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ABSTRACT Another issue with the unsupervised instantaneous adaptation is

Linear transform-based speaker adaptation is a standard part pf mapi1at itis not nqrmally possible to start gdapting the models st.raight-
speech recognition systems. For unsupervised adaptation maximuii'ay- _Adaptathn must be delayed unt|_I robus_t param_eter estimation
likelihood estimation is typically used, as discriminative transforms'S 8chieved. This prevents any adaptation gains for single utterances
are more heavily biased towards the supervision hypothesis whic here the(e IS a limited amount of dat"’!- A maxmum-a-postgrlorl
may contain errors. In this work a Bayesian framework for discrim-! MAP) estimation has been _proposed in [5] for robustly estimat-
inative adaptation is investigated. This reduces the hypothesis bi J MLLR transforms.even with a small amount of adapt_atlon data.
and allows robust estimates even with a limited amount of data. Var= imilarly, an N-best list based Instantaneous unsuperwse_d adapta-
ious forms of discriminative maximum-a-posteriori estimation, andton SCh_eme has been p_roposed in [6] that uses MAP estl_mates of
associated issues, are detailed. To address these problems, the us@'gfn bias. The N.-pest list baseq scheme can "’."SO deal with thg er
discriminative mapping transforms is also described. The propose@'S N the supervision hypothesis. An N-best list based Bayesian

framework is evaluated on an English conversational speech task. ramework for M!‘LR _afnne transforms has t_)een investigated in 7]
for the unsupervised instantaneous adaptation .
Index Terms— speech recognition, model adaptation, discrim-  |n this work a Bayesian approach is investigated for discrimina-
inative transforms, maximum-a-posteriori estimation tive adaptation. The Bayesian framework can reduce the hypothesis
bias and makes the discriminative adaptation less sensitive to super-
1. INTRODUCTION vision hypothesis errors. Moreover, this Bayesian approach allows
robust estimation of discriminative transforms even with a limited

Speaker or environmental adaptation is an important stage for dmount of data. This makes it possible to use them for instanta-

tomatic speech recognition systems. .Linear transforms are WidelXeoust adapting model parameters. After describing maximum-
used for adapting model parameters in HMM-based systems. F?lf(elihood Bayesian adaptation in the next section, various forms

example, the meap of the model parameters is transformed to ob- . S o discriminati
tain the speaker-adapted meiaﬁ) as of maxmum-a-posterlorl_ (MAP) estimation of |s_cr|_m|nat|ve trans-
forms are described. This is followed by a description of the use of
i) =A@+ b = weg 1) discriminative mapping transforms for the Bayesian adaptation.

whereW®) — [A() b(®)] s the linear transform for speakeand 2 MAXIMUM-LIKELIHOOD BAYESIAN ADAPTATION

¢ = [u” 1]7 is the extended mean vector. These transforms arg?_h dard h ised ker ad Lo i
usually estimated by maximising the likelihood of adaptation data, e standar approact to unsupervised speaker a aptation is a multi-
stage scheme: an initial hypothesis is obtained; transform parame-

maximume-likelihood linear regression (MLLR) [1]. ) . .
g ( ) [1] ters estimated; and the data re-recognised. An alternative approach

Discriminative criteria such as minimum phone error (MPE) ! Y O .
[2] are commonly used to train HMMs in state-of-the-art systems.to achieve “instantaneous” adaptation is to embed the adaptation

Training models with discriminative criteria has been found totransfc_)rm into the a_coust|c model, an a(_japtlve HMM [7]. Here, a

reduce word error rate (WER) significantly. Hence, the use of diSBayesm_n approach is ad_opFe_d that c_on3|der_s the transform as a ran-

criminative criteria like MPE has been investigated for transformd®m variable and usespriori information for it. In such a system,

estimation as well [3]. Though discriminative transforms can giveth® best hypothesi¥ for observatiorO is obtained as

performance gains for supervised adaptation, they are seldom used ., _

for unsupervised adaptation for which the correct transcript is not H=arg mQXp(mo) T argmax {p(O|’H)P(H)} (2)

known. This is because discriminative transforms are highly sensiynere the acoustic score is marginal likelinood given as

tive to errors in the supervision hypothesis and are biased towards

it. Though confidence score and lattice based approaches [3, 4] p(O/H) = / p(O|H, W)p(W|¢,,) dW. 3)

have been investigated to deal with these problems, only limited,

if any, gains are obtained. Recently, discriminative mapping transthe transform priop(W|¢,, ) is assumed to be a Gaussian for mean

forms (DMTSs) [4] have been successfully applied in these situation§/L LR transforms. The hyper-parametegs, of the prior are ob-

giving improved performance. tained through an empirical Bayes approach from the point estimates
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The inference resulting from Equations 2 and 3 is called4, though using point estimates of training speaker-set discriminative
Bayesian adaptive inference. In standard HMMs, the Viterbi algotransforms.
rithm is used to compute the likelihood of the observation sequence. The optimisation of the MAP objective function for ML in Equa-
This relies on the conditional independence assumptions used tion 5 is straightforward, as a strict-lower bound can be obtained
HMMs. These are not valid for the adaptive HMM due to additionaland the EM algorithm used. However, the same is not true for the
dependence on transforms. An N-best rescoring framework ig-ther discriminative MAP objective function in Equation 7. Discrimina-
fore used in [7] for the Bayesian adaptive inference. In this N-bestive objective functions can be optimised using a weak-sense auxil-
rescoring framework the marginal likelihogdO|H) is separately iary function [2] (related to extended Baum-Welch) both for training
computed for each possible hypothekisn the N-best list. How- of HMMs and estimating discriminative transforms. The same ap-
ever, the marginal likelihood as given in Equation 3 is intractableproach is investigated to optimise the discriminative MAP objective
Different forms of approximations, including variational Bayes function. In addition, a lower-bound approach is described.
Iower-b_oun_d, can be usgd. In_ the maximum-a-po_ste_riori_ (MAP)3.1.1. \\eak-Sense Auxiliary Function
approximation [7] the point estimates rather than distributions for
the transforms are used and the computation of the marginal likelifhe discriminative objective function is usually optimised by defin-
hood is tractable. The MAP point estimates of ML transforms areng a weak-sense auxiliary function that has the same gradient at

obtained as the current parameters as the criterion. The auxiliary function for
. the discriminative MAP objective function in Equation 7 can be ex-
W& = arg max { p(OH, W)p(W|d,,) } (5)  pressed as

1 num T den T sm T
With the MAP point estimates of the transforms for each possible QW.,W) = (W, W) - Q™ (W, W) + Q7 (W, W)
hypothesis in the N-best list, the best hypothesis is selected as +QP(W, W) (8)

H = arg max {p(OIH, ngg) )p(W,le? |b.) p(H)}. (6) whereW is the current estimaFe of the transform. The rows of the
H transforms are assumed to be independent, and the numeriaidr (

This Bayesian approach has been found to yield robust estimatélge denominatorden) and the Smoomin@g‘&}i@:ﬂ akrsume/):glr/esised

of ML-based transforms for instantaneous adaptation and has Idfl terms of row-wise sufficient statisticg; e
to reductions in WER. Though this framework has been used witfior the ith row of transforms, as given in [3]. The row-wise suf-
discriminatively trained acoustic models, discriminative transformificient statistics corresponding to the prior te@?(W, W) are
estimates have not been previously investigated. The next sectidi®w, » Zuw, Ky, }» Wherep,, is the mean and.,, is the covari-

investigates Bayesian discriminative adaptation framework. ance of the prior distribution for théth row of the transformw.
With the overall sufficient statisticéG;, k; } (summation of suffi-
3. BAYESIAN DISCRIMINATIVE ADAPTATION cient statistics of all terms), the MAP estimate of iltie row of the

discriminative transform is given &8; 'k;.
Discriminative adaptation uses discriminative criteria such as maxi- In the weak-sense auxiliary function given in Equation 8,
mum mutual information (MMI) or minimum phone error (MPE) to o™ (W, W) and Q%" (W, W) are effectively the lower bounds
estimate the tr_ans_for_m parameters. When used in a supervised adgpg) of the numerator (excluding the prior term) and the denom-
tation mode, discriminative linear transforms (DLTs) can be robustlynator parts of the discriminative objective function. As the LB
estimated and reductions in the error rate obtained [3]. However, thigf the denominator term is subtracted, the resulting expression is
is not the case for unsupervised adaptation, as the supervision hyot guaranteed to be a lower bound to the discriminative objective
pothesis may contain errors. Discriminatively-estimated transformgnction. This implies that maximising the auxiliary function is not
are very sensitive to such errors in the supervision hypothesis and aggaranteed to maximise the objective function. As the resulting ex-
more biased towards the supervision. To deal with these problems,FﬁieSSiOn may not even be concave, a smoothing @ W)
Bayesian approach is proposed for discriminatively-estimated transs 54ded. which is tunable by a smc;othing fadky, for each7 com-
forms. The maximum-a-posteriori (MAP) Bayesian estimation ofyonents,. With small smoothing factors, the optimisation may
discriminative transforms is described below. diverge, whereas very high values of smoothing factors may not

give sufficient update to the parameters. Note that even after adding
3.1. Discriminative MAP Adaptation this smoothing term, the weak-sense auxiliary function is not a
o . . . .lower-bound. This is true when adding the prior term as well.
Though the MPE criterion will be used in the experiments, the maxi- The weak-sense auxiliary function described above was used to

?SUEPQ;ﬁﬁ:;gf%rgfggg%gga Cc:;tzrig)cr;imi”ngz\yesﬁ ,Al\rlltr;g:;t;ttl% r;] estimatg the discrjminative MAP transforms for thg utterance level

The MAP estimate of discriminative transforms using the MMI cri-. adaptation (experimental setup_descrlbed n Se_ctlo_n -4)' -Wlth the
terion Is given as norma_lly used yalues of smoothing factors, the_ dlscrlrr_unatlve_ MAP
objective function was found to generally oscillate with the itera-

tions leading to quite unreliable estimates for the transforms. An

dmap arg max {P(H|O» W)p(W|¢d)} ML I-smoothing “prior” and a scale to the transform prior term were

also used in the experiments. Though the weak-sense auxiliary func-
- p(O|H, W)P(H)
arg max (7)

2
2
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tion with the I-smoothing “prior” has been found to generally work
w for discriminative transforms estimation, addition of a discrimina-
tive transform prior makes the scenario different. This is because the
whereH is drawn from all possible hypotheses corresponding to obtransform prior term represents tikelihood of a transform given
servationO. The estimation of hyper-parameigy for the discrimi-  the prior distribution, and its nature and dynamic range are different
native transform priop(W|¢,) turns out to be same as in Equation from those of the I-smoothing prior and other terms, specially when

> —p(W|e,
5, p(0[H, wyp) V1%



the transform prior is very informative (small variance). On the othettransform parameters, consequently not altering the rank ordering of
hand, the I-smoothing term represents litkelihood of certain ob- the hypotheses. This may be due to the very loose lower-bound ob-
servation points, and its nature and dynamic range are similar to thetained for the discriminative objective function. It is known that the
numerator term. bounds obtained with reverse-Jensen’s inequality are very loose [8].
It should be noted that other gradient and Hessian based optMoreover, the transform estimation requires objective function max-
misation schemes can be used for discriminative MAP estimatiorimisation involving computation of statistics summed over several
Like the weak-sense auxiliary function, they are not guaranteed toomponents. In this case, the cumulative effect of the loose lower
converge and fine tuning of learning parameters is required. Furthebounds may be even more severe than for acoustic model updates.
more, they are generally not elegant and efficient for a large speedtiote in [9] further approximations were used so that the Jensen’s
recognition system with high dimensionality transform matrices. reverse inequality based approach gave similar results to a weak-
sense auxiliary function for model estimation. However, these ap-
proximations are not suitable for this work as a strict lower bound is
Rather than using the weak-sense auxiliary function in the previrequired. A strict lower-bound of the discriminative objective func-
ous section, a strict lower-bound should yield similar attributes tdion obtained by tightly upper-bounding the whole denominator term
the lower-bounds successfully used with the ML-criterion [7]. Max- could possibly improve the optimisation, but is not investigated.
imising such a lower-bound is guaranteed not to decrease the Va|lé82
of the objective function. However, finding a lower-bound has been™
problematic for a discriminative objective function due to the de-As seen above, it is difficult to obtain useful MAP estimates of dis-
nominator term. To obtain an overall lower-bound, the numeratocriminative transforms. Howeverpbust estimates of discrimina-
term should be lower-bounded, whereas the denominator term réive transforms are crucial for instantaneous unsupervised adapta-
quires an upper-bound. tion. Discriminative mapping transforms (DMTSs) [4] can be used
Obtaining an upper-bound directly on the complete transfornfor this purpose. Instead of directly estimating discriminative trans-
denominator term is highly complicated. Instead the reverse-Jenséorms, a DMT maps speaker-specific ML transforms into discrimi-
inequality described in [8] can be used. The complete upper-boundative ones. The mapping itself is speaker-independent. In this work,
is found by computing an upper-bound for each Gaussian compahe form of DMT used allows the final adapted mean obtained using
nent. This component-specific bound is obtained by exploiting théVLLR-based DMT adaptation (MLLR+DMT) to be expressed as
convexity of the cumulant function of the Gaussian component [8].
With these bounds in place, the auxiliary function can be expressed A = Ay + ba = Wdééi) (11)
in the same form as the weak-sense auxiliary function (Equation 8)
including the smoothing term [9]. The uppgr-bound to the denonf'i'whereés) _ [ﬂ:(ni)T 17, /l,ﬁ) _ Wéj)é is the MLLR adapted
nator term requires computing the appropriate values of smoothm,ghean, andW, = [Aq bg] is the DMT transform. As DMTs are

factors. The values of the smoothing factor can be shown to be [8, Yo aker-independent, they are estimated from the training data and

den the same transforms are used while testing. As they are not re-
Dm = Tt © estimated on the test data, they are not sensitive to the supervision
¢ hypothesis errors or limited amount of data. The parameters of
n Z max |:’y;i:? (OI(NmH:n n Em)—lot _ 1) 7 0} DMTs are estimated in tht=T same way as discriminative Iinegr trans-
forms (DLTs), however using data from all speakers [4]. Using the
MPE criterion, DMT estimation can be expressed as

3.1.2. Jensen and Reverse-Jensen Inequalities based Lower Bound

. DMT-based Bayesian Discriminative Adaptation

t
+4 FOE/2) (00— 1) 0! (00 — 1)
' —are mi (). (=)
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k where L(H, H,) is the phone-level loss function of the hypothesis
wherep,,, and3,, are the mean and the covariance for mixtare ~ H for the given supervisioft,.

~3 is the denominator occupancy of mixtureat timet, and In the Bayesian discriminative adaptation framework, the
speaker-independent DMT can be applied to the MAP estimates
v+ Tlg(()-) + % -1/6 v>1/6 of MLLR transforms. The best hypothesis is thus selected by using
f(v) = 1 (v—1) <1/6 (10) MAP estimates of ML transforms along with the DMT as
Tlog(1/7) T Tog(i/7)? v<1/

By using the values of smoothing factor as given in Equation 9, an H = arg max {p(0|H7 WD Wa)p(WD | ¢y,) P(H)}, (13)
auxiliary function that is a lower-bound to the objective function can
be obtained. Using such an auxiliary function, the discriminative obif the standard form in equation 12 is used then the DMTs are esti-
jective function can be optimised iteratively by EM algorithm. Any mated based on speaker-level MAP-transforms. The transform pri-
increase in this auxiliary function is guaranteed not to decrease thars in this case will make little difference as the amount of available
objective function. data will typically be quite large. In contrast for inference using
The MAP estimation of discriminative transforms using a lower-equation 13 MAP estimates are found at the utterance level, where
bound was evaluated for the utterance-level adaptation experimetite impact of the priors will be large. This mismatch between DMT
described in Section 4. Unfortunately, the values of smoothing factraining and use in recognition may impact performance. It is pos-
tors given by Equation 9 to form a strict lower-bound turn out tosible to estimate DMTs on a per-utterance MAP-estimates (thus re-
be very high. The majority of them are larger by a factor16f moving this mismatch) but this is not done in this work.
or more than the normally used values of smoothing factors in the DMTs in this section have been described as acting on the MAP
weak-sense auxiliary function. This leads to minimal changes in th&ransform estimates. They may also be applied to, for example, the



variational Bayes (VB) approximation in [7]. For limited data the Adaptation Supervision
VB approximation has been found to yield slightly better perfor- 1-best[ N-best
mance than MAP-estimates. MAPMLLR 320 | 31.8
MAPMLLR+DMT | 31.6 30.9

4. EXPERIMENTAL RESULTS

. . Table 2. A typical performance comparison for the 1-best and the
The evaluation experiments were conducted on a large vocabulagy_pest utterance-level adaptation on the ML-SAT system
English conversational telephone speech (CTS) task. The acous-

tic training data consisted of about 296 hours of speech from 5446 A comparison of Bayesian N-best adaptation with the 1-best
speakers. The test-set eval03 consists of about 6 hours of data fraadaptation is given in Table 2, typically for the ML-SAT system.
144 speakers, taken from Swbd and Fisher corpora. The spetech dés it can be observed, the N-best adaptation is giving better perfor-
was parameterised using 12 PLP Cepstral coefficients plugtthe mance than the 1-best adaptation. Furthermore, the N-best MAPM-
order (CO) coefficient. First, second and third derivatives were alstLR+DMT adaptation gives a gain of 0.9% absolute compared to
appended. An heteroscedastic linear discriminant analysis transforasing MAPMLLR alone, and a gain of 0.7% absolute compared to
was used to project this 52-dimensional feature-vector down to 39 dihe 1-best adaptation using MAPMLLR+DMT.

mensions. Cepstral mean and variance as well as vocal tract length

normalisation was applied to the features. All systems were based on 5. CONCLUSION

state-clustered triphone HMMs having 6k distinct states with an av-

erage of 16 Gaussian components. A trigram language model traindd!iS Paper has investigated a Bayesian framework for instantaneous
on 1044M words and a 58k words multiple pronunciation dictionaryunsuperwsed discriminative adaptation. Discriminative transforms
were used for decoding. are often biased towards the supervision hypothesis and are very

Speaker independent (SI) and speaker adaptive training (SABENSitive to errors in the supervision. To handle these problems
model sets were obtained using ML and MPE criteria. MPE-SATPayesian dlscnm_lnatlve ade_lptatlon is mvestlgated._ In contrast to
uses MLLR-transforms estimated using the ML-SAT system, andIL-based Bayesian adaptation, lower-bound approximations are not
only model parameters are updated during trainingnean trans- straightforward to define for the discriminative case. Two forms of
form was used in all experiments for adaptation. All speaker-specifigiscriminative MAP approximations are described, though neither
transforms used two base classes: one for speech and anotrier for&ere found to yield useful approaches. An alternative scheme based
lence. For the DMT, 1000 regression base classes were used. DM$8 discriminative mapping transform (DMT) was then described.
are based on the MPE criterion. The supervision hypothesis fof e N-best rescoring framework for Bayesian discriminative adapta
adaptation was obtained from the corresponding SI model for Mtion framework was detailed. Here the speaker-independent DMT is
and MPE systems. All adaptation is done at the utterance level réPPlied over separate MAP estimates of ML transforms for each hy-

flecting the scenario of the instantaneous adaptation. The N-best ([BPthesis. The technique was evaluated on a large vocabulary English
size was 150 for the rescoring experiments. conversational telephone speech task. It was found to outperform

standard approaches for the instantaneous adaptation.
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