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Abstract— Broadcast News (BN) transcription has been a
challenging research area for many years. In the last couple
of years the availability of large amounts of roughly transcribed
acoustic training data and advanced model training techniques
has offered the opportunity to greatly reduce the error rate on
this task. This paper describes the design and performance of
BN transcription systems which make use of these developments.
First the effects of using lightly-supervised training data and
advanced acoustic modelling techniques are discussed. The design
of a real-time broadcast news recognition system is then detailed
using these new models. As system combination has been found
to yield large gains in performance, a range of frameworks
that allow multiple recognition outputs to be combined are next
described. These include the use of multiple types of acoustic
models and multiple segmentations. As a contrast a system
developed by multiple sites allowing cross-site combination, the
“SuperEARS” system, is also described. The various models and
recognition configurations are evaluated using several recent BN
development and evaluation test sets. These new BN transcription
systems can give gains of over 25% relative to the CU-HTK 2003
BN system.

Index Terms— Automatic speech recognition, Broadcast News
transcription, diarisation.

EDICS Category: SPE-GASR

I. I NTRODUCTION

T HE accurate automatic transcription of broadcast material
remains a challenging problem. Broadcast News (BN)

transcription is difficult as a range of acoustic conditions
and speaking styles must be considered. Over recent years,
the performance of BN transcription systems has gradually
improved to the stage where, on some “simple” test sets,
average word error rates (WERs) of less than 10% can be
achieved. In the last couple of years there has been an effort
to further dramatically reduce the error on BN transcriptions
funded by the DARPA Effective Affordable Reusable Speech-
to-text (EARS) programme. As part of this programme large
amounts of additional training data were made available for
acoustic model training. This paper details the progress made
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at Cambridge University (CU) in improving BN transcription
making use of this additional lightly supervised training data
and state-of-the-art modelling techniques. Rather than concen-
trating on the detailed technical aspects of the techniques,
which have previously been published in a range of papers
(see for example [2], [3], [4], [5], [6]), this paper gives an
overview of the approaches that were examined and how they
affected performance. In particular, it describes ways in which
additional training data can be used and possible frameworks
for system combination. The starting point for this paper is
considered to be the CU-HTK 2003 BN system [3].

For BN transcription, the first stage in any recognition
process is to segment the audio stream into homogeneous
blocks, i.e. blocks associated with the same speaker and
possibly acoustic environment. These blocks are then clustered
together to, for example, give all the data associated with a
particular speaker. This task,diarisation [7], has been evalu-
ated as a separate problem within the EARS programme [8],
but is also essential for adaptation and normalisation in the
speech-to-text (STT) task. This paper considers a number of
segmentations and clusterings developed both at CU [9] and
at other sites, BBN [10] and LIMSI [11]. In section II these
segmentations and clusterings are characterised in terms of
the average segment length produced, number of clusters and
the diarisation error rates [7]. The performance of individual
systems for speech recognition and their potential as sources
of diversity for system combination is discussed in section VI.

Section III describes the acoustic model development. Tech-
nical advances in acoustic model building, in particular those
involved with discriminative training, such as discriminative
MAP [4] and modified I-smoothing [12], should improve
system performance compared to the models used in the
CU-HTK 2003 BN system. Performance gains from these
more advanced modelling techniques are briefly described.
In addition, significant gains should be possible by making
use of thousands of hours of data using “lightly-supervised”
techniques. In contrast to the relatively small amounts of
carefully transcribed data used to build the CU-HTK 2003
BN system, only rough transcriptions, such as closed-captions,
are available for this data. These transcriptions are known
to be error-full and this must be taken into account during
the training procedure. A range of approaches have been
proposed to handle this problem [13], [5], [14]. Motivated
by the work in [15], the approach adopted in this paper is
to use a “biased” language model during the recognition of
the training data to generate a set of transcriptions, which
are then directly used for training. Section III-A describes
the available acoustic model training sets and the effects that
they have on the system performance are given in section III-
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C. Additional training data, both audio and text, were also
available for language model construction. The effect of this
additional data is assessed both in terms of perplexity and
WERs in section IV.

The paper then considers various forms of evaluation
framework. Two styles of system with different constraints
are considered. The first is based on real-time transcription.
Though this limits the forms of model that can be used,
it is interesting to describe the type of system that can be
run in real-time. A two-stage strategy is adopted. The first,
very rapid transcription stage, is used to supply an adaptation
hypothesis for the second, more precise, recognition stage. The
output from this second stage is a set of lattices, to which a
more complex 4-gram language model is applied. This will be
referred to as a P1-P2 decoding framework in this paper. This
form of system is further discussed in section V.

If the real-time constraint is relaxed, then more complex
decoding frameworks may be used. In recent years there has
been significant interest in combining multiple acoustic model
hypotheses together to reduce the error rate. This combination
is usually performed using ROVER [16] or confusion network
combination [17]. This form of system combination is possible
in the 10× real-time constraints considered in this paper (and
for the RT04f evaluations). An interesting aspect of such
frameworks is how to get diversity into the system so that
when the recognition outputs are combined there is a reduction
in the WER, i.e. errors in one set of hypotheses do not occur
in the other sets of hypotheses. A range of approaches to
incorporating diversity are considered. The first, based on the
CU-HTK 2003 BN framework [3], is to use multiple types of
acoustic models to rescore lattices generated by a P1-P2 style
system. The hypotheses from these multiple branches are then
combined. Two other forms of framework are also described.
One is based on acoustic model diversity in the P1-P2 stage.
This yields differences in the 1-best adaptation supervision
and lattices for subsequent rescoring. The second is based on
diversity in the segmentation and clustering. These frameworks
are discussed in section VI. As a further contrast, section VII
describes a cross-site system combination framework built in
collaboration with BBN, LIMSI and SRI [1]. This framework
makes use of systems developed at BBN and LIMSI [10], and
SRI [18], in addition to systems built at CU. Results from [1]
are quoted to show the effects of this cross-site diversity on
performance.

II. SEGMENTATION AND CLUSTERING

For Broadcast News transcription, the first stage of pro-
cessing is to partition the incoming audio data stream into
homogeneous segments (the segmentation) and to group these
segments into homogenous clusters which can then be used
for unsupervised acoustic model adaptation. This is generally
done in two separate stages, although it is possible to have
more integrated schemes which alter the segmentation during
the clustering process [19], [20]. In the segmentation and
clustering procedure described in [9], referred to asCU1,
the basic stages are: removal of music and long periods of
silence; initial over-segmentation of the data by detection of

acoustic ‘change-points’; agglomerative clustering using the
likelihood ratio with a penalised likelihood (BIC) stopping
criterion; and a final additional gender-dependent clustering
based on speaker identification (SID) techniques [20].

When performing segmentation and clustering it is impor-
tant to consider the task being addressed. If the task is to
label “who spoke when”, referred to asdiarisation [7], then
the diarisation error rate (DER) is commonly used to measure
performance. This is the time-weighted sum of the missed
speech (MS), false alarm (FA) and speaker error rates. The
DER is very sensitive to splitting the data from one frequently
occurring speaker into two clusters. In contrast if the segmen-
tation and clustering is to be used for a STT task, then the final
WER is of interest. For STT systems the degradation in WER
from splitting data from a single speaker into multiple separate
clusters is minimal (provided that clusters are homogeneous
and sufficiently large for robust acoustic model adaptation).
Furthermore, for speech recognition it may be preferable to
split data from the same speaker into different clusters if there
are multiple acoustic environments present. Not surprisingly
there is little correlation between DER and WER [21].

For the experiments presented in this paper a range of
segmentations and clusterings were considered:

LIMSI [22], [11]1: This was the segmentation and clustering
used by LIMSI for the NIST RT04f STT evaluations.
BBN [23]2: This was the segmentation and clustering used by
BBN for the NIST RT04f STT evaluations.
CU [3], [21]: This was the segmentation and clustering used
for the CU-HTK 2003 BN evaluation system, and for the
baseline acoustic model development results in section III.
The segmentation and clustering was different to the other CU
systems discussed below. A gender-dependent top-down clus-
tering scheme with an arithmetic harmonic sphericity distance
metric and occupancy-based stopping criterion was used. No
change-point detection or SID clustering were implemented.
CU1 [9]: This segmentation and clustering was tuned to
minimise the DER and used both the BIC and SID clustering
stages. It ran significantly slower than the other CU schemes,
meaning results based on this segmentation/clustering did not
satisfy the time constraints in section VI.
CU2: This segmentation and clustering was taken from the
output of the BIC clustering stage of aCU1-style system.
An increased penalty term was used to reduce the number
of clusters to compensate for the omission of the final
SID clustering stage. In addition a minimum cluster size
was enforced to ensure that there was sufficient data for
adaptation. Parameters for this system were tuned for STT
performance.

Though the primary interest of this paper is STT, it is

1The segmentation and clustering used for these experiments were designed
for speech recognition. TheLIMSI system for diarisation [20], different to
that used for STT, achieved a DER of 8.5%, similar to that of theCU1
segmentation and clustering [9].

2The segmentation and clustering used for these experiments were not
optimised for diarisation performance.
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Segmentation /
#Segments #Clusters

Avg. Seg.
Clustering Length (sec)

LIMSI 1284 313 13.61
BBN 2963 273 5.98
CU 1712 273 10.23
CU1 1316 401 12.69
CU2 1173 558 14.23

TABLE I

THE NUMBER OF SEGMENTS, CLUSTERS AND THE AVERAGE SEGMENT

LENGTH FORLIMSI , BBNAND CUSEGMENTATION FOReval04 .

useful to characterise each of the segmentation and clustering
schemes, as this gives an indication of the diversity of the
segmentations and clusterings being used. Table I shows the
number of segments, clusters and average segment lengths for
each of the segmentation/clustering schemes on theeval04
test set (described in detail in section III-A). It is interesting
to note that, though both were tuned for minimising WER,
the average segment lengths for theBBN and LIMSI were
very different. The various CU approaches varied in both the
number of segments and the number of “speaker” clusters.

Segmentation/ DER (%)
[MS(%)/FA(%)]

Clustering Auto Ideal

LIMSI 38.63 3.76 [0.2/1.8]
BBN 24.67 4.10 [0.2/2.3]
CU 58.15 5.61 [0.1/2.8]
CU1 8.58 2.43 [0.3/1.1]
CU2 31.15 2.82 [0.3/1.1]

TABLE II

AUTOMATIC (AUTO) AND “ IDEAL” DIARISATION ERROR RATES(DERS)

FOR POSSIBLE SEGMENTATION SEGMENTATION AND CLUSTERINGS ON

eval04

The DER and percentages of missed and false alarm speech
on theeval04 test set are given in Table II. Other than the
CU1 segmentation/clustering, all the schemes were designed
for WER minimisation. This is reflected in the higher auto-
matic DER for those schemes compared toCU1. In addition
to the DER obtained using the automatic clustering schemes,
an ideal clustering DER score (Ideal) is also shown. This is
the lowest possible DER score for a given segmentation, and
gives an indication of the homogeneity of the segments.3

The CU scheme has the poorest ideal DER and theCU1
scheme the best ideal DER. If only the speaker error com-
ponent of the ideal DER is considered (missed speech and
false alarm errors are ignored), theLIMSI , BBN and CU2
schemes all perform about the same. As expected theCU1
scheme performs considerably better than theCUscheme. All
these numbers are not expected to correlate directly with the
speech recognition performance, but they give some indication
of the diversity of the segmentation and clustering schemes
being considered.

3It is hard to directly compare these numbers to one another as over-
segmenting the data, relying on the clustering to correctly group segments
together, can bias results.

III. A COUSTICMODEL DEVELOPMENT

This section describes the data sources and models built
during the development of the BN system.

A. Training and Test Data Sets

Earlier work on English broadcast news transcription has
relied on the use of acoustic model training data released
before 1998 by the LDC, which is known as the Hub4 acoustic
training data. There is a total of 144 hours of transcribed
Hub4 acoustic training data4 for which the LDC supplied
careful manual annotations. This data was used for acoustic
model training in the older CU broadcast news evaluation sys-
tems [24] and the more recent CU-HTK 2003 BN system[3].
However, for the system developed for the RT04 evalua-
tion [25] a range of additional broadcast data sources with
only closed-caption type transcriptions (of varying quality)
were also potentially available for acoustic model training.
These new sources consist of two major groups: data prepared
originally for the various phases of the Topic Detection and
Tracking task (TDT data), and data that the LDC collected in
2003 (BN03 data) for the EARS programme.

The TDT data consists of several phases. The first set of
TDT data used in the work reported in this paper is fromTDT4
which includes six different broadcast sources (both radio and
television) and covers the period October 2000 until January
2001. This contains 235 hours of usable audio. In addition
further TDT4 data, from just the four television sources and
covering the period March-July 2001, was also made available
by the LDC. This second portion of TDT data, which is
denoted asTDT4a, contains 375 hours of audio. Experiments
were also conducted using the older TDT2 data (broadcast
between January and June 1998) which contains about 420
hours of usable data.

In addition to the TDT data, the LDC supplied to the EARS
programme participants about 7080 hours of raw BN data
collected during March-November 2003, theBN03 data. To
help other sites to make use of this large quantity of data, BBN
made automatic transcriptions available which were generated
using a lightly-supervised recognition/filtering approach. For
further details of the method used see [14]. From theBN03
data, three subsets were selected for addition to the acoustic
model training pool. The first two subsets each contained about
300 hours of audio and the third around 440 hours. TheBN03
data contained a total of 19 separate broadcast sources, some
of which were felt to be more applicable to the task being
considered than others. The data for the first set was sampled
from six major sources: ABC, CNBC, CNN, CNNHL, CSPAN
and PBS. The second set comes from CNN and six other
sources (CBS, FOX, MSN, MSNBC, NBC, NWI) which were
not included in the first set. Finally the third selection was
made from the same sources as the first and second along
with one new source, WBN.

4All training data quantities given in this paper refer to the quantities of
audio actually used for training, after removal of commercials, music, and
other non-transcribed material.
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Training set Description Hours

bntr-144h Hub4 training data 144
bntr-375h + TDT4 375
bntr-750h + TDT4a 752
bntr-1050h + 1st selection ofBN03 1050
bntr-1350h + 2nd selection ofBN03 1350
bntr-1790h + 3rd selection ofBN03 1790
bntr-2210h + TDT2 2210

TABLE III

SELECTED ENGLISH BN ACOUSTIC TRAINING DATA SETS AND SIZES.

Table III lists the training data subsets used in this work5.
The order of adding the various sources was determined by
running preliminary recognition experiments to determine how
“close”, in terms of WER, each block of data was to the
development data available.

Test set # Shows Hours Period

dev03 6 3 Jan. 2001
eval03 6 3 Feb. 2001
dev04 6 3 Jan. 2001
dev04f 6 3 Nov. 2003
eval04 12 6 Dec. 2003

TABLE IV

SELECTED ENGLISH BN TEST SET SIZES

In order to assess the performance of the various systems
developed, a range of development and evaluation data sets
were used. The size and epoch of each of these blocks of data
are shown in Table IV.eval04 was treated as the evaluation
data. All the other sets were treated as development data and
were used to help tune model parameters and language model
interpolation weights. Thedev04f development data is rather
different in nature to the other development sets as it contains
data from a different set of broadcast sources and typically
includes more challenging data with high levels of background
noise/music and non-native speakers. Theeval04 set consists
of two halves: one of which is broadly similar to previous
evaluation sets and the 2004 development sets (eval03 and
dev04 ), and one which is more similar to the data found in
the dev04f set.

B. Lightly Supervised Training

Detailed transcriptions of the audio data were only available
for the bntr-144h training data. All the other data, i.e.
the TDT data and the 2003 BN data collection, had only
closed-captions (CCs), or similar rough transcripts. These tran-
scriptions are known to be error-full and thus not appropriate
for direct use when training detailed acoustic models. To
overcome this problem there has been a range of work on
“lightly-supervised” training techniques [13], [5], [14]. The
procedure used in this work consists of the following general
stages.

5No data between 16th January 2001 to the end of February 2001, nor
any later than 14th November 2003, was included in training to avoid any
time epoch overlap with development test and evaluation test data sets and to
respect the epoch restrictions for the RT04f evaluation.

1) Construct a language model (LM) using only the CC
data. This CC LM was interpolated with a general
BN LM using interpolation weights heavily weighted
towards the CC LM. For the work presented here the
interpolation weights were 0.9 and 0.1 for the general
BN LM6. This yielded a “biased” language model.

2) Recognise the audio data using an existing acoustic
model and the biased LM trained in (1). For this work
the P1-P2 stages of the evaluation system (including 4-
gram expansion) in section VI-A was used. This ran in
approximately 5 times real-time (5×RT)7.

3) Optionally post-process the data. For example only use
segments from the training data where the recognition
output from (2) is consistent, to some level, with the
CCs, or only use segments with high confidence in the
recognition output.

4) Use the selected segments for acoustic model training
with the hypothesised transcriptions from (2).

A range of options were investigated for post-processing the
data, including propagating the confidence scores into the
discriminative training stage [15]. However none of these were
found to yield significant gains over using all the data so no
post processing was performed in the work reported in this
paper.

C. Model Training and Evaluation

For all the acoustic models developed in this paper, the same
front-end processing as the CU-HTK 2003 BN system [3]
was used. Each frame of speech was represented by 13 PLP
coefficients based on a linear prediction order of 12 with
first, second and third derivatives appended and then projected
down to 39 dimensions using HLDA [26] optimised using the
efficient iterative approach described in [27]. For initial models
where HLDA was not used, the front-end consisted of 13 PLP
coefficients with first and second derivatives.

All models were built using the HTK toolkit [28]. State-
clustered cross word triphone models [29] were constructed
with a total of about 7000 distinct states for the smaller training
sets, or 9000 states, forbntr-1050h and larger. Gaussian
mixture models with an average of 16 (bntr-375h, bntr-
750h ), or 32 (bntr-750h and larger) components were
used. The distribution of components over the states was
determined based on the state occupancy count, referred
to in this paper as theVarmix process. Models were built
initially using maximum likelihood (ML) training and then
discriminatively trained using minimum phone error (MPE)
training [2], [30]. As some BN data, for example telephone
interviews, are transmitted over bandwidth-limited channels,
both wide-band and narrow-band spectral analysis variants of
each model set were trained.

For all the experiments in this section the segmentation
(denotedCU in section II) and tri-gram LM from the CU-
HTK 2003 BN evaluation system [3] was used. Possible

6These interpolation weights were chosen to minimise the perplexity of
accurately transcribed data from the same source. They were found to be
relatively insensitive to the type of source data.

7For this work 5×RT means that the system ran 5× slower than real-time.
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alternative segmentations and language models are discussed
in sections II and IV respectively.

Training set Acoustic Training %WER
dev03 eval03

bntr-144h

ML 19.7 –
+HLDA 17.9 –
+Varmix 17.8 16.0

MPE (ML prior) 15.2 13.7

bntr-375h

ML 19.1 17.2
+HLDA 16.8 15.1
+Varmix 16.7 14.8

MPE (ML prior) 13.9 12.6
MPE (MMI prior) 13.6 12.5

+GD (GI prior) 13.5 12.3

TABLE V

%WERS FORdev03 & eval03 WITH THE ML AND MPE TRAINED

ACOUSTIC MODELS. SINGLE PASS DECODING WITH THERT03 TRIGRAM

LM.

Table V shows the performance without any adaptation
of the Gender-Independent (GI) models built for the CU-
HTK 2003 BN system [3], which are considered the baseline
models for this paper. These were built using thebntr-
144h training set. As previously observed the use of HLDA
and discriminative training gave large gains over the baseline
system. The final performance of these models on theeval03
test data was 13.7% using MPE training and an ML-prior for
I-smoothing as described in [2].

To assess the relative gains of each of the stages using addi-
tional lightly supervised training data, a system with approxi-
mately the same number of states (around 7000) and Gaussian
components per state (16), was built with the largerbntr-
375h training data. As expected similar gains from each stage
were observed. It is interesting that the performance gains from
using MPE training, about 2-3% absolute, were maintained
even though lightly-supervised training was required for the
additionalTDT4 training data. Overall the additional training
data gave gains of over 1.0% absolute reduction in WER
compared to thebntr-144h trained system. Recently the
use of an MMI-prior for I-smoothing, rather than the ML-prior,
has been proposed [12]. Using this more complex I-smoothing
process gave a small improvement in performance and was
therefore used in all subsequent acoustic model generation.

In addition to training GI models for BN systems the
use of Gender Dependent (GD) models has been found to
be advantageous [24]. Standard MAP training [31] is not
appropriate for adapting discriminatively trained models. A
modified, discriminative, version, MPE-MAP [4] was therefore
used to train GD models. The results for GD models built
using MPE-MAP with the GI-MPE system are also shown
in Table V. The prior for the MPE-MAP training was the
GI system with an MMI-prior for I-smoothing. Again small
gains using GD models were observed. This is the form of
GD modelling that was used in the experiments in section V
and VI.

As discussed in section III-A, large amounts of additional
BN training data were made available. For initial evaluation
the narrow-band (NB) models built using thebntr-144h

Training set #States/Avg eval03 dev04f
Components ML MPE ML MPE

bntr-375h 7K/16 14.8 12.5 – –
bntr-750h 7K/16 14.8 12.1 – –
bntr-750h 7K/32 14.2 11.8 26.0 21.6
bntr-1050h 9K/32 13.8 11.4 25.0 20.3
bntr-1350h 9K/32 13.9 11.2 24.8 19.6
bntr-1790h 9K/32 13.7 11.0 24.4 19.3
bntr-2210h 9K/32 13.6 11.1 24.5 19.1

TABLE VI

%WERS WITH THE GI ML/MPE MODELS WITH DIFFERENT TRAINING

DATA SIZE. SINGLE PASS DECODING OFWB SEGMENTS WITH THERT03

TRIGRAM LM. NB HYPOTHESIS USING THERT03 NB MODELS.

data were used for all NB segments, requiring that only wide-
band (WB) models were trained. To investigate the effects of
the additional data on system performance a range of models
were built using the training data-sets described in Table III.
These models were evaluated on theeval03 and dev04f
test sets as these represented different time epochs and degree
of difficulty. Table VI shows the performance of the various
acoustic models for both ML and MPE (with an MMI-prior
for I-smoothing) training.

A couple of general trends can be observed. For the
eval03 test set, consistent gains were obtained for both ML
and MPE training as the amount of data, and also the model
complexity, was increased as far as thebntr-1050h training
set. Beyond this size the gains, expecially for ML training,
were significantly less. This may be attributed to the nature
of the additional data being added, mainlyBN03 data which
is not expected to be closely related to theeval03 test data.
For thedev04f test set the performance of the system was
significantly worse than that on theeval03 test data. This
was again expected as “harder” data were included for this test
set. In contrast to theeval03 test set, performance on the
dev04f test data improved as the amount of data increased
for all training sets. Again this can be attributed to the nature of
theBN03 data which is more closely matched to thedev04f
than theeval03 test set, both in terms of the epoch and data
sources.

A further issue to consider, as the amount of training
increases, is how to efficiently build NB models. As less than
10% of the data is usually classified as NB data in the CU
system, it is not desirable to rebuild systems from scratch8.
To overcome this problem a two pass approach was adopted.
First, all the data, including the WB data, was parameterised
using the NB configuration where the data was band-limited to
the range 125-3800 Hz. Then standard single pass retraining
(SPR) [28] was used from the non-HLDA ML WB model-set
to generate a NB ML model-set on this data. This model was
then used to estimate the NB HLDA transform. Using this
NB HLDA transform, MPE-SPR [25] was used to generate an
initial MPE NB model. Two iterations of MPE training were
then used to refine this model set. This procedure dramatically
reduced the time to train the NB models and gave similar

8For all the systems the WB models were trained on all the available data,
including the NB data, parameterised using the WB configuration.
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performance to rebuilding the NB models from scratch. This
approach was used to build all the NB models for the 1×RT
and 10×RT systems.

The test data for the RT04f BN evaluation was known
to comprise data related to both theeval03 and dev04f
epochs and shows. To balance both training time and per-
formance thebntr-1350 training data was selected as the
primary training data set for use in the RT04f evaluation
systems. Unless otherwise stated this will be the training data
for all subsequent acoustic models built and evaluated.

IV. L ANGUAGE MODEL DEVELOPMENT

Additional training data to that used for the RT03 LM [3]
was also available for training language models. This section
briefly details the additional sources available and discusses
the performance gains obtained.

Source Size(MW)
(additional RT04 sources in bold) RT03 RT04

PSM’s BN transcripts 92-99
275 334

TDT2&TDT3 captions,BN03 captions
Transcripts from CNN’s website 99-00,01-03 66 147
TDT4 captions,TDT4a captions 2 5
NIST’s BN training data from 97/98

2 2
Marketplace show transcripts
Newswire LAT and WP 95-98, NYT 97-00

674 928
& 01-02, Associated Press 97-00 &01-02

TABLE VII

LANGUAGE MODEL TRAINING TEXTS AND THEIR SIZES.

The initial experiments in this paper were carried out
using the RT03 LM from the CU-HTK 2003 BN evaluation
system [3]. The sources and text sizes used to generate this
language model are shown in Table VII. For the RT03 LM a
59K vocabulary, chosen based on word frequency counts was
used. Five separate language models were built and interpo-
lated, the partition of sources is indicated in the table. For the
2004 RT04f evaluation, additional sources for constructing the
language model were available. The additional sources and
combined sizes for the 2004 RT04 LM are also shown in
Table VII, indicated in bold. This gave a total text size of about
1.4 billion word tokens. Again a 59k word list was used based
on frequency counts from the RT04 LM text corpora. In a
similar fashion to the training of the RT03 LM, the text sources
were split into five subsets, as shown in Table VII, and 4-gram
models were built for each subset. Small to mid-size models
were smoothed using modified Kneser-Ney discounting [32]
and components trained on large data sets used Good-Turing
discounting [28]. The interpolation weights were optimised
on text comprisingeval03 , dev04 , and dev04f 9. After
interpolation, the component models were merged and the
final 4-gram language model was pruned with entropy-based
pruning [33]. The RT04 LM had about 17 million bigrams,
28 million trigrams and 23 million 4-grams compared to the
9 million bigrams, 13 million trigrams and 7 million 4-grams
for the RT03 LM.

9By tuning the interpolation weights on all the available development sets
only a minimal bias in the WER% is expected for these sets.

Language Perplexity [OOV%]
Model eval03 dev04 dev04f eval04

RT03 133 [0.66] 124 [0.57] 153 [0.54] 158 [0.81]
RT04 120 [0.45] 118 [0.49] 132 [0.42] 133 [0.62]

TABLE VIII

PERPLEXITY VALUES FOR THERT03 AND RT04 4-GRAM LANGUAGE

MODELS

Table VIII shows the perplexity scores and out-of-
vocabulary (OOV) rates for the RT03 and RT04 LMs for four
of the test sets. The OOV rates for the word-list associated with
the RT04 LM are consistently lower than those of the RT03
LM. The difference is slightly larger fordev04f andeval04
as the time epoch for these test sets, November/December
2003, is closer to the additional data only used for the RT04
LM. It is not possible to directly compare the perplexities
between the two LMs as the word-lists are different. However,
looking at the trends over the test sets, the difference between
the perplexities for the test sets with harder data,dev04f
and eval04 , than the easier sets,eval03 and dev04 , is
larger for the RT03 LM than the RT04 LM. This again may
be attributed to the later epoch data included in the RT04 LM
training corpora.

Segmentation/ LM %WER
Clustering eval03 dev04 dev04f

CU
RT03 9.7 12.2 —
RT04 9.2 11.9 16.2

LIMSI RT04 8.8 11.4 15.8

TABLE IX

%WER USING A P1-P2FRAMEWORK AND THE bntr-1050 MODELS

AND EITHER THE RT03 OR RT04 LANGUAGE MODELS AND EITHER THE

CURT03 OR LIMSI SEGMENTER.

The recognition performance of the RT03 and RT04 LMs
were then compared on theeval03 , dev04 and dev04f
test sets. For these experiments only the P1-P2 stages of
the 10×RT framework were run [3]. These stages run in
approximately5×RT. The results using theCUsegmentation
and clustering are shown in Table IX. For both test sets the
RT04 LM outperformed the RT03 LM by between 0.3-0.5%
absolute. In addition Table IX compares the performance of
the CUand LIMSI segmentation and clustering discussed in
section II. The use of theLIMSI segmentation and clustering
gave an additional error rate reduction of between 0.4-0.5%
absolute. TheLIMSI segmentation and clustering was used
as the baseline for all subsequent experiments.

V. 1XRT EXPERIMENTS

For the 2004 RT04f evaluation, a system running in less
than real-time (1×RT)10 was developed. The approach adopted
was to extend and update the architecture that was first used in

10All run-times for RT04 systems were run on a single Intel Xeon
3.2GHz/2MB L3 cache processor with hyperthreading enabled. Note that the
compute times refer to data throughput, with no constraints on latency.
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developing the Cambridge 10×RT broadcast news system in
1998 [24]11. Due to the increase in processing power of com-
modity PCs over the intervening six years, along with the use
of improved modelling and tuned decoding, it was feasible to
use the same two pass recognition approach when developing
the 2004 1×RT system. Hence an initial fast decoding pass
is used for unsupervised adaptation, and this is followed by
lattice generation, and rescoring. Since it is known that lattice
quality is much improved by incorporating an initial adaptation
stage [34], and due to the success of the earlier “fast” broadcast
news systems, an architecture including two full decoding
passes with intermediate adaptation is also generally favoured
by other recently-developed 1×RT systems for both broadcast
news and conversational speech transcription [35], [36].

P1: Initial Transcription

P2: Lattice Generation

Lattices

1−best

CN

Lattice

Alignment

Segmentation

Fig. 1. The 1xRT System Architecture for BN Transcription

The two pass architecture of the 1×RT is shown in Figure 1.
Each of the two recognition passes in the 1×RT system is
similar to the P1-P2 portion of a single branch 10×RT frame-
work as used in the CU-HTK 2003 BN evaluation system [3],
as well as the older “fast” versions of more complex BN
evaluation systems developed at CU [24].

The LIMSI segmenter/clustering was used (which ran in
about 0.1×RT), followed by a very rapid first recognition
pass (P1). The output of P1 provided the initial transcription
hypothesis which was used to adapt the HMMs used in the
P2 stage. The P1 stage used smaller acoustic and language
models than the P2-stage to reduce computation as well as
tighter pruning beam-widths. It was found that the final error
rate was relatively independent of that from the P1 stage as
shown in Figure 2, and hence the P1 stage search parameters
were set at a level which, on theeval04 data, took only
about 0.15×RT.

To reduce the computation in the P1 stage, the P1 HMMs
were 16 component per state MPEbntr-750 -trained models
and a single set of acoustic models were used for all data
segments independent of bandwidth (and also GI as is usual
for P1 models). In addition, the P1 stage used a heavily pruned
trigram version of the RT04 LM (3.3 million bigrams and 2.6
million trigrams).

The second stage (P2) used the P1 hypothesis to perform
least squares linear regression and diagonal variance adapta-
tion on bandwidth and GD MPE models trained onbntr-

11The 1998 10×RT system ran on a 450MHz Intel Pentium II processor.
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Pass1 running time (xRT)

Pass1
Pass2

Fig. 2. %WER ofdev04 in P1 (with the trigram LM) and P2 (with 4-
gram expansion and applying confusion network decoding) with different P1
decoding times for the 1×RT system. The vertical dotted line shows the
operating point chosen for the evaluation system.

1350 . Decoding used a more lightly pruned version of the
RT04 trigram LM (10.7 million bigrams and 13.8 million
trigrams) to produce lattices, which were then expanded with
the full RT04 4-gram LM. This was followed by confusion
network decoding, estimation of confidence scores [37], and
word level alignment. All of the steps involved in adaptation
and subsequent P2 decoding required a total of less than
0.7×RT on the eval04 data. As an additional post-processing
stage, word tokens with low confidence scores were removed
from the recognised results. Note that this final post-processing
stage was not found to be beneficial for any systems with less-
constrained run-times.

Pass %WER
eval03 dev04 dev04f eval04

P1 17.2 21.7 27.8 25.6
P2-cn 9.9 12.7 17.4 15.4

P2-cn† 9.8 12.5 17.3 15.3

TABLE X

%WER OF THE RT04F 1×RT SYSTEM, P2USED THEbntr-1350

MODELS AND PRUNEDRT04 LMS AND THE LIMSI SEGMENTER. †
INDICATES THAT POST-PROCESSING REMOVAL OF LOW-CONFIDENCE

WORDS WAS PERFORMED.

Table X shows the performance of the 1×RT system.
Comparing the P2-cn output with that given for the same
acoustic and language models in a P1-P2 setup (see Table XI),
it can be seen that the increase in error rate is between 1.3% for
eval03 and 1.8% foreval04 without final post-processing,
and that the post-processing reduced this gap to 1.2% and 1.7%
respectively.

It is also interesting to compare the performance of the
1×RT system with the CU-HTK 2003 BN 10×RT system [3].
That system gave an error rate of 10.6% on theeval03 data.
Thus using the updated acoustic and language models in this
1×RT configuration reduced the error rate by 0.8% absolute
while greatly reducing the run-time.
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VI. 10×RT EXPERIMENTS

The previous section described a system that was required
to run in less than 1×RT, restricting the recognition frame-
work that could be used. This section examines the form
of recognition framework that can be used within a 10×RT
constraint12. Within this time constraint it is possible to
perform multiple recognition runs and combine the outputs.
Depending on the framework used, different levels of system
diversity can be incorporated, including multiple segmentation
and clusterings, acoustic models, adaptation supervision and
lattices. All acoustic models evaluated in this section were
trained usingbntr-1350h .

A. Multiple Rescoring (P3) Branch Configuration

The first multiple-pass system combination set-up investi-
gated was based on the 2003 CU-HTK BN evaluation system
framework. For these experiments theLIMSI segmentation
and clustering was used along with the RT04 LM.

P1: Initial Transcription

Adapt

P3x

Lattices

Adapt

P3a

P2: Lattice Generation

Segmentation

Alignment

CNC

1−best

CN

Lattice

Fig. 3. Multiple Rescoring Branch Framework for BN Transcription.

The overall multiple rescoring branch configuration is
shown in Figure 3. As in the 1×RT system, a P1-P2 framework
is used to generate lattices and 1-best hypotheses. However,
more complex acoustic models and LMs are normally used at
the P1 stage compared to those in the 1×RT architecture. For
the experiments in this paper 32 component per state acoustic
models and the standard RT04 LMs were used. In addition
to the P1-P2 stages multiple P3 lattice rescoring branches are
run. These branches use the P2 1-best output and lattices for
MLLR mean [38] and variance adaptation [39], and lattice-
based adaptation [40].

A range of acoustic models were considered for use in
the P3 rescoring branches. The baseline P3 acoustic models
were the ones used for the CU-HTK 2003 BN evaluation
system. The first branch (P3a) system was built using speaker

12The actual run-times for these systems were not measured. However the
settings that were used for all configurations were consistent with those used
in the RT04 evaluations, which ran in less that 10×RT.

adaptive training (SAT) employing global constrained MLLR
(CMLLR) [39] transforms. The second branch (P3c) system
was a GD system built using a single pronunciation (SPron)
dictionary derived from the standard multiple pronunciation
dictionary [41]. Possible alternative acoustic model configu-
rations examined included structured precision matrices [42],
cluster adaptive training [43] and a Gaussianised front-end us-
ing the scheme described in [44]. These models were initially
trained using thebntr-375h training set and the perfor-
mance evaluated within the multi-branch system combination
framework shown in Figure 3 [6]. Though some gains over
the standard SPron/SAT combination were obtained, it was
found that no significant gains over the baseline configuration
were obtained with the larger acoustic models and the full
bntr-1350 training data. Hence the same models as those
run in the 2003 system, SPron and SAT, were used. In addition
to these standard branches, the performance of a GD model
using the multiple pronunciation dictionary (MPron), the same
model as used in the P2 stage, was also evaluated in the P3
stage (P3b). For all the P3 systems the numbers quoted are
after confusion network (CN) decoding [45]. This allows the
gains from system combination to be clearly seen. Each of
the stages P2, P3a and P3c produce word lattices and these
were converted to confusion networks and then combined with
CNC. Finally, a forced alignment of the final word-level output
was used to obtain accurate word times before scoring.

The recognition framework shown in Figure 3 was also
used for the CU-HTK 2003 BN evaluation system [3]. Using
this structure,bntr-144h trained acoustic models and the
RT03 LM gave an error rate of 10.6% oneval03 13. It is
interesting to note that for these models a 0.4% absolute gain
in performance was obtained using the CNC over the best
single branch performance with CN decoding (P3a-cn).

System %WER
eval03 dev04 dev04f eval04

P2-cn MPron 8.6 11.1 15.9 13.6

P3a-cn SAT 8.2 10.6 15.3 13.3
P3b-cn MPron 8.2 10.6 15.4 13.4
P3c-cn SPron 8.1 10.4 15.2 13.0

P2+P3b
CNC

8.3 10.8 15.3 13.3
P2+P3a 8.0 10.5 15.2 13.2
P2+P3c 8.1 10.3 14.8 12.8

P2+P3a+P3c CNC 8.0 10.4 14.9 12.9

TABLE XI

%WERS IN P2,VARIOUS P3 BRANCHES IN THE MULTIPLE RESCORING

BRANCH FRAMEWORK USING THELIMSI SEGMENTATION/CLUSTERING

AND THE RT04 LMS.

Table XI shows the performance of thebntr-1350h
trained acoustic models using this multiple rescoring branch
framework and the RT04 LM. For this configuration the best
single branch performance was obtained with the SPron model
(P3c-cn). After confusion network decoding, this gave an
error rate of 8.1% oneval03 , a 2.5% absolute reduction
in error rate over the CU-HTK 2003 BN system. Combining

13This was the lowest error rate reported for the RT03 evaluation.
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the rescoring P3 branches with the initial P2 branch shows
slight gains for all systems other than the MPron (P3b) branch.
This shows that some acoustic diversity is necessary to obtain
combination gains, even if more adaptation and improved su-
pervision is being used. Though the final output (P2+P3a+P3c)
gave about a 25% relative reduction in WER compared with
the 2003 10×RT system oneval03 , it performed no better
than the best two-way combination (P2+P3c) and little better
than the best individual branch (P3c).

B. Dual Acoustic Model Configuration

The system combination gains shown in the previous section
were small. To attempt to improve the gains from combination
a dual recognition system configuration was examined. One
of the limitations of the multiple rescoring branch framework
is that the same 1-best supervision and lattices are used for
all branches. The dual recognition system considered in this
section removes this restriction.

Lattices

P3P3

Lattice generation
P2

P1P1

P2

Initial Transcription

Lattice generation

Initial Transcription

Adapt

Lattices

Adapt

AlignmentAlignment

ROVER

CNCCNC

Segmentation Segmentation

Sub−System BSub−System A

1−best

CN

Lattice

Fig. 4. The Dual System Framework for BN Transcription.

Figure 4 shows the dual system architecture. The structure
consists of two completely separate branches where inde-
pendent P1-P2 stages are used to allow different acoustic
models to generate different lattices and 1-best supervision
for P3 rescoring. The output from these individual branches
are then combined using ROVER [16]14. Note, confidence
scores, derived as described in [37], were used in the ROVER
combination in this work. This structure should allow a level of
cross-acoustic-model adaptation and combination that was not
possible within the previous framework. For these experiments
either the SPron or MPron acoustic models were used in the
P2 stage. In order to run the dual recognition configuration

14CNC could have be used here as the segmentation was consistent.

framework in approximately 10×RT it was necessary to run a
slighter faster P1-P2 and P3 rescoring set-up than the multiple
rescoring branch system in section VI-A.

P2 System %WER
Models dev04 dev04f eval04

MPron

P2b-cn MPron 11.1 16.0 13.7

(P2b)

P3b-cn MPron 10.7 15.4 13.4
P3c-cn SPron 10.4 15.2 13.0
P2b+P3b

CNC
10.7 15.4 13.4

P2b+P3c 10.3 14.9 12.8

SPron

P2c-cn SPron 11.3 15.8 13.7

(P2c)

P3b-cn MPron 10.8 15.3 13.3
P3c-cn SPron 10.5 15.3 13.2
P2c+P3b

CNC
10.6 15.0 13.0

P2c+P3c 10.7 15.2 13.2

P2b+P3b⊕ P2b+P3c
ROVER

10.4 15.1 13.0
P2b+P3b⊕ P2c+P3c 10.4 14.9 12.9
P2b+P3c⊕ P2c+P3b 10.3 14.8 12.8

TABLE XII

%WER OF THE DUAL CONFIGURATION SYSTEM USINGMPRON AND

SPRON ACOUSTIC MODELS AND THELIMSI SEGMENTATION/CLUSTERING

Table XII shows the recognition performance of the
dual recognition configuration. Comparing the MPron/SPron
branch (P2b+P3c) with the equivalent branch of the rescoring
branch configuration (P2+P3c) in Table XI shows that almost
no degradation in performance resulted from the faster P1-
P2 and P3 stages in the dual configuration. Not surprisingly
when using the MPron or SPron models in the P2 stage best
performance was obtained by using the other of model type
in the P3 stage. However the combination of any two of the
individual branches using ROVER [16] (indicated using⊕)
yielded almost no gain over the best single branch. Thus for
this configuration incorporating diversity in the form of the
1-best supervision and lattices for the P3 stage gave almost
no improvement in performance.

C. Dual Segmentation/Clustering Configuration

Using the dual recognition framework of section VI-B it is
possible to add further diversity by using different segmen-
tation and clusterings in each of the individual branches of
the system. The use of multiple segmentations has a number
of possible advantages. As shown in Table II, all the seg-
mentations available yield some level of missed speech (MS).
For those regions it is not possible to hypothesise outputs.
Using multiple segmentations reduces the chance of speech
being missed. Exploiting different segmentations should also
improve the robustness of the system toend effects. It has
been observed that the numbers of errors is greater at the start
and end of segments compared to the middle [46]. Multiple
segmentations may lessen this problem as segment boundaries
in one segmentation may occur in the middle of segments in
another.

Each of the segmentations and clusterings from section II
were evaluated within this dual segmentation configuration.
The results are shown in Table XIII. For these experiments no
diversity in the acoustic processing was used, MPron models
were used for the P2 stage and SPron models for the P3 stage.
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System Segmentation/ %WER
Clustering dev04 dev04f eval04

L0+P3c
LIMSI 10.3 14.9 12.8

(P2b+P3c)
B0+P3c BBN 10.7 15.0 13.0
C0+P3c CU 10.8 15.5 13.3
C1+P3c CU1 10.5 15.2 13.0
C2+P3c CU2 10.4 15.2 12.9
L1+P3c LIMSI /CU 10.5 15.1 13.0

L0+P3c⊕ C0+P3c 10.0 14.7 12.6
L0+P3c⊕ B0+P3c 10.0 14.4 12.4
L0+P3c⊕ L1+P3c 10.2 14.9 12.8
L0+P3c⊕ C1+P3c ROVER 9.8 14.6 12.5
L0+P3c⊕ C2+P3c 9.8 14.7 12.4
B0+P3c⊕ C0+P3c 10.1 14.8 12.6
B0+P3c⊕ C2+P3c 9.9 14.6 12.5
C0+P3c⊕ C2+P3c 10.1 14.9 12.7

TABLE XIII

%WER OF THE DUAL SEGMENTATION SYSTEM USINGbntr-1350

TRAINED MODELS (MPRON MODELS IN P2, SPRON IN P3 (P3C)).

The baselineLIMSI segmentation and clustering (L0+P3c)
is thus the same as the P2b+P3c system of Table XII and
was the best single individual branch. The performance of
all the other single branch systems, other than the original
CU segmentation and clustering, were about the same. As
previously reported [21], there is little correlation between the
DER quoted in Table II and the WER ranking in Table XIII
for the individual systems.

ROVER was used to combine the 1-best results from the two
branches. For all systems where the segmentation was varied
improvement in performance was obtained from combining
branches. Three systems all gave similar results,LIMSI
(L0+P3c) combined with eitherBBN(B0+P3c),CU1(C1+P3c)
or CU2(C2+P3c). These segmentations and clusterings show a
range of characteristics as described in section II. This system
combination yielded gains of between 0.3-0.5% absolute over
the best individual branch error rate.

As an additional contrast the effects of using a fixed
segmentation and different clustering schemes was also inves-
tigated. This experiment used theLIMSI segmentation with
the CU top-down clustering (L1+P3c). For each of the test
sets there was a small degradation in performance using the
CU clustering compared to the L0+P3 system. However in
contrast to the multiple segmentation results, there was almost
no gain in performance when using the systems in combination
(L0+P3c⊕ L1+P3c). This indicates that the primary cause of
error rate reduction from system combination was due to the
use of multiple segmentations rather than any diversity in the
clustering schemes (though these may dramatically affect the
DER).

Comparing the best performance of this dual segmentation
framework oneval04 , 12.4%, with that of the final multiple
rescoring branch combination in Table XI shows a 0.5%
absolute, 4% relative, reduction in WER. This represented a
significant difference using the matched-pair sentence-segment
word error significance test test [47].

VII. C ROSS-SITE COMBINATION : “SUPEREARS”

To further illustrate and explore the performance improve-
ments that can be obtained with a multi-branch system in
a combination framework, this section briefly describes the
“SuperEARS” system [1]. It provides a contrast to the systems
described in previous sections where the various acoustic
models, language models and decoders were all implemented
at CU.

The SuperEARS system was the result of a cross-site
collaboration between research teams at BBN, LIMSI, SRI and
CU in the context of the DARPA EARS programme and was
designed to still respect the 10×RT constraint for the complete
system. It exploits the benefits of both explicit combination
via ROVER and implicit combination by using i) hypotheses
from one sub-system to adapt another; and ii) using models
from one-system to rescore lattices produced by another. As is
well-known, in all cases the potential gain from combination
is greatest when there are multiple sub-systems with similar
average WER but large differences in detailed error patterns.

BBN adaptation

segmentation
LIMSI

combination
Rover

final Rover
combination

CU decoding

lat−rescoring
CU adaptation

redecoding redecoding
LIMSI adaptation SRI adaptation

lat−rescoring

CU lattices

Segments
1−best(ctm)
Lattices

Fig. 5. Cross-Site “SuperEARS” Architecture for BN Transcription.

Figure 5 shows the overall structure of the “SuperEARS”
system. The initial stages of the process, including theLIMSI
segmentation, and P1-P2 decoding were identical to the cor-
responding stages of lattice generation in section VI-A, for
which the results with multiple rescoring branches are given
in Table XI.

The hypotheses, lattices and segmentations were used in
different ways by the various teams at BBN, LIMSI and
SRI. BBN took only the 1-best hypothesis from the P2-
cn stage and used it as adaptation supervision. BBN used
the BBNsegmentation and clustering described in section II,
and then performed a full adapted decoding pass using the
BBN acoustic models, language models and decoding system
described in [10]. This output is labelled P3B. Similarly LIMSI
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used the 1-best output from P2-cn and again performed a full
adapted decoding pass with the LIMSI acoustic and language
models, with theLIMSI segmentation/clustering to give the
P3L output. It is interesting to note that while a full decode
pass gave a higher WER at the P3L stage than if lattice
rescoring was performed, it resulted in a lower overall WER
after final combination. While the BBN and LIMSI systems
performed full decoding, the SRI sub-system [18] used the
lattices from the P2 stage (with the SRI language model
applied) to constrain the recognition search with the adapted
SRI acoustic models to give the P3S output.

The output from all the P3 stages, which included confi-
dence scores, as well as the P2-cn output were then combined
using ROVER. The 1-best output from this was used for
adaptation supervision with an increased number of adaptation
transforms for the final CU sub-system which used the SPron
models in lattice rescoring mode.

The speed of the SuperEARS system was tuned so that the
additional P4 pass of adaptation/rescoring with the CU system
was possible while still keeping the overall computation within
10×RT. The final output was obtained by combining the
output from the P3 and P4 stages together. This configuration
combines diversity in terms of segmentation and clustering,
front-ends, acoustic models and language models, as well as
including both implicit and explicit combination.

System %WER
dev04 dev04f eval04

P2-cn CU MPron 11.1 15.9 13.6

P3B BBN decode 9.8 14.3 12.8
P3L LIMSI decode 10.5 15.9 14.0
P3S SRI rescore 9.7 16.5 14.6

P2⊕P3B⊕P3L⊕P3S ROVER 8.9 13.9 12.2

P4 CU SPron 9.6 14.3 12.8

P3B⊕P3L⊕P3S⊕P4 ROVER 8.3 13.4 11.6

TABLE XIV

%WER OF THE SUPEREARS CROSS-SITE COMBINATION SYSTEM.

Table XIV shows the performance of the SuperEARS sys-
tem. There are a number of interesting contrasts that can be
drawn. The best single P3 branch performance was generally
obtained by the BBN system (P3B). This is the only system
that used a different segmentation. However it made use of
supervision hypotheses from the CU system. This again may
indicate the advantage of using multiple segmentations when
combining/cross-adapting systems. The performance of this
single branch on theeval04 test set is almost as good as
the combined BBN/LIMSI system which gave an error rate of
12.7% [10].

It is interesting to compare the output from the initial
ROVER stage (prior to P4) with the output of the dual
segmentation system using theBBN and LIMSI segmenta-
tion/clusterings (L0+P3c⊕ B0+P3c in Table XIII). For the
eval04 test data the performance of the dual segmentation
system, 12.4%, was only marginally worse than this stage of
the SuperEARS system, 12.2%. However for the other two test
sets the performance difference is rather larger, in particular
on thedev04 set due to the very good performance of the

BBN sub-system on that data. Combining the final P4 CU
system with the P3B, P3L and P3S branches gave an additional
reduction in WER of around 0.5% over combination with the
P2 stage output. This final output is between 0.6% and 1.7%
lower than the dual segmentation system using theLIMSI
and BBNsegmentations with only CU acoustic and language
models throughout (L0+P3c⊕ B0+P3c in Table XIII).

The use of the various sub-systems and combination strate-
gies within the final SuperEARS framework produced a sys-
tem which was robust to sub-system performance differences
across test sets. The final system gave low error rates as
shown in Table XIV, with additionally a WER of 6.7% on
the eval03 data set, a 38% relative reduction in WER over
the CU-HTK 2003 BN system. Finally it is interesting to note
that the SuperEARS system gives essentially identical WERs
to taking the individual best RT04 10×RT BBN/LIMSI [10],
SRI [18] and CU [25] systems (overall run-time of 30×RT)
and combining those with ROVER.

VIII. C ONCLUSIONS

This paper has described a series of developments associated
with the design of a state-of-the-art Broadcast News transcrip-
tion system. The use of large amounts of lightly supervised
acoustic training data for constructing discriminatively trained
acoustic models is discussed, along with the performance on a
range of standard test sets. The use of these updated acoustic
models, along with updated language models, within both a
real-time framework and an approximately 10×RT framework
is also described. For the real-time system the performance
on the 2003 evaluation data was significantly better than that
of the 10×RT 2003 CU-HTK BN evaluation system. For the
10×RT systems a number of possible decoding frameworks
were described, which allow the hypotheses from multiple
systems to be combined. Using the same multiple-rescoring-
branch combination-framework as the CU-HTK 2003 BN
evaluation system, the new acoustic and language models
gave gains of about 25% relative over the 2003 system.
However, only small gains in performance over the best
single branch system were obtained. Two modifications to this
framework were then considered to increase the diversity of
the hypotheses to combine. The first used multiple adaptation
hypotheses and rescoring lattices, but again little improvement
by combination were obtained. The best combination results
were obtained by using multiple segmentations. This multi-
ple segmentation system gave additional gains of about 4%
relative over the multiple rescoring branch framework. As a
contrast a cross-site, combining systems from BBN, LIMSI
and SRI, was also described. Using this combination of both
the diverse segmentations, and acoustic and language models,
gave a 6% relative gain over the best CU acoustic and language
model system.
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