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ABSTRACT

Features derived from Multi-Layer Perceptrons (MLPs) are becom-
ing increasingly popular for speech recognition. This paper describes
various schemes for applying these features to state-of-the-art Arabic
speech recognition: the use of MLP-features for short-vowel mod-
elling in graphemic systems; rapid discriminative model training by
standard PLP feature lattice re-use; and MLP feature adaptation using
Linear Input Networks (LIN). The use of rapid training using MLP
features and their use for short-vowel modelling and LIN adaptation
gave reductions in word error rate. However significant improvements
over explicit short-vowel modelling with standard multi-pass adapta-
tion were not obtained, although they were useful in combination.

Index Terms— Arabic Speech Recognition, Multi-Layer Percep-
tron, Acoustic Modelling, Speaker Adaptation

1. INTRODUCTION

MLP-derived features are often added to features derived from stan-
dard processing schemes such as PLP to obtain improved Speech-To-
Text (STT) performance [1, 2, 3]. MLP features provide additional
options for acoustic model training and adaptation. This paper inves-
tigates some of the schemes that can be used with MLP features when
recognising Arabic.

Modern standard Arabic (MSA) is usually written without the di-
acritics which specify such things as vowelisation and nunation. This
causes non-trivial problems during the development of the acoustic
models for Arabic STT systems. To deal with this, two kinds of sys-
tem are used: graphemic and phonetic. Graphemic systems use a
dictionary that is generated by one-to-one letter-to-sound rules. For
instance, the word ktAb (‘book’), is represented as ‘k t A b’ in a
graphemic dictionary. By contrast, phonetic systems use tools such
as the Buckwalter Morphological Analyser (version 2.0), referred to
as Buckwalter in this paper, to insert hypothetical vowels.1 Conse-
quently, in a phonetic dictionary, ktAb can be written in various ways
including ‘k i t A b’. However, generating the dictionary word-forms
in this way restricts the vocabulary coverage of the phonetic system as
Buckwalter is not able to provide an analysis for every Arabic word.

Rather than explicitly representing the short vowels using pho-
netic models, short-vowel targets can be used for MLP features.
These can then be used with a graphemic system to incorporate
implicit short vowel modelling, with the advantage that only train-
ing data phonetic pronunciations are required while only graphemic
pronunciations are required for the test vocabulary.

This work was in part supported by DARPA under the GALE programme
via a subcontract to BBN Technologies. The paper does not necessarily reflect
the position or the policy of the US Government and no official endorsement
should be inferred. We would also like to thank Petr Fousek for making avail-
able code for computing wLP-TRAP features.

1Available at http://www.qamus.org/index.html.

A major problem with altering features for state-of-the-art STT
systems is that the lattices used for many discriminative training
schemes must be rebuilt. Though only a cost during training, this can
become very expensive when using large amounts of training data,
especially if multiple acoustic model types (for example graphemic
and phonetic) are used. Therefore a rapid approach that allows the
lattice to be re-used is described.

The final aspect investigated is the use of linear input networks
(LINs) to adapt the MLP features. LINs have typically been inves-
tigated in the context of hybrid systems as the robust adaptation of
MLP parameters is not possible [4]. When MLP features are used
for training HMMs it is possible to use standard HMM adaptation
schemes such as MLLR [5] and CMLLR [6]. However these stan-
dard approaches are linear, or base-class specific linear transforms.
By contrast the effect of LINs is non-linear on the MLP features. This
paper examines the use and combination of LIN adaptation with stan-
dard HMM adaptation schemes.

Both rapid training and LIN adaptation are generally applicable
to any system, whereas using phonetic targets is Arabic specific. All
the schemes are evaluated in a common framework using an Arabic
Broadcast News/Conversation transcription task.

2. PHONETIC MLP FEATURES

MLP features are normally derived from a spectral representation of
the speech signal. This representation may be the same as one for the
standard features to which they are commonly appended, or it may be
derived from a completely different form. It is known [7] that using
different features as the basis of the MLP-features yields greater re-
ductions in word error rate (WER). In this work the standard features
were the PLP features used in many large vocabulary systems [10].
In contrast, the MLP features were derived from wLP-TRAP feature
vectors extracted at the same frame-rate [3, 8]. Note that when us-
ing these wLP-TRAP features, there are significantly more features
(475) than in case of standard PLP-features (39). In this work the
‘bottle-neck’ approach described in [9] was used. The use of features
generated at an intermediate bottle-neck MLP layer has several advan-
tages over using posteriors at the MLP output. In particular, the use
of such features removes the need for additional dimensionality re-
duction. In contrast to phone-posteriors, bottle-neck features provide
a properly scaled feature domain (scaled from−∞ to+∞), and they
have been shown to be more discriminative [9]. These bottle-neck
features (26) are appended to the standard PLP features (39) to yield
a 65-dimensional feature vector, referred to as PLP+MLP features.

Having determined the form of the features to be used at the net-
work input and those to be extracted from the network, the targets for
the MLP training must be specified. There are two forms of acoustic
models often used for Arabic STT: graphemic and phonetic. Asso-
ciated with these there will be different forms of targets that may be
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used for the MLP features2. In this work, phone-level targets were
used. This allows the MLP features to have some short-vowel in-
formation for use with graphemic systems without having to model
the short vowels explicitly. The advantage of this approach is that it
is only necessary to have phonetic pronunciations for all the words in
the acoustic training data, only graphemic pronunciations are required
for the test vocabulary.

The standard approach to obtain the phonetic pronunciations is
to use Buckwalter. Though this covers approximately 75% of the
words in the 350K vocabulary used in this work, it is normally nec-
essary to derive pronunciations for the remaining words. Automatic
approaches for doing this are available [10], but such pronunciations
are not as reliable as those directly extracted from Buckwalter. How-
ever if phonetic pronunciations are only required for words that are
seen in acoustic training data, the reliability of the pronunciations can
be greatly increased. As there is acoustic data available, it is possible
to force-align the acoustic data using a set of possible pronunciations
to get the targets. The ‘unusual’ hypothesised pronunciations that are
sometimes automatically derived should never be used. To a lesser ex-
tent this is also true of the Buckwalter pronunciations, as Buckwalter
is known to over-generate the number of possible pronunciations.

3. RAPID MLP SYSTEM BUILD

State-of-the-art speech recognition systems typically make use of dis-
criminative training schemes. A standard approach for efficient dis-
criminative training is to use lattices as a compact representation of all
possible competing paths. This set of possible lattice paths will de-
pend on the exact form of acoustic model being used. Changing either
the acoustic features, the decision tree clustering, or the feature linear
transforms can significantly change the set of reasonable alternatives
encoded as lattice paths which can reduce the effects of discrimina-
tive training. For example, in preliminary experiments using lattices
derived from non-HLDA features for training HLDA models, the re-
sulting models performed significantly worse than those using HLDA
derived lattices.

Altering the acoustic model front-end to incorporate the MLP fea-
tures should therefore require obtaining new lattices for discrimina-
tive training. For large systems trained on hundreds of hours of data,
this can be a significant cost. For languages such as Arabic where
multiple phonetic and graphemic acoustic models must be built and
where these systems cannot share decision trees or linear transforms,
it can be extremely expensive to build new sets of lattices for each
of the systems. To address this problem, a rapid build approach is
proposed, where the system using the MLP-features is constrained to
share as much of the standard configuration as possible. This should
reduce the impact of shared lattices and dramatically reduce the com-
putational load. The acoustic systems built using the PLP+MLP fea-
tures were therefore constrained to share the same decision tree and
linear feature-transform as the PLP systems. To further make the lat-
tices more appropriate for use, single-pass retraining (SPR) from the
standard PLP system to PLP+MLP system was used as the starting
point. The overall structure for generating the PLP+MLP features is
shown in figure 1. The rapid training procedure is:

1. train a standard PLP system including decision tree clustering,
HLDA transform, lattice generation, and discriminative train-
ing;

2. SPR from the PLP system (39-dimension) to PLP+MLP sys-
tem (65 dimension)

2For this work only phone-level targets are considered. Though a state-
level version of this may be used, it was not found to yield WER reductions.

Fig. 1. System Architecture for combined PLP+MLP features.

Fig. 2. MLP-feature adaptation by a Linear Input Network.

3. estimate a semi-tied transform for the MLP features and con-
catenate (to yield a block diagonal matrix) the semi-tied MLP
transform with the PLP HLDA transform;

4. multiple Baum-Welch iterations to complete ML training;
5. discriminative training using the PLP lattices.

This process is repeated for each type of acoustic model – in this case
both graphemic and phonetic models.

4. NETWORK ADAPTATION

The standard approach for speaker adaptation when using MLP fea-
tures is simply to use the same form of adaptation applied, for exam-
ple, to PLP-based systems. MLLR and CMLLR are the most pop-
ular versions that are used. It is interesting to compare this form of
speaker adaptation with the form used in hybrid systems where it is
not possible to robustly adapt the ‘acoustic model’ parameters. For
these hybrid systems LIN adaptation can be used [4]. The LIN used
in this paper is illustrated in figure 2. Parameter estimation uses cross-
entropy minimisation at the MLP output. Only the network connect-
ing the LIN and the MLP are updated, and the MLP parameters are
kept fixed. These two styles of adaptation are very different to one
another and may both be applied to MLP features.

MLLR and CMLLR perform a linear transform of either the
model-space or the feature-space. To allow more complex transforms
multiple base-classes can be used. This yields transforms which are
piecewise linear determined by the component being adapted. On the
other-hand LIN adaptation acts on the input to a speaker-independent
MLP (used to determine phone posteriors). When used with MLP-
features the impact of the LIN will be non-linear on the features used
for the HMM. However it is not possible to incorporate multiple base-
class dependent LINs since, due to the non-linearity impact of the
transform on the features, the associated Jacobians cannot be com-
puted. Thus both types of transforms may be described as non-linear,
but they achieve this in very different ways. Another aspect in which
the two forms of adaptation differ is the training criterion used. For
MLLR and CMLLR unsupervised adaptation, maximum likelihood
is used to estimate the transform parameters. This directly makes use
of the HMM acoustic model parameters. Conversely a frame-level
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discriminative criterion is used for LIN parameter estimation, but no
use is made of the HMM acoustic model parameters. Both schemes
rely on the use of an hypothesis during transform estimation. For the
MLLR and CMLLR this is usually in the form of a word-sequence
from which statistics are extracted using the forward-backward algo-
rithm. For the LIN adaptation, frame-level targets are required which
are obtained by force aligning the hypothesis.

Given the differences between the approaches it is sensible to
examine the relative performance of PLP+MLP based systems and
whether they are complementary to one another.

5. EXPERIMENTS

5.1. System Description

Two baseline Arabic PLP-based acoustic models were built. The first,
a graphemic system (G1) was based on the 36 graphemes. The sec-
ond, a phonetic system (V1), was based on 39 phones, the graphemic
ones plus the three short vowels. For further details of the two systems
see [11]. Both models used a 39-dimensional PLP-based front-end
which used 13 PLP cepstra, including the zeroth cepstral coefficient
with first, second and third delta parameters appended followed by
an HLDA projection from 52-dimensions down to 39. Cepstral mean
normalisation was also applied. Both systems used the same acoustic
training data (just over 1500 hours). Cross-word decision-tree state-
clustered triphones were built with about 9K states and an average of
36 Gaussians per state. Minimum phone error (MPE) was used for
discriminative HMM parameter estimation. Gender-independent (GI)
and gender-dependent (GD) models were then constructed. For the
phonetic training pronunciations Buckwalter was used. Any missing
pronunciations from the acoustic model training data were obtained
using the automatic pronunciation system described in [11].

The PLP+MLP-based systems were built using the process de-
scribed in section 3. 475-dimensional wLP-TRAP features were used
as the input to the MLP. The targets were obtained by force-aligning
the training data to get phone boundaries using the PLP phonetic sys-
tem. A total of 40 phone targets were used, including silence. 26 di-
mensional bottle-neck features were trained using a 1-of-K coding at
the MLP output and cross-entropy minimisation. The size of the hid-
den layer prior to the bottle-neck layer was set to 3500 to constrain
training time. Thus the total number of nodes in the input, hidden,
bottle-neck and output layer were 475 × 3500 × 26 × 40. The ICSI
toolkit was used for MLP training [1].

During system development two MLPs were trained. Though
structurally identical, the MLP used for the graphemic system reflects
an earlier development step and was trained on only 200 hours of
data, whereas the MLP for the phonetic system was trained on 1350
hours of data. Table 1 compares both MLPs in terms of frame accu-
racy, showing an performance gain of 1.5% absolute by the use of the
additional 1150 hours of training data. The system performance was
evaluated on three test sets dev07 (2.58 hours) dev08 (3.04 hours)
and a set not used for development eval07 (2.85 hours). All these
test sets consist of both Broadcast News and Broadcast Conversation
styles of data. The language model used for these experiments was
trained using approximately 1G words. 24 language model compo-
nents were trained, four components from the STT acoustic data, six
were newswire texts, and the rest were webdata which was mainly
collected at CUED. The language model interpolation weights were
optimised on a range of development sets, which included the dev07
and dev08 test sets. Two forms of word-list were used. The first was
based on 350K most frequent words determined using weighted com-
binations of all the acoustic training sources. The 260K word-list

Training data Test Acc. (%)
200 hours 63.55
1350 hours 65.16

Table 1. Frame accuracies of the 200 hours and the 1350 hours MLP.

Wordlist dev07 eval07 dev08
260k 2.68 3.39 2.03
350k 1.19 1.26 1.14

Table 2. Out-of-vocabulary rates for the 260k and 350k wordlists

is the subset of the 350K word-list for which phonetic pronunciations
could be obtained using Buckwalter. The 90K missing pronunciations
were found using automatically derived rules described in [11]. The
out-of-vocabulary (OOV) rates for the three test sets used are shown
in table 2. The OOV rates for the 260K word-list are far larger than
for the 350K. This illustrates that some of the words for which Buck-
walter could not derive pronunciations are relatively common.

A multi-pass adaptation framework was used to evaluate the sys-
tems. This is a three-stage process. The P1-stage is a fast decod-
ing run with GI-PLP graphemic models. The P2-stage uses GD-
PLP graphemic models adapted using Least Square Linear Regres-
sion (LSLR) and variance scaling using the P1 supervision. The P2-
stage generates trigram lattices which are expanded using a 4-gram
language model and then rescored in the P3 stage. The P3-stage
models are again GD models (both graphemic and phonetic, PLP and
PLP+MLP), adapted using 1-best CMLLR and lattice-MLLR as dis-
cussed in [10]. Confusion network decoding is then performed on this
output with optional Confusion Network Combination (CNC) to com-
bine two or more branches. For the PLP-system adaptation full CM-
LLR and MLLR transforms were used. For the PLP+MLP-systems
block diagonal transforms were used, one block for the PLP features
one for the MLP features.

5.2. MLP Phonetic Modelling

Table 3 shows the P3 CN-decoding outputs for both the phonetic and
graphemic systems. The PLP+MLP graphemic system was built us-
ing the rapid approach described in section 3. This used MLP features
derived from phonetic targets as a method for incorporating informa-
tion about the short vowels. Comparing the G1 PLP system with the
G2 PLP+MLP system shows WER reductions of between 0.5% and

System Front WER
End dev07 eval07 dev08

Graphemic G1 PLP 13.2 14.1 14.9
G2 PLP+MLP 12.6 13.4 14.4

Phonetic
V1 PLP 11.4 12.9 14.0
V2 PLP+MLP 11.3 12.4 13.7
V2† PLP+MLP 11.7 13.0 14.3

G1+V1

CNC

11.0 12.4 12.9
G2+V2 11.0 12.1 12.9
G1+V2 10.7 12.1 12.7
G1+G2+V1+V2 10.5 11.7 12.5

Table 3. Final P3 decoding results contrasting the PLP-front-end ver-
sus the mixed PLP/MLP-front-end for graphemic and phonetic sys-
tems using 350K vocabulary or 260K vocabulary (indicated with †).
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0.7%, but this is still worse than the phonetic PLP system (V1) per-
formance. Similarly the PLP+MLP system (V2) is better than the
PLP V1 system. However the gains from the MLP features in case of
the phonetic system are smaller than those for the graphemic system.
This indicates that the MLP features have incorporated some short-
vowel and nunation information into the graphemic system. Though
the higher gains for the G2 system are not enough to outperform the
explicit short vowel modelling of the phonetic system, the fact that the
G2 system applies the 200 hours MLP instead of the much more pow-
erful 1350 hours MLP further emphasises the potential of the implicit
short vowel modelling by the MLP of the graphemic system.

nunation information into the graphemic system, though not
enough to overcome the explicit modelling of the phonetic system.

Given the possible issues with deriving test-set vocabulary pro-
nunciations for the phonetic systems, the performance of the 260K
Buckwalter PLP+MLP phonetic system was examined (V2†). Com-
pared to the 350K V2 system the WER is 0.4% to 0.6% higher. This
shows that the rule derived pronunciations are robust even with the
more complex acoustic models of the PLP+MLP system.

The combination of various systems was then compared: the
PLP systems (G1+V1); PLP+MLP systems (G2+V2); both PLP and
PLP+MLP systems (G1+V2, G1+G2+V1+V2). Gains over the best
individual system are shown for all configurations. However, no con-
sistent gains were obtained comparing the “pure” PLP (G1+V1) and
PLP+MLP (G2+V2) systems, though gains were obtained combining
the two frontend ends, G1+V2. The lowest error rate was obtained by
combining all four systems together using CNC.

5.3. Speaker Adaptation

To investigate LIN adaptation, a simplified P3 adaptation with the V2
system was initially explored, only CMLLRwas used rather than CM-
LLR plus lattice-MLLR. For LIN adaptation a full network transform
(475 × 475) was trained. A separate LIN transform was estimated
for each speaker cluster in the same fashion as CMLLR and MLLR.
These initial speaker adaptation results are given in Table 4. The use
of LIN adaptation shows gains over not adapting the MLP features,
although it is slightly worse than using CMLLR. When the two ap-
proaches are combined there is a slight performance improvement on
two of the test sets, though the gains are not significant. Table 5 shows
the performance when using the full adaptation process with the V2
system. LIN adaptation shows WER reductions over not adapting the
features for two of the test-sets. However the WER is higher than
when using the CMLLR+latMLLR adaptation. Combining LIN and
CMLLR shows no improvements over the standard approach.

PLP MLP WER
Adapt Adapt dev07 eval07 dev08

P2-Supervision 13.8 15.0 15.6

CMLLR

— 12.0 13.1 14.3
CMLLR 11.7 12.8 13.9
LIN 11.8 13.0 14.1

LIN+CMLLR 11.6 12.7 13.9

Table 4. Evaluation results of LIN adaptation without lattice MLLR.

6. CONCLUSION

This paper has explored the training and adaptation of MLP features
in the context of a state-of-the-art large vocabulary Arabic STT sys-
tem. Three schemes have been investigated. First, the use of MLP fea-

PLP MLP WER
Adapt Adapt dev07 eval07 dev08

CMLLR
— 11.6 12.7 13.8

+latMLLR
CMLLR+latMLLR 11.3 12.4 13.7
LIN+latMLLR 11.4 12.6 13.8

LIN+CMLLR+latMLLR 11.3 12.5 13.6

Table 5. Evaluation results of LIN adaptation with lattice MLLR.

tures to incorporate short-vowel information into the graphemic sys-
tem. Though this simplifies decoding as only test set graphemic pro-
nunciations are required, by itself it does not match the performance
of PLP or PLP+MLP phonetic systems. However, when used in com-
bination with these phonetic systems, performance gains can be ob-
tained. Second, a rapid training approach for use with the PLP+MLP
system was described. This allows the lattices from PLP systems to
be re-used. This was the form of training used in all PLP+MLP ex-
periments where gains of around 0.5% were obtained compared to the
PLP systems. Finally the use of LIN adaptation as an alternative to
the usual HMM-based linear adaptation was described. Though WER
reductions using LIN adaptation were obtained compared to the un-
adapted system, in the configuration investigated, performance was
no better than the standard HMM-based adaptation.
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[9] F. Grézl, M. Karafiát, S. Kontár, and J. Černocký, “Probabilis-
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