONFBGHMM, 40

confidence scoring, 40

config file, 28

example of, 9

configuration variables

audio source, 29

coder, 33

grammar objects, 47, 49

HMM objects, 50

HParm, 33

monitor, 27, 53

CONFOFFSET, 40

CWinThread, 58

CYCLE, 37

DICTFILE, 46

dictionary, 6, 44, 46

case issues, 57

modification of, 47

display

featuregram, 32

DISPSTEP, 53

DLWIDTH, 27, 53

empty grammar, 48

ENORMALISE, 33

error reporting, 56

exception, 56

ExecCommand, 23

EXTRABUTTON, 29, 30

featuregram display, 32

FG Calibrate button, 34

FGHEIGHT, 34

FGWIDTH, 34

FGXORIGIN, 34

FGYORIGIN, 34

FindbyCall, 49

FindbyNullId, 49

FindbyTag, 49

FindbyWord, 48

FindComponent, 27

FindDict, 45

FindGram, 45

FindGroup, 46

FindHMMs, 45

FindWord, 47

flite, 5

FLUSH, 36, 37

FLUSHMARGIN, 29

FORCEOUT, 40

ForwardMessage, 23

GENBEAM, 39

GetCommand, 15

GetFirstKind, 19

GetFltArg, 23

GetInt, 15

GetIntArg, 23

GetPacket, 19

GetSampPeriod, 32

GetSpecimen, 35

GetStrArg, 23

GetString, 15

GRAMFILE, 48

grammar, 6, 44, 47

digit loop, 9

example networks, 63

examples of manipulation, 62

file editing, 48

operations, 12

GramSubN, 48

GRPNAME, 40, 45

HasWord, 47

HMM set, 6, 44, 50

compatibility of, 51

transforms, 51

HMMDIR, 50

HMMEXT, 50

HMMLIST, 50

HMMSet, 50

HPostMessage, 25

HRError, 56

HTK, 5

HThreads, 5, 21, 25

libraries, 5, 7, 28

observation, 16

SLF format, 47

 68

HVite. See AVite

InitHTK, 27

initialisation, 56

IsBroken, 49

IsEmpty, 19

IsFull, 19

IsNumber, 15

IsString, 15

Join, 21, 22

Kind, 51

LMSCALE, 39

lock, 25

LOGDATA, 53

main program, 22

MainGroup, 46

MakeHMMSet, 45

MakeNetwork, 45

MAXBEAM, 40

MAXFGFEATS, 34

message buffer, 23

MFC, 58

Microsoft MFC, 58

MMF, 50

monitor, 11, 25, 28

display, 25

indicator, 25

multicomponent system

structure of, 22

mute(), 42

MUTEDVOLUME, 29

muting speech output, 42

NBEAM, 40

N-best output, 17, 38

NCInitHTK, 27, 56

network, 7, 44

NewCallNode, 49

NewGroup, 45, 46

NewNullNode, 48

NewSubNet, 48

NewWordNode, 48

N-Gram, 7

n-gram language models, 41

NGRAMFILE, 49, 50

NGSCALE, 39

no terminal mode, 56

no-console mode, 26

NormaliseProbs, 49

NTOKS, 39

null nodes, 47

NUMCEPS, 33

NUMCHANS, 33

NumLogHMM, 51

NumMix, 51

NumPackets, 19

NumPhyHMM, 51

NumSharedMix, 51

NumSharedStates, 51

NumStates, 51

NUMSTREAMS, 34

OpenEdit, 47, 48

OpenTag, 17

packet, 5

answer, 8

assignment, 14

command, 15

empty, 14

EndTime, 13

filtering, 13

generic, 13

kind, 13, 14

lifetime, 14

memory management, 13

observation, 16

phrase, 16, 38

programming, 13

properties, 13

reference count, 13

Show, 14

StartTime, 13

string, 14, 19

wave data, 15

ParmKind, 51

PeekPacket, 19

performance testing, 61

performance tuning, 60

phrase

acoustic score, 17

alt sequence number, 17

CloseTag, 17

confidence score, 17

End, 17

language model score, 17

Null, 17

number of active models, 17

OpenTag, 17

Quit, 17

 69

sequence number, 17

Start, 17

tag, 17

total likelihood, 17

type, 17

word, 17

Word, 17

phrase packets

examples of, 38

PopPacket, 19

PRIME, 36, 44

printf

in no-console mode, 26

in no-terminal mode, 57

ProcessObservation, 16

Pronunciation, 46

PRSCALE, 39

PutPacket, 19

RAWMITFORMAT, 49

RDHEIGHT, 39

RDWIDTH, 39

RDXORIGIN, 39

RDYORIGIN, 39

recogniser

asap flag, 38

configuration variables, 39

display, 36

mode, 7, 36

results, 7, 38

run-time commands, 41

state, 36

RemoveNode, 49

RemoveWord, 47

ReportErrors, 56

resetcmn(), 34

resource

database, 7

group, 7

resource group, 44

switching, 12

resource groups, 44

resource lock, 44

resource manager, 44

configuration variables, 45

ResourceGroup, 44

resources, 6

RESULT, 37

resume(), 23

RUN, 36

RUNMODE, 40

runtime command

usegrp(), 39

run-time command

usegrp, 12

run-time commands

recogniser, 41

runtime commands, 23

run-time commands

audio source, 30

SALIGN, 40

sample period

of audio source, 32

semantic tag, 6, 47

SendMessage, 23, 25, 28

SetEnds, 49

SetFilter, 19

setgroup(), 54

setmode(), 41

SHOWFG, 34

SHOWRD, 39

SHOWVM, 29

signal

wait for, 25

SILDISCARD, 34

silence padding, 30

SILGLCHCOUNT, 34

SILSEQCOUNT, 34

simple dialogue system, 62

SLF format, 47

SOURCEFORMAT, 29

SOURCERATE, 29

SPCGLCHCOUNT, 34

SPCSEQCOUNT, 34

speech/silence detection, 16, 33

SPEECHTHRESH, 33

SSDS, 62, 65

Start, 21, 22

start(), 41

start/stop button, 28

statistical language models, 41

STOP, 37

stop(), 41

sub-network, 6, 47

suspend(), 23

synFinished, 54

synInterrupted, 54

 70

synthesis, 42

acknowledgements, 42

error replies, 42

programming, 43

Start() method, 43

synthesiser, 5

talk(), 42

TARGETKIND, 33

TARGETRATE, 33

task

running state, 25

signal state, 25

TBase, 27, 57

TCode, 57

tell(), 54

terminal mode, 56

terminal window, 56

terminate(), 23

test programs

TBase, 26, 57

TCode, 57

TGram, 57

TIO, 57

TRec, 57

TSource, 57

TSyn, 57

TGram, 57

thread, 5, 13, 21

time

units, 14

TIMEOUTPERIOD, 53

time-outs, 52

TIO, 57

TRACE, 45, 46, 48, 49, 50

TRBAKFREQ, 39

TRec, 57

tri-grams, 41

TSource, 57

TSyn, 57

TTS, 42

unmute(), 42

UpdateWord, 47

UpdateWord, 46

UPPERCASELM, 49

usegrp(), 12, 41, 44, 45

using ATK, 56

without a console, 56

version information, 10

virtual terminal, 26

VMHEIGHT, 29

VMWIDTH, 29

VMXORIGIN, 29

VMYORIGIN, 29

volume meter, 28

including in another window, 31

WAIT, 36

WAVEFILE, 29

waveform, 15

WAVELIST, 29

Windows, 5

word networks

testing, 57

WORDBEAM, 40

WordEntry, 46

WORDPEN, 39

XFORMNAME, 50

XORIGIN, 27, 53

YORIGIN, 27, 53

ZEROMEAN, 29

