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ABSTRACT

Linear transform-based speaker adaptation is a standard part of many
speech recognition systems. For unsupervised adaptation maximum
likelihood estimation is typically used, as discriminative transforms
are more heavily biased towards the supervision hypothesis which
may contain errors. In this work a Bayesian framework for discrim-
inative adaptation is investigated. This reduces the hypothesis bias
and allows robust estimates even with a limited amount of data. Var-
ious forms of discriminative maximum-a-posteriori estimation, and
associated issues, are detailed. To address these problems, the use of
discriminative mapping transforms is also described. The proposed
framework is evaluated on an English conversational speech task.

Index Terms— speech recognition, model adaptation, discrim-
inative transforms, maximum-a-posteriori estimation

1. INTRODUCTION

Speaker or environmental adaptation is an important stage for au-
tomatic speech recognition systems. Linear transforms are widely
used for adapting model parameters in HMM-based systems. For
example, the meanµ of the model parameters is transformed to ob-
tain the speaker-adapted meanµ̂(s) as

µ̂
(s) = A

(s)
µ + b

(s) = W
(s)

ξ (1)

whereW(s) = [A(s)
b

(s)] is the linear transform for speakers and
ξ = [µT 1]T is the extended mean vector. These transforms are
usually estimated by maximising the likelihood of adaptation data,
maximum-likelihood linear regression (MLLR) [1].

Discriminative criteria such as minimum phone error (MPE)
[2] are commonly used to train HMMs in state-of-the-art systems.
Training models with discriminative criteria has been found to
reduce word error rate (WER) significantly. Hence, the use of dis-
criminative criteria like MPE has been investigated for transform
estimation as well [3]. Though discriminative transforms can give
performance gains for supervised adaptation, they are seldom used
for unsupervised adaptation for which the correct transcript is not
known. This is because discriminative transforms are highly sensi-
tive to errors in the supervision hypothesis and are biased towards
it. Though confidence score and lattice based approaches [3, 4]
have been investigated to deal with these problems, only limited,
if any, gains are obtained. Recently, discriminative mapping trans-
forms (DMTs) [4] have been successfully applied in these situations
giving improved performance.
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Another issue with the unsupervised instantaneous adaptation is
that it is not normally possible to start adapting the models straight-
away. Adaptation must be delayed until robust parameter estimation
is achieved. This prevents any adaptation gains for single utterances
where there is a limited amount of data. A maximum-a-posteriori
(MAP) estimation has been proposed in [5] for robustly estimat-
ing MLLR transforms even with a small amount of adaptation data.
Similarly, an N-best list based instantaneous unsupervised adapta-
tion scheme has been proposed in [6] that uses MAP estimates of
mean bias. The N-best list based scheme can also deal with the er-
rors in the supervision hypothesis. An N-best list based Bayesian
framework for MLLR affine transforms has been investigated in [7]
for the unsupervised instantaneous adaptation .

In this work a Bayesian approach is investigated for discrimina-
tive adaptation. The Bayesian framework can reduce the hypothesis
bias and makes the discriminative adaptation less sensitive to super-
vision hypothesis errors. Moreover, this Bayesian approach allows
robust estimation of discriminative transforms even with a limited
amount of data. This makes it possible to use them for instanta-
neously adapting model parameters. After describing maximum-
likelihood Bayesian adaptation in the next section, various forms
of maximum-a-posteriori (MAP) estimation of discriminative trans-
forms are described. This is followed by a description of the use of
discriminative mapping transforms for the Bayesian adaptation.

2. MAXIMUM-LIKELIHOOD BAYESIAN ADAPTATION

The standard approach to unsupervised speaker adaptation is a multi-
stage scheme: an initial hypothesis is obtained; transform parame-
ters estimated; and the data re-recognised. An alternative approach
to achieve “instantaneous” adaptation is to embed the adaptation
transform into the acoustic model, an adaptive HMM [7]. Here, a
Bayesian approach is adopted that considers the transform as a ran-
dom variable and usesa priori information for it. In such a system,
the best hypothesiŝH for observationO is obtained as

Ĥ = arg max
H

p(H|O) = arg max
H

n

p(O|H)P (H)
o

(2)

where the acoustic score is marginal likelihood given as

p(O|H) =

Z

p(O|H,W)p(W|φml) dW. (3)

The transform priorp(W|φml) is assumed to be a Gaussian for mean
MLLR transforms. The hyper-parametersφml of the prior are ob-
tained through an empirical Bayes approach from the point estimates
of training transforms (assuming enough data for their robust esti-
mates). WithS speakers in the training data set, this is given as

φ̂ml = arg max
φ

S
X

s=1

log p(Ŵ
(s)
ml |φ). (4)



The inference resulting from Equations 2 and 3 is called
Bayesian adaptive inference. In standard HMMs, the Viterbi algo-
rithm is used to compute the likelihood of the observation sequence.
This relies on the conditional independence assumptions used in
HMMs. These are not valid for the adaptive HMM due to additional
dependence on transforms. An N-best rescoring framework is there-
fore used in [7] for the Bayesian adaptive inference. In this N-best
rescoring framework the marginal likelihoodp(O|H) is separately
computed for each possible hypothesisH in the N-best list. How-
ever, the marginal likelihood as given in Equation 3 is intractable.
Different forms of approximations, including variational Bayes
lower-bound, can be used. In the maximum-a-posteriori (MAP)
approximation [7] the point estimates rather than distributions for
the transforms are used and the computation of the marginal likeli-
hood is tractable. The MAP point estimates of ML transforms are
obtained as

Ŵ
(H)
map = arg max

W

n

p(O|H,W)p(W|φml)
o

. (5)

With the MAP point estimates of the transforms for each possible
hypothesis in the N-best list, the best hypothesis is selected as

Ĥ=arg max
H

n

p(O|H,W(H)
map )p(W(H)

map |φml) P (H)
o

. (6)

This Bayesian approach has been found to yield robust estimates
of ML-based transforms for instantaneous adaptation and has led
to reductions in WER. Though this framework has been used with
discriminatively trained acoustic models, discriminative transform
estimates have not been previously investigated. The next section
investigates Bayesian discriminative adaptation framework.

3. BAYESIAN DISCRIMINATIVE ADAPTATION

Discriminative adaptation uses discriminative criteria such as maxi-
mum mutual information (MMI) or minimum phone error (MPE) to
estimate the transform parameters. When used in a supervised adap-
tation mode, discriminative linear transforms (DLTs) can be robustly
estimated and reductions in the error rate obtained [3]. However, this
is not the case for unsupervised adaptation, as the supervision hy-
pothesis may contain errors. Discriminatively-estimated transforms
are very sensitive to such errors in the supervision hypothesis and are
more biased towards the supervision. To deal with these problems, a
Bayesian approach is proposed for discriminatively-estimated trans-
forms. The maximum-a-posteriori (MAP) Bayesian estimation of
discriminative transforms is described below.

3.1. Discriminative MAP Adaptation

Though the MPE criterion will be used in the experiments, the maxi-
mum mutual information (MMI) criterion will be used in this section
as it simplifies the description of discriminative MAP adaptation.
The MAP estimate of discriminative transforms using the MMI cri-
terion is given as

Ŵ
(H)
dmap = arg max

W

n

P (H|O,W)p(W|φd)
o

= arg max
W

(

p(O|H,W)P (H)
P

H̆
p(O|H̆,W)P (H̆)

p(W|φd)

)

(7)

whereH̆ is drawn from all possible hypotheses corresponding to ob-
servationO. The estimation of hyper-parameterφd for the discrimi-
native transform priorp(W|φd) turns out to be same as in Equation

4, though using point estimates of training speaker-set discriminative
transforms.

The optimisation of the MAP objective function for ML in Equa-
tion 5 is straightforward, as a strict-lower bound can be obtained
and the EM algorithm used. However, the same is not true for the
discriminative MAP objective function in Equation 7. Discrimina-
tive objective functions can be optimised using a weak-sense auxil-
iary function [2] (related to extended Baum-Welch) both for training
of HMMs and estimating discriminative transforms. The same ap-
proach is investigated to optimise the discriminative MAP objective
function. In addition, a lower-bound approach is described.

3.1.1. Weak-Sense Auxiliary Function

The discriminative objective function is usually optimised by defin-
ing a weak-sense auxiliary function that has the same gradient at
the current parameters as the criterion. The auxiliary function for
the discriminative MAP objective function in Equation 7 can be ex-
pressed as

Q(W , Ŵ ) = Qnum(W , Ŵ ) −Qden(W , Ŵ ) + Qsm(W , Ŵ )

+Qp(W , Ŵ ) (8)

whereŴ is the current estimate of the transform. The rows of the
transforms are assumed to be independent, and the numerator (num),
the denominator (den) and the smoothing (sm) terms are expressed
in terms of row-wise sufficient statistics{Gnum/den/sm

i , k
num/den/sm
i }

for the ith row of transforms, as given in [3]. The row-wise suf-
ficient statistics corresponding to the prior termQp(W , Ŵ ) are
{Σ−1

wi
,Σ−1

wi
µwi

}, whereµwi
is the mean andΣwi

is the covari-
ance of the prior distribution for theith row of the transform,wi.
With the overall sufficient statistics{Gi, ki} (summation of suffi-
cient statistics of all terms), the MAP estimate of theith row of the
discriminative transform is given asG−1

i ki.
In the weak-sense auxiliary function given in Equation 8,

Qnum(W , Ŵ ) andQden(W , Ŵ ) are effectively the lower bounds
(LB) of the numerator (excluding the prior term) and the denom-
inator parts of the discriminative objective function. As the LB
of the denominator term is subtracted, the resulting expression is
not guaranteed to be a lower bound to the discriminative objective
function. This implies that maximising the auxiliary function is not
guaranteed to maximise the objective function. As the resulting ex-
pression may not even be concave, a smoothing termQsm(W , Ŵ )
is added, which is tunable by a smoothing factorDm for each com-
ponentm. With small smoothing factors, the optimisation may
diverge, whereas very high values of smoothing factors may not
give sufficient update to the parameters. Note that even after adding
this smoothing term, the weak-sense auxiliary function is not a
lower-bound. This is true when adding the prior term as well.

The weak-sense auxiliary function described above was used to
estimate the discriminative MAP transforms for the utterance level
adaptation (experimental setup described in Section 4). With the
normally used values of smoothing factors, the discriminative MAP
objective function was found to generally oscillate with the itera-
tions leading to quite unreliable estimates for the transforms. An
ML I-smoothing “prior” and a scale to the transform prior term were
also used in the experiments. Though the weak-sense auxiliary func-
tion with the I-smoothing “prior” has been found to generally work
for discriminative transforms estimation, addition of a discrimina-
tive transform prior makes the scenario different. This is because the
transform prior term represents thelikelihood of a transform given
the prior distribution, and its nature and dynamic range are different
from those of the I-smoothing prior and other terms, specially when



the transform prior is very informative (small variance). On the other
hand, the I-smoothing term represents thelikelihood of certain ob-
servation points, and its nature and dynamic range are similar to the
numerator term.

It should be noted that other gradient and Hessian based opti-
misation schemes can be used for discriminative MAP estimation.
Like the weak-sense auxiliary function, they are not guaranteed to
converge and fine tuning of learning parameters is required. Further-
more, they are generally not elegant and efficient for a large speech
recognition system with high dimensionality transform matrices.

3.1.2. Jensen and Reverse-Jensen Inequalities based Lower Bound

Rather than using the weak-sense auxiliary function in the previ-
ous section, a strict lower-bound should yield similar attributes to
the lower-bounds successfully used with the ML-criterion [7]. Max-
imising such a lower-bound is guaranteed not to decrease the value
of the objective function. However, finding a lower-bound has been
problematic for a discriminative objective function due to the de-
nominator term. To obtain an overall lower-bound, the numerator
term should be lower-bounded, whereas the denominator term re-
quires an upper-bound.

Obtaining an upper-bound directly on the complete transform
denominator term is highly complicated. Instead the reverse-Jensen
inequality described in [8] can be used. The complete upper-bound
is found by computing an upper-bound for each Gaussian compo-
nent. This component-specific bound is obtained by exploiting the
convexity of the cumulant function of the Gaussian component [8].
With these bounds in place, the auxiliary function can be expressed
in the same form as the weak-sense auxiliary function (Equation 8)
including the smoothing term [9]. The upper-bound to the denomi-
nator term requires computing the appropriate values of smoothing
factors. The values of the smoothing factor can be shown to be [8, 9]
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X

t

γden
mt (9)
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whereµm andΣm are the mean and the covariance for mixturem,
γden

mt is the denominator occupancy of mixturem at timet, and

f(γ) =

(

γ + 1
4 log(6)

+ 25/36

log(6)2
− 1/6 γ ≥ 1/6

1
4 log(1/γ)

+ (γ−1)2

log(1/γ)2
γ ≤ 1/6

. (10)

By using the values of smoothing factor as given in Equation 9, an
auxiliary function that is a lower-bound to the objective function can
be obtained. Using such an auxiliary function, the discriminative ob-
jective function can be optimised iteratively by EM algorithm. Any
increase in this auxiliary function is guaranteed not to decrease the
objective function.

The MAP estimation of discriminative transforms using a lower-
bound was evaluated for the utterance-level adaptation experiment
described in Section 4. Unfortunately, the values of smoothing fac-
tors given by Equation 9 to form a strict lower-bound turn out to
be very high. The majority of them are larger by a factor of106

or more than the normally used values of smoothing factors in the
weak-sense auxiliary function. This leads to minimal changes in the

transform parameters, consequently not altering the rank ordering of
the hypotheses. This may be due to the very loose lower-bound ob-
tained for the discriminative objective function. It is known that the
bounds obtained with reverse-Jensen’s inequality are very loose [8].
Moreover, the transform estimation requires objective function max-
imisation involving computation of statistics summed over several
components. In this case, the cumulative effect of the loose lower
bounds may be even more severe than for acoustic model updates.
Note in [9] further approximations were used so that the Jensen’s
reverse inequality based approach gave similar results to a weak-
sense auxiliary function for model estimation. However, these ap-
proximations are not suitable for this work as a strict lower bound is
required. A strict lower-bound of the discriminative objective func-
tion obtained by tightly upper-bounding the whole denominator term
could possibly improve the optimisation, but is not investigated.

3.2. DMT-based Bayesian Discriminative Adaptation

As seen above, it is difficult to obtain useful MAP estimates of dis-
criminative transforms. However,robust estimates of discrimina-
tive transforms are crucial for instantaneous unsupervised adapta-
tion. Discriminative mapping transforms (DMTs) [4] can be used
for this purpose. Instead of directly estimating discriminative trans-
forms, a DMT maps speaker-specific ML transforms into discrimi-
native ones. The mapping itself is speaker-independent. In this work,
the form of DMT used allows the final adapted mean obtained using
MLLR-based DMT adaptation (MLLR+DMT) to be expressed as

µ̂
(s) = Adµ̂

(s)
ml + bd = Wdξ̂

(s)

ml (11)

where ξ̂
(s)

ml = [µ̂
(s)T
ml 1]T , µ̂

(s)
ml = W

(s)
ml ξ is the MLLR adapted

mean, andWd = [Ad bd] is the DMT transform. As DMTs are
speaker-independent, they are estimated from the training data and
the same transforms are used while testing. As they are not re-
estimated on the test data, they are not sensitive to the supervision
hypothesis errors or limited amount of data. The parameters of
DMTs are estimated in the same way as discriminative linear trans-
forms (DLTs), however using data from all speakers [4]. Using the
MPE criterion, DMT estimation can be expressed as

Wd=arg min
W

n

X

s

X

H

P (H|O(s);W,W
(s)
ml , λ)L(H,Hr)

o

(12)

whereL(H,Hr) is the phone-level loss function of the hypothesis
H for the given supervisionHr.

In the Bayesian discriminative adaptation framework, the
speaker-independent DMT can be applied to the MAP estimates
of MLLR transforms. The best hypothesis is thus selected by using
MAP estimates of ML transforms along with the DMT as

Ĥ=arg max
H

n

p(O|H,W(H)
map ,Wd)p(W(H)

map |φml) P (H)
o

. (13)

If the standard form in equation 12 is used then the DMTs are esti-
mated based on speaker-level MAP-transforms. The transform pri-
ors in this case will make little difference as the amount of available
data will typically be quite large. In contrast for inference using
equation 13 MAP estimates are found at the utterance level, where
the impact of the priors will be large. This mismatch between DMT
training and use in recognition may impact performance. It is pos-
sible to estimate DMTs on a per-utterance MAP-estimates (thus re-
moving this mismatch) but this is not done in this work.

DMTs in this section have been described as acting on the MAP
transform estimates. They may also be applied to, for example, the



variational Bayes (VB) approximation in [7]. For limited data the
VB approximation has been found to yield slightly better perfor-
mance than MAP-estimates.

4. EXPERIMENTAL RESULTS

The evaluation experiments were conducted on a large vocabulary
English conversational telephone speech (CTS) task. The acous-
tic training data consisted of about 296 hours of speech from 5446
speakers. The test-set eval03 consists of about 6 hours of data from
144 speakers, taken from Swbd and Fisher corpora. The speech data
was parameterised using 12 PLP Cepstral coefficients plus the0th
order (C0) coefficient. First, second and third derivatives were also
appended. An heteroscedastic linear discriminant analysis transform
was used to project this 52-dimensional feature-vector down to 39 di-
mensions. Cepstral mean and variance as well as vocal tract length
normalisation was applied to the features. All systems were based on
state-clustered triphone HMMs having 6k distinct states with an av-
erage of 16 Gaussian components. A trigram language model trained
on 1044M words and a 58k words multiple pronunciation dictionary
were used for decoding.

Speaker independent (SI) and speaker adaptive training (SAT)
model sets were obtained using ML and MPE criteria. MPE-SAT
uses MLLR-transforms estimated using the ML-SAT system, and
only model parameters are updated during training. Amean trans-
form was used in all experiments for adaptation. All speaker-specific
transforms used two base classes: one for speech and another for si-
lence. For the DMT, 1000 regression base classes were used. DMTs
are based on the MPE criterion. The supervision hypothesis for
adaptation was obtained from the corresponding SI model for ML
and MPE systems. All adaptation is done at the utterance level re-
flecting the scenario of the instantaneous adaptation. The N-best list
size was 150 for the rescoring experiments.

System
Adaptation WER%

Training Testing ML MPE

SI - - 32.8 29.2

SI -
MLLR 35.5 32.4

MAPMLLR 32.2 29.0
MAPMLLR+DMT 30.8 28.4

SAT MLLR
MLLR 35.2 32.3

MAPMLLR 31.8 28.8
MAPMLLR+DMT 30.9 28.6

Table 1. The WER% with different utterance level N-best adaptation

The experimental results for the utterance-level N-best adapta-
tion are given in Table 1. The MAP estimates of ML transforms,
MAPMLLR, reduced the WER significantly. Using DMT with
the MAPMLLR N-best adaptation gives a further improvement of
1.4% and 0.9% absolute on the ML SI and SAT systems, respec-
tively, compared to using MAPMLLR alone. Similarly, for the MPE
systems, the gains obtained with DMT over MAPMLLR for the
utterance-level adaptation is 0.6% and 0.2% absolute on SI and SAT
models, respectively. These gains are less than those obtained with
DMTs for speaker level adaptation. For example, DMTs gave a gain
of 0.8% absolute for speaker-level adaptation on MPE systems. The
reduction in gains compared to the speaker-level adaptation is felt,
in part, to be due to mismatch in applying a DMT estimated from
speaker-level ML transforms to the utterance-level MAP estimates
of ML transforms. The SAT systems are more affected than the SI
systems, as they are more sensitive to any mismatch in the training
and the testing transforms than SI systems.

Adaptation Supervision
1-best N-best

MAPMLLR 32.0 31.8
MAPMLLR+DMT 31.6 30.9

Table 2. A typical performance comparison for the 1-best and the
N-best utterance-level adaptation on the ML-SAT system

A comparison of Bayesian N-best adaptation with the 1-best
adaptation is given in Table 2, typically for the ML-SAT system.
As it can be observed, the N-best adaptation is giving better perfor-
mance than the 1-best adaptation. Furthermore, the N-best MAPM-
LLR+DMT adaptation gives a gain of 0.9% absolute compared to
using MAPMLLR alone, and a gain of 0.7% absolute compared to
the 1-best adaptation using MAPMLLR+DMT.

5. CONCLUSION

This paper has investigated a Bayesian framework for instantaneous
unsupervised discriminative adaptation. Discriminative transforms
are often biased towards the supervision hypothesis and are very
sensitive to errors in the supervision. To handle these problems
Bayesian discriminative adaptation is investigated. In contrast to
ML-based Bayesian adaptation, lower-bound approximations are not
straightforward to define for the discriminative case. Two forms of
discriminative MAP approximations are described, though neither
were found to yield useful approaches. An alternative scheme based
on discriminative mapping transform (DMT) was then described.
The N-best rescoring framework for Bayesian discriminative adapta-
tion framework was detailed. Here the speaker-independent DMT is
applied over separate MAP estimates of ML transforms for each hy-
pothesis. The technique was evaluated on a large vocabulary English
conversational telephone speech task. It was found to outperform
standard approaches for the instantaneous adaptation.
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