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Bayesian Adaptive Inference and Adaptive Training
Kai Yu and Mark J. F. Gales

Abstract— Large vocabulary speech recognition systems are
often built using found data, such as broadcast news. In contrast
to carefully collected data, found data normally contains multiple
acoustic conditions, such as speaker or environmental noise.
Adaptive training is a powerful approach to build systems on
such data. Here transforms are used to represent the different
acoustic conditions and then a canonical model is trained given
this set of transforms. This paper describes a Bayesian framework
for adaptive training and inference. This framework addresses
some limitations of standard ML approaches. In contrast to the
standard approach, the adaptively trained system can be directly
used in unsupervised inference, rather than having to rely on
initial hypotheses being present. In addition, for limited adapta-
tion data, robust recognition performance can be obtained. The
limited data problem often occurs in testing as there is no control
over the amount of the adaptation data available. In contrast, for
adaptive training, it is possible to control the system complexity
to reflect the available data. Thus, the standard point estimates
may be used. As the integral associated with Bayesian adaptive
inference is intractable, various marginalisation approximations
are described, including a variational Bayes approximation. Both
batch and incremental modes of adaptive inference are discussed.
These approaches are applied to adaptive training of maximum
likelihood linear regression and evaluated on a large vocabulary
speech recognition task. Bayesian adaptive inference is shown to
significantly outperform standard approaches.

Index Terms— adaptive training, Bayesian inference, Bayesian
adaptation, incremental, variational Bayes

I. INTRODUCTION

ADAPTIVE training [1], [2] has become increasingly
popular as greater use has been made of found data, such

as broadcast news. For these forms of data, it is not possible to
control the “non-speech” acoustic conditions, such as speaker
or environmental noise, which affect the acoustic signals.
These changes in acoustic conditions lead to variabilities in the
signal that are not associated with the words uttered. Found
training data is thus highly non-homogeneous with multiple
acoustic conditions being present in the training corpus. One
approach for building systems on non-homogeneous data is
multi-style training [3]. Here all training data are treated as
a single block to train the HMMs, for example, speaker-
independent training. These multi-style systems model both
speech and non-speech variabilities. Alternatively, the non-
homogeneity of the training data may be handled by first
training a set of transforms, one for each of the acoustic
conditions (or homogeneous block). Then a canonical model is
trained given this set of transforms. This is adaptive training.

Adaptive training is usually derived from a maximum
likelihood (ML) perspective [1]. However, there are a number
of issues associated with using adaptively trained systems for
speech recognition, or inference. One problem is that the adap-
tively trained system cannot be directly used in unsupervised
inference. To use the canonical model for inference, a target

domain transform is required. For unsupervised inference,
the hypothesis to generate this transform is not available.
One approach to handle this problem is to use a multi-style
model, e.g. a speaker independent model, to generate an initial
hypothesis of the test data. Target domain transforms are then
estimated using the ML criterion with this initial hypothesis.
Another problem with the traditional framework is that if there
is only limited adaptation data, ML estimates of transforms are
not reliable and may be overly “tuned” to the initial hypothesis.

These problems may be addressed by interpreting adaptive
training and inference in a Bayesian framework [4]. Here, the
parameters of the system are treated as random variables. The
likelihood of the observation sequence is then obtained by
marginalising out over the parameter distributions. Though
this approach may be applied to both transform and model
parameters, in this paper only transform parameters are con-
sidered as random variables. This is because by controlling the
complexity of the system during training, for example, using a
minimum occupancy threshold when constructing the decision
tree and limiting the number of components and transforms,
the “sufficient data” assumption is good given the appropriate
complexity. With this assumption, the standard point estimates
used in adaptive training can be justified [4]. In contrast to
standard adaptive training, a transform prior distribution is
obtained during Bayesian adaptive training in addition to the
standard canonical model estimate. During adaptive inference,
as it is often not possible to control the amount of the adapta-
tion data, the “sufficient data” assumption may be poor. Hence,
the standard adaptation scheme with point estimate of trans-
forms may not work in the limited data case. Rather than using
the standard “adaptation-recognition” process, in Bayesian
adaptive inference an integrated scheme is adopted. The task is
to calculate the marginal likelihood of each possible hypothesis
by integrating out over the transform distribution associated
with each distinct hypothesis. This allows the canonical model
to be directly used in unsupervised mode inference and avoids
the over-tuning to the initial hypothesis. Furthermore, the use
of Bayesian approaches in inference effectively handles the
limited adaptation data problem due to the incorporation of the
transform distribution. Note, in this work, the point estimates
are used for the canonical model. Though discussed from an
ML perspective, this Bayesian adaptive inference framework
can also be extended to discriminative criteria.

The marginalisation integral over the transform distribution
is intractable due to the presence of the latent variables
associated with HMM. Two classes of approximations for
this integral are investigated in this paper. The first class
uses a lower bound to approximate the intractable marginal
likelihood in inference. An iterative process is used to make
this lower bound as tight as possible to the marginal likelihood.
Point estimates of transforms, such as maximum a posteriori
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(MAP) [5] and ML [6], sit within this class. Variational Bayes
(VB) [7] is another lower bound based Bayesian approxi-
mation approach. In VB a distribution over the parameters,
rather than a point estimate is used. This should lead to
more robust recognition performance than the point estimates.
VB has previously been applied to train distributions over
HMM model parameters [8]. As an application to simple
adaptation, VB was also used in [9] to train distributions
of a mean bias vector and a scaling factor in supervised
adaptation on an isolated words recognition task. However,
in contrast to this work, the VB approaches in [8] and [9]
were not consistent between training and inference. Instead, an
approximate approach, the frame-independent (FI) assumption,
was used in inference. This approach belongs to the second
class of approximation approaches discussed in this paper.
Approaches in this class do not involve an iterative process and
approximate the marginal likelihood directly. Hence they are
referred to as direct approximations. Sampling approaches are
one form of direct approximations [10]. The FI assumption has
previously been investigated for adaptation and also referred
to as Bayesian predictive adaptation [11], [12], [13]. Though a
distribution over the transform parameters, rather than a point
estimate, is used, the transform is allowed to effectively change
from frame to frame, possibly limiting performance gains. This
paper examines both lower bound and direct approaches. Both
incremental [14] and batch modes [4] Bayesian adaptive in-
ference are discussed. These general Bayesian approximations
are then applied to a specific transform: maximum likelihood
linear regression (MLLR) [6].

This paper is arranged as follows. Section II describes
adaptive training and inference within a Bayesian framework.
Section III discusses various approximation approaches to
calculate the intractable marginal likelihood. Incremental in-
ference is then described in section IV. Section V applies the
approximations to MLLR. Experiments on a conversational
telephone speech task, for both ML and discriminative models
are shown in section VI.

II. A BAYESIAN FRAMEWORK FOR ADAPTIVE TRAINING

AND ADAPTIVE INFERENCE

Adaptive training has become a popular technique to build
systems on non-homogeneous training data. It is normally
described in a ML framework. This section describes adaptive
training and inference from a Bayesian perspective.

A. Bayesian Adaptive Training

In adaptive training, two sets of parameters are used to
model the audio signal variabilities. A set of transforms is used
to represent non-speech variabilities for each homogeneous
data block and a canonical model is used to represent the
speech variability. First the training data is partitioned into
S blocks, O = {O(1), . . . ,O(S)}, where O

(s) represents
a homogeneous block associated with a particular acoustic
condition s. Treating the two sets of parameters as random
variables, the marginal likelihood can be expressed as

p(O|H) =

∫

M

p(O|H,M)p(M|Φ) dM (1)

where

p(O|H,M) =

S
∏

s=1

∫

T

p(O(s)|H(s),M, T )p(T |φ) dT (2)

p(M|Φ) and p(T |φ)1 are the prior distributions for the canon-
ical model M and transform parameters T respectively, Φ
and φ are hyper-parameters of the prior distributions, H =
{H(1), . . . ,H(S)} is the transcription sequence, where H(s)

is the transcription for homogeneous block s. Hidden Markov
models (HMMs), with Gaussian mixture model (GMM) as the
state output distributions, are used as the underlying acoustic
model. Thus

p(O(s)|H(s),M, T ) =
∑

θ

P (θ|M,H(s))
∏

t

p(ot|M, T , θt) (3)

where θ is the hidden Gaussian component sequence for
H(s), P (θ|M) is the distribution of a particular sequence θ,
p(ot|M, T , θt) is the Gaussian distribution at component θt,
ot is the observation vector at time t.

Adaptive training may be viewed as modifying the dy-
namic Bayesian network (DBN) associated with the acoustic
model. Figure 1 shows the comparison between a standard
HMM and an adaptive HMM. For HMMs, figure 1(a), the
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Fig. 1. Dynamic Bayesian network comparison between standard HMM and
adaptive HMM

observations are conditionally independent given the hidden
variables. In contrast, figure 1(b) shows the DBN for an
adaptive HMM. Here an additional level of dependency is
introduced, observations are also dependent on a transform.
Within a homogeneous data block, the transform is assumed
to be unchanged, thus, Tt = Tt+1. The DBNs given in
figure 1 can be used in various ways for training and inference.
Standard multi-style training and decoding is an example of
using the HMM DBN in both stages. It is also possible to use
the HMM DBN in training and the adaptive HMM DBN in
inference. This is similar to performing adaptation on multi-
style trained models. If the adaptive HMM DBN is used in
training, a canonical model representing the speech variability
is estimated given a set of transforms. Thus, the adaptive
HMM DBN must be used during inference. The effect of
different ways of using the DBNs for training and inference
will be illustrated in the experiments.

There is normally no prior model or transform information
available before training. Therefore, the prior distributions

1Though the distribution of the transform parameters is dependent on the
model set, for clarity of notation, this dependence has been dropped.
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of the two sets of parameters must be estimated using the
training data. Two issues need to be considered. First is the
form of the prior distribution. A preferable choice is to use a
conjugate prior to the likelihood of the complete data set when
performing expectation maximisation (EM) algorithm [7]. This
may result in tractable mathematical formulae. For example,
for mean-based transform such as MLLR [6], a Gaussian
distribution over the transform parameters is the conjugate
prior to the complete data set [15]2. The second issue is the
estimation of the hyper-parameters, once the prior form is
determined. They may be estimated using the empirical Bayes
approach [17], [18]. The basic idea is to maximise the marginal
likelihood in equations (1) and (2) with respect to the hyper-
parameters of both priors. Directly optimising these equations
is highly complex due to the existence of hidden variables.
Lower bounds may be introduced to make the optimisation fea-
sible. For the canonical model prior, introducing a variational
distribution q(M) and applying Jensen’s inequality yields a
lower bound of equation (1)

log p(O|H) ≥

〈

log
p(O|H,M)p(M|Φ)

q(M)

〉

q(M)

(4)

= 〈log p(O|H,M)〉q(M) − KL (q(M)||p(M|Φ)) (5)

where < f(x) >q(x)=
∫

x
f(x)q(x) dx denotes the expectation

of function f(x) with respect to the distribution of q(x),
KL(q(x)||p(x)) =

∫

x
q(x) log q(x)

p(x) dx is the Kullback Leibler
(KL) distance of two distributions. The above becomes equal-
ity when

q(M) = p(M|O,H,Φ) (6)

The KL distance is always positive unless the two distributions
are the same, in which case the distance is zero. Therefore,
from equations (5) and (6), the optimal canonical model prior
is obtained by choosing it to have the same functional form
and hyper-parameters as the posterior, as shown below

p(M|Φ) = p(M|O,H,Φ) (7)

Note that equation (7) is only possible if a conjugate prior
to the likelihood p(O|H) exists 3. Calculating the canonical
model posterior p(M|O,H,Φ) is still complex. This issue
will be addressed later.

The estimation of the transform prior is complicated due
to the homogeneity constraint. A separate variational trans-
form distribution is required for each homogeneous block s.
Applying Jensen’s inequality to equation (2) yields

log p(O|H,M) ≥
S

∑

s=1

〈

log p(O(s)|H(s),M, T )
〉

q(s)(T )

−
S

∑

s=1

KL

(

q(s)(T )||p(T |φ)
)

(8)

where equality is achieved when for each block

q(s)(T ) = p(T |O(s),H(s),M, φ) (9)

2For discussion about mixture priors, refer to [16].
3In the general case, where a conjugate prior does not exist, it is not possible

to set the KL divergence to zero in the lower bound (5). Optimizing the bound
is still valid, however the optimum will not satisfy equation (7).

As there are S transform posterior distributions, the KL
distance in equation (8) can not be simply minimised by setting
p(T |φ) equal to the posterior distributions as in equation (7).

When building speech recognition systems, it is possible to
control the complexity of the system being trained so that each
Gaussian component and transform have “sufficient data”.
For example minimum occupancies may be used during the
construction of decision tree to ensure robust canonical model
estimates and transforms may be shared among groups of
Gaussian components. With these complexity control schemes,
it is reasonable to assume that the variances of the parameter
posterior distributions are sufficiently small that they can be
approximated by a Dirac delta function. Hence

p(M|O,H,Φ) ≈ δ(M−M̂) (10)

p(T |O(s),H(s),M, φ) ≈ δ(T − T̂ (s)) (11)

where M̂ and T̂ (s) are point estimates of the two sets of
parameters. Considering equations (7) and (10) and using them
in equation (5), M̂ is the ML estimate given the sufficient data
assumption. Similarly, T̂ (s) is also the ML estimate. Hence,
the canonical model prior is a Dirac delta function with the ML
estimate as the mode. Using equation (11) in equation (8), it
can be shown that the hyper-parameters of the transform prior
can be estimated by [16]

φ̂ = arg max
φ

S
∑

s=1

log p(T̂ (s)|φ) (12)

To summarise, given sufficient training data, Bayesian adap-
tive training yields an ML estimate of canonical model and a
non-point transform prior distribution. The training involves
the following steps:

1) Interleave ML update of the canonical model and the
transforms for each homogeneous block. This is the
same procedure as the standard ML adaptive training
[1], [3].

2) Treat each transform as a sample in the parametric space
and find an ML estimate of the hyper-parameters φ of
the transform prior distribution using equation (12).

By interpreting adaptive training from the Bayesian perspec-
tive, the standard ML estimate of canonical model may be
justified. In addition, a non-point transform prior distribution is
motivated, which is important for Bayesian adaptive inference.
It is worth emphasising that the transform prior distribution is
dependent on the particular canonical model set used.

B. Bayesian Adaptive Inference

Once the canonical model and the transform prior dis-
tributions are estimated during training, they can be used
together for inference. For adaptively trained systems, due to
the homogeneity constraint, the inference must be performed
at the homogeneous block level. For each block,

Ĥ = arg max
H

p(H|O) = arg max
H

p(O|H)P (H) (13)

where Ĥ is the inferred hypothesis, O is the observation se-
quence of a particular homogeneous block, p(O|H) and P (H)
are acoustic and language model scores of each hypothesis
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respectively. P (H) may be obtained from an N-gram language
model. The key problem here is to calculate the marginal
likelihood

p(O|H) =

∫

T

p(O|H,M̂, T )p(T |φ) dT (14)

This process is referred to as Bayesian adaptive inference. The
point estimate of the canonical model, M̂, is used for inference
because marginalisation over a Dirac delta function will result
in a likelihood given the mode of that Dirac delta function. In
unsupervised inference, where no supervision data is available,
equation (14) allows the canonical model to be directly used
for inference. In supervised mode, p(T |φ) may be updated
to posterior distribution for inference, which is referred to
as posterior adaptation [3]. In this paper, supervised mode
will not be further discussed as there is no supervision data
available for the tasks considered.

In recognition with standard HMMs, the Viterbi algo-
rithm [19] is usually used to efficiently calculate the likeli-
hood of observation sequence. This relies on the conditional
independence assumption of HMMs to make the inference ef-
ficient. However, this conditional independence assumption is
not valid for adaptive HMMs due to the additional dependence
on the transform. Hence, the Viterbi algorithm is not suitable
for Bayesian adaptive inference. Instead, N-Best rescoring [20]
is used in this work to reflect the nature of adaptive HMM.
Though the N-Best rescoring may limit the performance gain,
and loss, due to the limited number of candidate hypothesis
sequences, given sufficient hypothesis candidates, this N-Best
list is likely to contain the “best” hypothesis. In N-Best rescor-
ing, marginal likelihood of every possible hypothesis, p(O|H)
is separately calculated. Due to the coupling of transform pa-
rameters and hidden state/component sequence, the Bayesian
integral in equation (14) is intractable. Approximations are
required to calculate the marginal likelihood p(O|H). Various
approaches will be discussed in section III.

Note that the Bayesian adaptive inference process is an
integrated process. There is no distinct of “adaptation” and
“recognition” stage as in standard decoding process. The
standard process is a special case of the integrated Bayesian
inference process. This is discussed in section III-A. In
contrast to some previously investigated Bayesian predictive
adaptation (BPA) approaches [11], [21], Bayesian adaptive
inference strictly deals with the Bayesian integral over the
whole observation sequence, while the BPA approaches
implicitly assume the Bayesian integral is performed at every
time instance. This will be discussed in detail in section III-B.

The Bayesian framework described before is based on the
likelihood criterion. To obtain state-of-the-art performance,
the discriminative criterion is often used [22]. Discriminative
adaptive training and inference can also be interpreted from the
Bayesian perspective [16]. In this paper, the training procedure
adopted is to only discriminatively update the canonical model
given the ML estimated transforms. Minimum phone error
(MPE) is used as the discriminative criterion to train the
canonical models [22]. Hyper-parameters of the transform

prior distribution are estimated from the ML transforms for
the discriminative canonical model. This transform prior dis-
tribution is used in Bayesian inference as discussed before.
It is worth noting that the transform prior is calculated from
ML transforms and is applied in a non-discriminative way
in inference. This may limit the possible gains of adaptive
training when using the discriminative criterion.

III. APPROXIMATE INFERENCE SCHEMES

The marginal likelihood calculation in equation (14) is gen-
erally intractable, hence approximations are required. Bayesian
adaptive inference procedure will become:

1) Calculate the approximate value L(O|H) for p(O|H) in
equation (14).

2) Use L(O|H) instead of p(O|H) in equation (13) to find
the best hypothesis.

In this section, two main categories of approximation ap-
proaches are described [4]. One set of approaches iteratively
tighten a lower bound to the real integral. These are referred
to as lower bound approximations. The second set directly
approximates the integral, referred to as direct approximations.

A. Lower Bound Approximations

As described in section II, a lower bound may be con-
structed to approximate the marginal likelihood in equations
(1) and (2). The same approach may be used for inference.
Introducing a joint distribution, q(θ, T ), over the compo-
nent sequence, θ, and transform parameters, T and applying
Jensen’s inequality yields a lower bound L(O|H) as below 4

log p(O|H) ≥ L(O|H) =

〈

log
p(O,θ|T ,H)p(T )

q(θ, T )

〉

q(θ,T )

(15)

where p(T ) is the brief notation for the transform prior
distribution, p(T |φ), and will be used in the rest of this paper.
The above becomes an equality when

q(θ, T ) = p(θ, T |O,H) = P (θ|O,H, T )p(T |O,H) (16)

Using equation (16) is impractical because the calculation
of the transform posterior p(T |O,H) requires the marginal
likelihood to be calculated. Tractable variational distributions
for P (θ|O,H, T ) and p(T |O,H) are described in this section.
An iterative learning process is then used to update these
variational distributions to make the lower bound as tight as
possible. The tightness of the bound is dependent on the form
of the variational distributions, point estimate or variational
Bayes, and the number of iterations.

When using lower bound approximations for inference,
there is an assumption that the rank ordering of the real
inference evidence in equation (13) is similar to the ordering
of the evidence in which the lower bound value is used instead
of the log likelihood, i.e.

L(O|H1) + log P (H1) > L(O|H2) + log P (H2)

⇒ log p(O|H1) + log P (H1) > log p(O|H2) + log P (H2)

4For clarity of notation, the block index s and the notation of the canonical
model set M̂ are dropped.
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How good this assumption is will depend on the forms of the
lower bound. Generally, it is important to get a tight lower
bound for p(O|H). In order to achieve this, it is necessary
to optimise the lower bound with respect to every possible
hypothesis respectively, which is similar to N-Best supervi-
sion [23]. In contrast to the work in [23] where no theoretical
justification was proposed, the work here motivates it from
a viewpoint of tightening the lower bound during adaptive
inference. It is also interesting to compare N-Best supervision
to the standard 1-Best supervision adaptation approaches such
as iterative MLLR [24]. In iterative MLLR, a transform is
estimated using the 1-Best hypothesis of the test data as
supervision. This transform is then used to calculate inference
evidence for all possible hypothesis and the process is repeated
if necessary. 1-Best supervision will lead to a “tight” lower
bound for the “best” hypothesis. However for the other com-
peting hypotheses, the lower bounds will not be as tight as they
could be. This biases those hypotheses to the 1-Best hypothesis
and may significantly affect the performance, especially for
complex transforms or short sentences as shown in section VI.
A number of other schemes have previously been proposed to
address the 1-Best bias problem. Two such schemes are lattice
MLLR [25] and confidence MLLR [26]. In contrast to the
N-best supervision framework, these schemes do not directly
address the problem, but rather use some form of measure of
the confidence of a particular transcription. The disadvantage
of these approaches is that some form of sentence posterior,
or confidence score, is required. These scores are hard to
reliably obtain from a speech recognition system and require
the use of techniques such as acoustic deweighting [25].
These confidence-based schemes are computationally efficient
compared to the N-best supervision framework. However, it
is felt that the strict mathematical framework of the Bayesian
adaptive inference approach offers a more flexible scheme for
future development. Furthermore, it is worth emphasising that
the estimate of lattice MLLR or confidence MLLR may still
be unreliable when there is only very limited data because the
ML criterion is still used in transform estimation.

Two forms of lower bound approximations are described in
this paper.

1) Point Estimates: In the same fashion as ML adaptive
training, given sufficient data, a Dirac delta function may be
used as the transform posterior resulting in a point version of
equation (16)

q(θ, T ) = P (θ|O,H, T )δ(T − T̂ ) (17)

where T̂ is a point estimate of transform for the target domain.
Equation (15) may then be re-expressed as

log p(O|H) ≥ log p(O|H, T̂ ) + log p(T̂ ) + H(δ(T − T̂ )) (18)

where H(p(x)) is the entropy of p(x). For all point estimates
of T̂ , the entropy of the Dirac delta function is the same
−∞ [27]. As H(δ(T − T̂ )) is a negative constant with infinite
value, it can be ignored without affecting the rank ordering
of the lower bound. The rank ordering of the lower bound is
then determined by

KMAP(T̂ ) = log p(O|H, T̂ ) + log p(T̂ ) (19)

Equation (19) yields a maximum a posteriori (MAP) es-
timate. In contrast to the standard MAP linear regression
(MAPLR) [5] approach, in the N-Best supervision frame-
work, a distinct MAP estimate is required for every possible
hypothesis and the transform prior term log p(T̂ ) must be
considered in inference. The EM algorithm may be used to
optimise KMAP(T̂ ). If a single component prior distribution
is used, the transform update formulae are similar to the
MAPLR [5]. A mixture prior can also be used as discussed
in [4]. The MAP estimate is the same as the standard ML
estimate if a non-informative prior is used. In this case, the
prior term in equation (19) disappears and the likelihood of the
observation sequence given the ML estimate can be directly
used in inference. Therefore, the standard ML estimate of
transforms is one case of the lower bound approximations
within the Bayesian framework. Note that, the ML estimate
described here naturally requires N-Best supervision to tighten
the lower bound as discussed before. In contrast, the widely
used standard ML adaptation approach not only uses an ML
estimate of transform, but also adopts a 1-Best supervision
paradigm when estimating the ML transform. Hence, the
standard adaptation approach has two levels of approximations
and is a special case of Bayesian adaptive inference.

2) Variational Bayes: The use of Dirac delta distribution is
only reasonable given sufficient adaptation data. For limited
data, this assumption will be poor, possibly affecting the
approximation quality. In order to make the lower bound
tighter, another form of approximation approach, variational
Bayes (VB), may be used [16]. Here, the distributions of the
component sequence posterior q(θ|O,H) and the transform
posterior q(T |O,H) are assumed to be conditionally inde-
pendent. Thus

q(θ, T ) = q(θ|O,H)q(T |O,H) (20)

This assumption is necessary to obtain a tractable mathemati-
cal form. For simplicity of notation the two posteriors will be
denoted as q(θ) and q(T ). The lower bound in equation (15)
can be re-written as an auxiliary function. At the (k + 1)th

iteration, this may be expressed as

Q (qk+1(θ), qk(T )) = 〈log p(O,θ|T ,H)〉qk+1(θ)qk(T )

+H(log qk+1(θ)) − KL(qk(T )||p(T )) (21)

where qk(θ) and qk(T ) are the variational component se-
quence and transform posterior distributions at the kth iteration
respectively. The aim is now to obtain forms of q(θ) and q(T )
that maximise this auxiliary function, thus making the lower
bound as tight as possible.

Taking the functional derivatives of the auxiliary function in
equation (21) with respect to q(θ) and q(T ) respectively, an
EM-like algorithm can be obtained, referred to as Variational
Bayesian EM (VBEM) [7]. VBEM is guaranteed not to
decrease the bound at each iteration. The process is:

1) Initialise: q0(T ) = p(T ), k = 1.
2) VB Expectation (VBE): The optimal variational posterior
component sequence distribution can be shown as

qk(θ) =
1

Zθ(O,H)
exp

(

〈log p(O,θ|T ,H)〉qk−1(T )

)

(22)
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where Zθ(O,H) is the normalisation term to make qk(θ) a
valid distribution. As log p(O,θ|T ,H) can be factorised at
the frame-level, the expectation with respect to qk(T ) can
be performed at the frame-level in the logarithm domain.
This allows qk(θ) to be viewed as a posterior component
sequence distribution of a model set with a modified Gaussian
component 5

p̃(ot|θt) = exp
(

< log p(ot|T , θt) >qk−1(T )

)

(23)

p̃(o|θ) is referred to as a pseudo-distribution [4] because it is
not necessarily normalised to be a valid distribution. Zθ(O,H)
can be simply calculated using the forward algorithm with
p̃(ot|θt),

Zθ(O,H) =
∑

θ

P (θ|M)
∏

t

p̃(ot|θt) (24)

3) VB Maximisation (VBM): Given the variational compo-
nent sequence posterior, the optimal qk(T ) can be found

qk(T ) =
1

ZT (O,H)
p(T ) exp

(

〈log p(O,θ|T ,H)〉qk(θ)

)

(25)

where ZT (O,H) is the normalisation used to make qk(T )
a valid distribution. When using a conjugate prior p(T ),
the estimation of q(T ) only requires updating the hyper-
parameters of the prior p(T ). The exact form will be
discussed in section V.
4) Unless converged, k = k + 1, goto (2).

Having obtained the final transform distribution after K

iterations, q(T ) = qK(T ), the value of the lower bound
in equation (15) is required for inference. By calculating
qK+1(θ) based on qK(T ) using equation (22) and using it
in equation (21), the lower bound can be re-expressed as [16]

L(O|H) = logZθ(O,H) − KL (qK(T )||p(T )) (26)

where Zθ(O,H) is given in equation (24), which can be
regarded as the “likelihood” based on the pseudo-distribution.
The KL distance will have a closed-form solution if the form
of transform distribution is appropriately chosen as discussed
in section V.

The above derivations are based on a single transform for
all Gaussian components. It can be extended to a multiple
base-class case, where an independent transform is used
for a group of Gaussian components. The resultant VBEM
algorithm is similar to the global case except that the
sufficient statistics for each variational transform distribution
are accumulated based on the corresponding group of
Gaussians [16].

The steps for lower bound based inference are summarised
as below:

1) Initialisation. Set initial transform T̂ ML

0 , T̂ MAP

0 or trans-
form distribution q0(T ).

2) Iteratively update T̂ or q(T ) to tighten the lower
bound. In the ML approximation, T̂ ML

K is obtained by

5The transform T is assumed to only affect the Gaussian mixture param-
eters.

maximising log p(O|H, T ), where K is the number of
iterations. In the MAP approximation, T̂ MAP

K is obtained
by maximising equation (19). In the VB approximation,
the variational distribution qK(T ) is obtained by max-
imising equation (21). Note that the transforms (dis-
tributions) are specifically estimated for each possible
hypothesis.

3) Calculate the lower bound value for each hypothesis
using the final transform distribution respectively. The
ML lower bound value is log p(O|H, T̂ ML

K ), The MAP
lower bound is equation (19) with T̂ MAP

K . The VB lower
bound is calculated using equation (26) with qK(T ).

4) The lower bound value is then used instead of
log p(O|H) in equation (14) for inference.

B. Direct Approximations

There are a number of approaches to approximate the
likelihood integral, which do not require an iterative process to
tighten the lower bound. These forms of approximation will be
referred to as direct approximations. In contrast to the lower
bound approximations, direct approximations may be greater
or less than the likelihood.

Sampling approaches are a standard method for directly ap-
proximating intractable probabilistic integrals. The basic idea
is to draw samples from the distribution and use the average
integral function value to approximate the real probabilistic
expectation [10]. As the number of transform parameters
increases the number of samples required to obtain good
estimates dramatically increases. As it is hard to efficiently
control the computational cost, this approach is only applicable
to systems with small number of adaptation parameters, for
example, cluster adaptive training [4].

An alternative approach is to modify the DBN of the
adaptive HMM associated with the inference process. One
simple approach is to allow the transforms to change at each
time instance. Figure 2(a) shows the DBN of the adaptive

ot ot+1

t t+1

t+1t

PSfrag replacements

θθ

TT

(a) Strict Inference

ot ot+1

t t+1

t+1t

PSfrag replacements

θθ

TT

(b) FI Assumption

Fig. 2. Dynamic Bayesian network comparison between strict inference and
the frame-independent assumption

HMM, where the transform parameters are constrained to be
constant over all frames within one homogeneous block. This
yields the integral in equation (14).

If the constraint on transform transitions is relaxed, the
DBN in figure 2(b) is obtained. This allows the transform to
vary from one time instance to another and will be referred
to as the frame-independent assumption. This assumption has
been implicitly used in the Bayesian prediction approaches for
HMM parameters, where the resultant distribution is called
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Bayesian predictive distribution [28]. In [8] and [9], this
approach was used as the inference scheme for parameter
distribution trained using VB approach. The assumption has
been also investigated for Bayesian adaptation [15], [12], [11].
Using this approximation in equation (3) yields

p(O|H) ≈ L(O|H) =
∑

θ

P (θ|M,H)
∏

t

p̄(ot|θt) (27)

where

p̄(ot|θt) =

∫

T

p(ot|T , θt)p(T ) dT (28)

is the Bayesian predictive distribution at θt. With an appro-
priate form of p(T ), this frame-level integral is tractable. For
example, in MLLR adaptation, a single Gaussian distribution
or GMM may be used as the transform prior to obtain a
tractable predictive distribution[15], [12]. In strict adaptive
inference, maintaining the constraint on transform transition
within homogeneous blocks will be exponentially expensive
with the increase of the size of the blocks. One advantage of
using the FI approximation is that the additional computational
cost compared to decoding with standard HMMs is small. With
this approximation, no iterative estimation scheme is required
and Viterbi decoding may be used. However, it breaks the
homogeneity causality of the adaptive HMM. When using
a single Gaussian prior distribution, the FI approximation is
similar to the multi-style training approach, where the acoustic
condition can usually change from frame to frame (the stan-
dard HMM assumption) [3]. Unless the posterior distributions
of each homogeneous block or a multiple component prior are
used, the results with FI approximation will be similar to the
multi-style system performance.

IV. INCREMENTAL BAYESIAN ADAPTIVE INFERENCE

Bayesian adaptive inference has been described in a batch
mode where all test data are available for decoding in a
single block. However, in some applications, test data becomes
available gradually. Incremental inference is often used. This
section discusses incremental adaptive inference within a
Bayesian framework based on lower bound approximations
[14]. Only variational Bayes is discussed here, the treatment
of point estimates is similar.

For incremental adaptive inference, the homogeneous data
block comprises multiple utterances which become available
causally. O = O1:u = {O1, · · · ,Ou} denotes the 1st to the
uth utterances. Similarly, the hypothesis for all u utterances,
H, consists of a set of hypotheses, H1:u = {H1, . . . ,Hu}.
Information can be propagated to the uth utterance from
the preceding u − 1 utterances. The key questions are what
information should be propagated between utterances and
how to use this propagated information. Various forms of
information propagation are discussed in the context of the
VB approximation.
1. No information: The lower bound for all u utterances is
optimised. This involves rescoring all u blocks, obtaining a
new hypothesis Ĥ1:u. The uth utterance may change the “best”
hypothesis for the preceding utterances. This approach breaks
the standard causal aspects of incremental adaptive inference.

As the transform is kept constant within each homogeneous
block in strict adaptive inference, new data will cause a re-
computation for all utterances. The computational cost then
increases exponentially.
2. Inferred hypothesis sequence: If the causal constraint
is enforced, then the best hypothesis for the previous u − 1
utterances is fixed as Ĥ1:u−1. The optimisation of the bound
is then only based on possible hypotheses for the uth block.
The variational distributions in equation (20) become

q(θ|O,H) = q(θ|O, Ĥ1:u−1,Hu) (29)

q(T |O,H) = q(T |O, Ĥ1:u−1,Hu) (30)

In this configuration there is a choice of the initial transform
distribution to use. The transform prior, p(T ), can be used
to initialise the VBEM process. Alternatively, the distribution
from the previous utterances may be used. Thus

q0(T |O, Ĥ1:u−1,Hu) = qK(T |O1:u−1, Ĥ1:u−1) (31)

where K is the number of VBEM iterations used. Inference
only involves finding the hypothesis for the uth utterance.
3. Posterior sequence distribution and hypotheses: Propa-
gating the inferred hypotheses still requires the corresponding
posterior component sequence distribution for all u utterances
to be computed. This posterior may also be fixed and propa-
gated to the next utterance. Thus equation (29) becomes

q(θ|O,H) = q(θu|Ou,Hu)

u−1
∏

i=1

qK(θi|Oi, Ĥi) (32)

The previous u − 1 utterances do not need to be re-aligned.
Only q(θu|Ou,Hu) needs to be computed, i.e., the sufficient
statistics of the uth utterance need to be accumulated. This is
the most efficient form. The standard incremental adaptation
scheme uses a similar strategy, where the alignments of the
previous utterances are fixed and the statistics propagated [29].
However, in the standard approach, only one transform is
estimated for decoding the current utterance. In a Bayesian
inference framework, a distinct transform is estimated for
each possible hypothesis of the current utterance.

Using the information propagation strategy 3, an efficient,
modified version of the VBEM algorithm can be derived [14].
With the point estimate approximations, a similar incremental
EM algorithm and inference process can be derived [16]. The
main difference is that point estimates of the transforms, rather
than the distributions, are propagated.

V. APPLICATION TO MLLR

Maximum Likelihood Linear Regression (MLLR) is a
widely used linear transform based approach in adaptive
training, referred to as speaker adaptive training (SAT) [6].
In MLLR, the mean vectors of the Gaussian components are
adapted by a linear transform. The adapted mean vector µ̂(m)

is expressed as

µ̂(m) = Aµ(m) + b = Wξ(m) (33)

where ξ(m) = [µ(m)T 1]T is the extended mean vector and
W = [A b] is the extended linear transform.
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A. Bayesian adaptive training for MLLR

Standard SAT is first performed resulting in a canonical
HMM model and a set of transforms. This relies on the use of
standard complexity control schemes to ensure the sufficiency
of the training data. A transform prior distribution p(T ) is
then estimated from these transforms using equation (12). For
MLLR, a Gaussian distribution may be used as the conjugate
prior to the likelihood of the complete dataset. In this case,
each row of the transform is assumed to be independent given
the prior component [15], [4]. Thus

p(T ) =

D
∏

d=1

N (wd;µwd
,Σwd

) (34)

where the transform T = W, D is the size of the original
mean vector, w

T
d is the dth row of W. This row-independent

assumption is consistent with the diagonal covariance matrices
commonly used for HMM systems [15].

B. Bayesian adaptive inference for MLLR

Given the canonical model and the transform prior distri-
bution, unsupervised Bayesian adaptive inference can be per-
formed. The key problem is to calculate the approximate value
for each possible hypothesis marginal likelihood p(O|H).

The first form discussed is a direct approximation. MLLR
has too many parameters to use the sampling approach.
Hence, only the frame-independent assumption approach is
considered. For MLLR, the resultant predictive distribution in
equation (28) is also a Gaussian distribution as derived in [15]
and [12]. For the dth element, the mean and the variance values
of the predictive distributions are:

µ̄
(m)
d = µT

wd
ξ(m)

σ̄
(m)
dd = σ

(m)
dd + ξ(m)T

Σwd
ξ(m)

where Σ
(m) is the diagonal covariance matrix of the canonical

model, of which σ
(m)
dd is the dth diagonal element. µwd

and Σwd
are the mean and covariance of the dth row of

the transform prior distribution in equation (34). With the
predictive distribution, the approximate value for p(O|H) can
be calculated using equation (27) and used for inference.

The second form considered are the lower bound approx-
imations. A distinct transform or transform distribution is
estimated for each possible hypothesis. The hypothesis itself
is used as the supervision (the N-Best supervision scheme).
The final transform or transform distribution is then used to
calculate the lower bound value for inference as described
in section II-B. The estimation formulae of transform or
transform distribution are given below.

The ML estimate of transform is the standard MLLR, which
was described in [6] and is not reproduced here. The final ML
transform Ŵ

ML

K (K is the iteration number) is used to cal-
culate log p(O|H,ŴML

K ). MAP Linear Regression (MAPLR)
with Gaussian prior was originally presented in [30]. Given

sufficient statistics

Gd =
∑

t

∑

m

γm(t)

σ
(m)
dd

ξ(m)ξ(m)T (35)

kd =
∑

t

∑

m

γm(t)ot,d

σ
(m)
dd

ξ(m) (36)

where γm(t) is the posterior occupancy of Gaussian com-
ponent m at time t calculated using the forward-backward
algorithm given the current hypothesis and transform estimate.
The dth row of transform Ŵ

MAP is estimated by

ŵ
MAP

d =
(

Σ
−1
wd

+ Gd

)−1 (

Σ
−1
wd

µwd
+ kd

)

(37)

This estimate is iteratively updated. After K iterations,
the final MAP transform Ŵ

MAP

K is used to calculate
log p(O|H,ŴMAP

K ) + log p(ŴMAP

K ) as the approximated value.
For the VB approximation, the pseudo-distribution is first

required. This can be shown to be an unnormalised distribu-
tion, where component m has the form [16]

log p̃(o|m) = logN (o;W̃µξ(m),Σ(m))

−
1

2

D
∑

d=1

ξ(m)T
Σ̃wd

ξ(m)

σ
(m)
dd

(38)

where W̃µ = [µ̃w1
, · · · , µ̃wD

]T is the mean of the variational
transform posterior q(T ). This has the same functional form as
the prior p(T ) in equation (34). Given the statistics calculated
using the above pseudo-distribution, q(T ) can be updated. The
mean and covariance matrix of the dth row of the variational
transform posterior distribution can be shown to be

Σ̃wd
=

(

Σ
−1
wd

+ Gd

)−1

µ̃wd
= Σ̃wd

(

Σ
−1
wd

µwd
+ kd

)

(39)

where µwd
and Σwd

are the parameters of the prior distribu-
tion, Gd and kd have the same form as the standard statistics
in equations (35) and (36) except that the component posterior,
γm(t), is calculated based on the pseudo-distribution with
the current variational transform distribution. Once the final
transform distribution has been estimated after K iteration,
it can be used in equation (26) to calculate the VB lower
bound for inference. As both p(T ) and qK(T ) are Gaussian
distributions, the KL distance in equation (26) has a closed-
form solution given by

KL (qK(T )||p(T )) = −
1

2

D
∑

d=1

(

log |Σ̃wd
Σ

−1
wd

|

+tr

(

I − (Σ̃wd
+ (µ̃wd

− µwd
)(µ̃wd

− µwd
)T )Σ−1

wd

))

(40)

where tr(·) is the trace of a square matrix, I is an identity
matrix.

VI. EXPERIMENTS

A. System setup

The performance of various forms of Bayesian inference
approximations was evaluated on a large vocabulary con-
versational telephone speech task using MLLR to represent
non-speech variabilities. The training dataset consists of 3
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corpora recorded with slightly different acoustic conditions
and collection framework. They are the LDC distributed Call-
home English, Switchboard and Switchboard-Cellular corpora,
consisting of 5446 speakers (2747 female, 2699 male), about
295 hours of data. The test dataset, eval03 was taken from
the NIST RT-03 Spring Evaluation. It has 144 speakers (77
female, 67 male), about 6 hours of data. All systems used a 12-
dimensional PLP front-end with log energy and first, second
and third derivatives. Cepstral mean and variance normalisa-
tion and VTLN were used. An HLDA transform was then
applied to reduce the feature dimension to 39. A decision-tree
state-clustered tri-phone model set with an average of 16 Gaus-
sian components per state was constructed as the starting point
for adaptive training. This is the baseline speaker-independent
(SI) model. Initially ML training was performed to yield the
ML-SI system. This was used as the starting point for all the
other systems. The MPE-SI system was obtained using four
iterations of MPE training [22]. The ML adaptively trained
system, ML-SAT, was built using separate speech and silence
MLLR transforms. Separate single Gaussian priors for these
speech and silence transforms were independently estimated.
For the discriminative adaptively trained system, MPE-SAT,
the final transforms for the ML-SAT system were used, and 4
iterations of MPE training applied. Having trained the MPE-
SAT model, transforms for each training speaker were again
obtained using the ML criterion, and used to estimate the
transform priors for the MPE-SAT model. Transform priors for
the non-adaptively trained systems, ML-SI or MPE-SI, were
obtained using a similar fashion.

As discussed previously, the Viterbi algorithm is not appro-
priate for Bayesian inference. In these experiments, N-Best
rescoring was used for inference. 150-Best lists were generated
for ML and MPE systems using the corresponding SI models.
Though the use of N-best lists can limit performance differ-
ence, using spot-checks on the best VB configuration on the
ML-SAT system with a 300-Best list showed little difference
in performance.

B. Utterance Level Bayesian Adaptive Inference

To illustrate the effects of the Bayesian approximation ap-
proaches, homogeneous blocks were initially based on a single
utterance, not as in the standard case on a side basis. For the
eval03 test set the average utterance length is 3.13 seconds,
compared to the average side length of 153.75 seconds. This
dramatically limits the available data and illustrates the issue
of poor transform estimation with limited data. Table I shows
the performance of Bayesian adaptive inference on the SI and
the SAT systems. The baseline unadapted error rates of the
ML-SI and MPE-SI systems are shown in the first line of the
table and are 32.8% and 29.2% respectively.

For the FI approximation in table I, the performance of
the ML-SAT system is similar to the baseline ML-SI system,
which is expected as the FI approximation is similar to the
multi-style training. However, the MPE-SAT system is about
0.5% worse than MPE-SI system. This degradation is because
the transform prior for MPE-SAT system was estimated and
applied for inference in a non-discriminative fashion. This

Bayesian ML Train MPE Train
Approx SI SAT SI SAT

— 32.8 — 29.2 —

FI — 32.9 — 29.7
ML 35.5 35.2 32.4 32.3

MAP 32.2 31.8 29.0 28.8
VB 31.8 31.5 28.8 28.6

TABLE I

UTTERANCE LEVEL BAYESIAN ADAPTIVE INFERENCE PERFORMANCE

problem may be solved if the prior distribution is discrimina-
tively estimated and applied in Bayesian inference. However,
this issue is not addressed in this paper.

The last three lines show results for different forms of lower
bound approximations. The ML approximation uses a point
estimate of the transform with no prior distribution. MAP uses
a point estimate that takes into account the prior. VB integrates
over the transform prior distribution to calculate the marginal
likelihood. All three approximations were used within the
N-Best supervision framework, i.e., adaptive inference was
performed separately for each possible hypothesis. As these
lower bound approximations use an iterative learning process,
they must be appropriately initialised. Depending on the form
used, the learning process used different initialisations of the
transform (distribution) at the zeroth iteration. An identity
transform was used for the ML approximation. The MAP
approach used the mean of the prior transform distribution.
The prior distribution was used in the zeroth iteration of
the VB approximation. A single iteration was used in these
experiments to estimate the transform distribution used for
final inference. Additional iteration gave only small differences
in performance [16].

Comparing the VB approximation performance of the ML-
SAT system to the unadapted ML-SI baseline, there is a signifi-
cant gain of 1.3%6. The performance of the ML-SI system may
be viewed as using standard HMM assumptions in both train-
ing and inference. In contrast, using the VB approximation
with the ML-SAT system corresponds to using the adaptive
HMM DBN in both stages. This significant performance gain
illustrates the importance of using the adaptive HMM DBN in
both stages. Using the ML approximation with the ML-SAT
system, which is the standard ML adaptation scheme but with
N-Best supervision rather than 1-best supervision, is about
2.4% absolute worse than that of the ML-SI baseline. This
is expected as the transform parameters were estimated using
an average of only 300 frames. This problem is reduced by
using the MAP estimation, a 1% absolute gain over the ML-SI
baseline is obtained. This shows the importance of using prior
information when estimating transforms with little data. Note,
the VB approximation is 0.3% absolute better than the MAP
approach, which is a relatively small gain but has been shown

6Wherever the term “significant” is used, a pair-wise significance test has
been done using NIST provided software sctk-1.2, which uses a standard
approach to conduct significance tests with the significance level of 5% [31].
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to be statistically significant 7. Bayesian adaptive inference
was also performed on the ML-SI system. Comparing these
results to the performance of the ML-SAT system, the ML-
SAT system significantly outperforms the ML-SI system by
over 0.3% for all the approximate adaptive inference schemes.
This shows the importance of using adaptive HMM in the
training stage. For MPE trained systems, similar trends can be
observed. However, the gains of the MPE-SAT system over the
MPE-SI system are greatly reduced compared to the ML case.
For example, the gain of using the VB approximation for the
MPE-SAT system over the MPE-SI system is only about 0.6%,
which is smaller than the 1.3% gain of the ML-SAT systems.
This again shows the effect of using ML based transform prior
distributions in a non-discriminative way in inference.

The above experiments on lower bound approximations
were all based on the N-Best supervision framework, where
one transform distribution was generated for each possible
hypothesis. As discussed before, using the 1-Best hypothesis
as the supervision may lead to a loose lower bound for the
other competing hypotheses and consequently degrade the
performance. This effect was investigated using the ML-SAT
system. Note that using the ML approximation with 1-Best
supervision is the standard unsupervised adaptation approach,
which is the most widely used adaptation approach. The results
are shown in table II.

Bayesian Supervision
Approx. N-Best 1-Best

ML 35.2 34.4
MAP 31.8 32.0
VB 31.5 32.0

TABLE II

COMPARISON BETWEEN 1-BEST AND N-BEST SUPERVISION (N=150).

Comparing the standard adaptation baseline, i.e. ML ap-
proximation with 1-best supervision, to the VB approximation
with N-Best supervision, which is the strict Bayesian adaptive
inference performance, there is a statistically significant dif-
ference of about 3% absolute. For both the MAP and the VB
approximations, the 1-Best supervision is significantly worse
that the N-Best supervision. One of the reasons for this is that,
though the 1-Best supervision, may lead to a tight lower bound
for the 1-best hypothesis used as supervision hypothesis, for
all the other hypotheses, the transform distribution will have
a looser lower bound than using the the N-Best supervision.
This biases the inference process to the 1-best supervision
hypothesis, The results illustrate the impact of this on WER.
It is also interesting to note that the degradation for the VB
approximation (0.5%) is larger than MAP (0.2%). This is felt
to be because the VB approximation creates a tighter lower
bound and is more likely to be tuned to the 1-Best supervision.

7The MAP approximation in table I was performed with the N-Best
supervision, which is not the standard MAP. The standard MAP with 1-Best
supervision is shown in II.

C. Incremental Bayesian Adaptive Inference

In the previous section, the homogeneous blocks were
assumed to be based on individual utterances and the adaptive
inference was performed in a batch mode on all the data. This
section gives results using Bayesian adaptive inference in an
incremental mode with side-based homogeneous blocks. Only
lower bound approximations were examined. The data was
incrementally added in the order that it appears in each side.
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Fig. 3. Utterance cumulative WER (%) of the ML-SAT system

To investigate the performance of different Bayesian ap-
proximations in detail, cumulative WERs of the first 30
utterances of the ML-SAT system are shown in figure 3. The SI
line in figure 3 corresponds to the unadapted ML-SI baseline.
As an additional baseline for incremental adaptive inference,
the ML-SI model was also adapted using the standard robust
ML adaptation technique [32]. Here, a threshold was used
to determine the minimum posterior occupancy to estimate
a robust ML transform. This is the SI-ML+Thrd line in
figure 3. From figure 3, the SI-ML+Thrd line always shows
better performance than the unadapted SI system and gradually
improves with more data available. This shows that the simple
use of a threshold can achieve robustness. When comparing
different adaptation approaches on the ML-SAT system, for
a limited number of utterances the order of performance is
similar to that shown for the ML-SAT system in table I.
The VB approximation has the best performance. As the
number of utterances increases the difference between the VB
and MAP approximations becomes smaller8. Given sufficient
adaptation data, the point transform estimates are reasonably
good approximations. Hence, the VB and MAP approxima-
tions show similar performance. The ML approximation is
significantly worse than all the others at the beginning because
of insufficient adaptation data. From figure 3, the performance
of the ML approximation gradually improves as more data
comes and outperforms the unadapted SI system after 20
utterances. However, due to the poor performance at the

8The WER curves in figure 3 are not monotonically decreasing due to the
order of the utterances. As shown in table I, the average performance of all
utterances for VB approximation is 31.5%. However, the average WER for
the first utterances of all speakers is below 29% as shown in figure 3. This
means that, on average, the first utterances of the speakers happened to be
“easy” to recognise. Some “difficult” utterances came later and led to the
fluctuations in figure 3.
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beginning, the cumulative WER is still significantly worse than
SI-ML+Thrd, MAP and VB after 30 utterances.

Bayesian ML Train MPE Train
Approx SI SAT SI SAT

SI-ML+Thrd 31.2 — 27.8 —

ML 32.2 31.8 28.9 28.7
MAP 30.9 30.4 27.7 27.5
VB 30.9 30.3 27.7 27.4

TABLE III

INCREMENTAL BAYESIAN ADAPTIVE INFERENCE PERFORMANCE ON THE

COMPLETE DATA SET

Table III shows the overall performance on the complete test
data. The SI-ML+Thrd in table III is the standard robust
ML adaptation on top of the SI models9. As expected, the
performance of SI-ML+Thrd approximation is significantly
better than both the ML-SI and the MPE-SI systems in table I.
The performance of ML approximation is 0.6% worse than
SI-ML+Thrd, illustrating the lack of robustness of the ML
approximation. Using prior information, the MAP and the
VB approximations both significantly outperform the ML
approximation and the standard SI-ML+Thrd approach. Both
give about the same performance. Comparing the performance
of the ML-SAT system to the ML-SI system shows that
the adaptively trained system consistently and significantly
outperforms the non-adaptively trained system by over 0.4%
for all approximations. For MPE training, there are similar
trends as in the ML case. However, the gains of adaptively
trained system are again reduced due to the use of the ML
based transform prior distribution.

VII. CONCLUSION

The use of adaptive training has become increasingly pop-
ular as more use is made of found data, where there is little
control over the acoustic conditions and speaker changes.
However there are a number of issues associated with adaptive
training that limit how system may currently be applied. These
include how to handle limited target domain data, and how to
perform “unsupervised” inference. This paper has presented a
Bayesian framework for adaptive training and inference that
resolves these limitations. In this framework, the model pa-
rameters are treated as random variables. For adaptive training,
there are two distinct sets of parameters, the canonical model
and the transform parameters. Though both of these may be
treated as random variables, only the transform parameters
are treated in this way in this paper. The canonical model
parameters are treated as point-estimates, as standard complex-
ity control techniques can be used during training to ensure
robust parameter estimate. Bayesian adaptive inference is then
presented as an appropriate way to perform inference with this
form of system. As the marginalisation integral associated with
this process is intractable, two forms of approximations were

9In contrast to the standard ML approach, Bayesian approximation does
not use any threshold because prior information is considered in the Bayesian
adaptive inference. The ML approach in the second row of table III is viewed
as an Bayesian approximation approach, hence no threshold was set.

described. Lower bound approximations, which includes both
point estimates (MAP or ML) and variational Bayesian (VB)
approach, use an iterative process to tighten a lower bound
to the marginal likelihood. In contrast, direct approximations,
such as the frame-independent assumption, do not use an
iterative process. The marginal likelihood is approximated
directly.

The performance of these approximate Bayesian adaptive
inference schemes was evaluated on a large vocabulary con-
versational telephone speech recognition task. MLLR was used
as the form of transform to represent each homogeneous block.
Both batch and incremental mode inference were investigated.
Experiments show that adaptively trained systems can obtain
significant gains over multi-style systems, even with very
limited data. Variational Bayes is shown to significantly out-
perform the other approximation approaches with limited data,
though compared to the MAP approximation, the absolute
gain was not large. In incremental inference, as more data
become available, the performance of the MAP approximation
gradually approaches the performance of the VB approxi-
mation. In addition to ML adaptive training, MPE adaptive
training was also examined. Similar trends are observed when
using Bayesian adaptive inference. However, the gains of MPE
systems are all reduced compared to the ML case because the
transform prior is estimated on ML transforms and used in a
non-discriminative way during inference.

This paper has only discussed Bayesian adaptive inference
within the strict N-Best supervision framework. Empirically,
additional approximations, such as Viterbi-like dynamic pro-
gramming, are required to reduce the computation cost of the
N-Best supervision framework. This will be a future research
direction. Another possible research direction is to investigate
using non-point Bayesian approximations in both adaptive
training and inference. This is useful for the scenario where the
model complexity can not be controlled to reflect the amount
of training data.
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