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Minimum Phone Error Training of Precision Matrix
Models
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Abstract— Gaussian Mixture Models (GMMs) are commonly
used as the output density function for large vocabulary con-
tinuous speech recognition (LVCSR) systems. A standard prob-
lem when using multivariate GMMs to classify data is how
to accurately represent the correlation in the feature vector.
Full covariance matrices yield a good model, but dramatically
increase the number of model parameters. Hence diagonal covari-
ance matrices are commonly used. Structured precision matrix
approximations provide an alternative, flexible and compact
representation. Schemes in this category include the extended
maximum likelihood linear transform and subspace for precision
and mean models. This paper examines how these precision
matrix models can be discriminatively trained and used on state-
of-the-art speech recognition tasks. In particular the use of the
minimum phone error criterion is investigated. Implementation
issues associated with building LVCSR systems are also ad-
dressed. These models are evaluated and compared using large
vocabulary continuous telephone speech (CTS) and broadcast
news (BN) English tasks.

Index Terms— precision matrix modelling, minimum phone
error, discriminative training, speech recognition.

I. I NTRODUCTION

STATE-OF-THE-ART speech recognition systems are typ-
ically based on continuous density hidden Markov mod-

els [1] with Gaussian mixture models (GMMs) representing
the output distribution associated with each state. A standard
problem when using multivariate GMMs to classify data is
how to accurately model the correlations in the feature vector.
The use of a full covariance matrix for each Gaussian compo-
nent dominates the total number of model parameters and dra-
matically increases the computational cost to train and perform
recognition with these models. Furthermore, a large amount of
training data is required to ensure robust model estimation.
For these reasons, more compact and efficient correlation
modelling techniques are required, particularly for a large vo-
cabulary continuous speech recognition (LVCSR) [2] system,
which comprises many Gaussian components (typically greater
than 100,000) and high dimensional data (typically 39 or 52).
The conventional approach to addressing these problems is to
use a diagonal covariance matrix approximation. The feature
dimensions are assumed to be uncorrelated given a particular
component. Several methods have been employed to improve
the validity of this assumption. For example, the use of Mel
frequency Cepstral coefficients (MFCC) [3] and perceptual
linear prediction (PLP) [4] coefficients provide data with
low correlation. Further decorrelation can be achieved using
feature transformation techniques such as linear discriminant
analysis (LDA) [5], heteroscedastic LDA (HLDA) [6] and
heteroscedastic discriminant analysis (HDA) [7].

Recently, more advanced covariance modelling techniques
have been found to give improvements over the feature
decorrleating schemes above. Techniques that approximate the
inverse covariance (precision) matrices are commonly used.
This is more efficient than modelling the covariance matrix,
as it eliminates the need to invert the covariance matrices
as required by schemes such as the factor-analysed HMMs
(FAHMMs) [8]. This yields efficient likelihood computation
for precision matrix models. Examples of these models are
the semi-tied covariance (STC) [9], extended MLLT (EM-
LLT) [10] and subspace for precision and mean (SPAM) [11]
models. These models have been successfully applied to
LVCSR systems using the Maximum Likelihood (ML) training
scheme [9], [12], [13].

For many years, ML estimation has been the standard
approach to train the HMMs for speech recognition. However,
discriminative training has been found to yield promising
gain over the ML training on diagonal covariance matrix
systems [14], [15]. This has motivated the use of discriminative
training for many state-of-the-art LVCSR systems [16]. The
STC [17] and SPAM [18] models have previously been dis-
criminatively trained using the Maximum Mutual Information
(MMI) criterion on small and medium vocabulary systems. An
alternative discriminative training criterion, Minimum Phone
Error (MPE), has been found to consistently outperform MMI
training on large vocabulary diagonal covariance matrix sys-
tems [15]. This paper investigates the use of MPE trained pre-
cision matrix models for LVCSR systems. The MPE training
approach adopted in this paper is based on the optimisation
of the weak-senseauxiliary function with I-smoothing, as
presented in [15]. Implementation issues regarding building
LVCSR systems with precision matrix models will also be
discussed.

This paper is organised as follows: Section II describes a
generic framework of basis superposition [19], [20] which sub-
sumes various forms of precision matrix modelling techniques.
Next, discriminative training of precision matrix models based
on the MPE criterion will be discussed in Section III. Section
V then addresses the implementation issues of these precision
matrix models for LVCSR systems. Experimental results on
CTS and BN English tasks are presented in Section VI.

II. PRECISIONMATRIX MODELLING

Compact precision matrix modelling has been found to yield
good gains over the diagonal covariance matrix approximation
for GMM covariance modelling. The generic framework of
basis superposition [20] may be used as a convenient way of
analysing various forms of precision matrix models, such as
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the STC, EMLLT and SPAM models. Within this framework,
the precision matrix,P m, is given by the following general
expression

P m =
n∑

i=1

λ
(m)
ii Si =

n∑

i=1

λ
(m)
ii

R∑
r=1

λrra
′
irair (1)

wheren is the number of basis (basis order),Si are a set of
symmetricbasis matricesandλ

(m)
ii are the corresponding su-

perposition coefficients for componentm. The basis matrices,
Si, can be further decomposed into a linear combination of
R basis row vectors, air weighted byλrr andR denotes the
rank of Si. If R = 1, the precision matrix in equation (1)
becomes a STC [9] whenn = d and an EMLLT [10] model
whend < n ≤ d

2 (d+1), whered is the feature dimensionality.
Alternatively, a SPAM [18] model may be modelled withR =
d. In this case, provided one of theSi is positive-definite,n is
allowed to be as small as 1. Furthermore, settingR < d yields
the Hybrid-EMLLT model [21]. Due to the parameterisation
of basis superposition into theglobal (basis vectors/matrices)
andcomponent(basis coefficients) parameters, compact model
representation may be achieved via sharing of the basis vectors
or matrices. The PMM-HLDA model [19] employs tying of
the basis coefficients, which further reduces the number of
model parameters.

One of the attractive attributes of precision matrix modelling
is its efficiency during decoding. This can be seen clearly from
the likelihood expression given by

L(µm, P m|O) = K +
1
2

T∑
t=1

{
log |P m| −x′mtP mxmt

}
(2)

whereL(µm, P m|O) is the likelihood of the model param-
eters given the complete set of observations,O and xmt =
(ot−µm). Modelling the precision matrix,P m, as a superpo-
sition of basis eliminates the need to invert the covariance ma-
trix when computing the likelihood. Furthermore, it is shown
in [20] that the terms in equation (2) can be divided intomodel
and observationdependent. The former can be precomputed
and cached once the model parameters are loaded. The latter
can be cached for each observation and then reused for all
the Gaussian components. This yields a significantly cheaper
computational cost, which is linearly proportional to the basis
order,n.

Maximum likelihood estimation (MLE) is a standard ap-
proach to finding model parameters. Within the HMM
framework, this is commonly optimised using the well-
known Baum-Welch (or more generally Expectation Maximi-
sation) [22] algorithm. The auxiliary function to be maximised
in the M-step is given by

Qml(θ, θ̂) = K +
1
2

M∑
m=1

βm

{
log |P m| −Tr(P mWml

m)
}

(3)

where

Tr(P mWml
m) =

∑T
t=1 γml

m (t)(ot − µm)′P m(ot − µm)
βm

(4)

T is the total number of frames,γml
m (t) is the probability of

componentm at time t given the current parameter set,θ̂,

andK subsumes terms independent of the model parameters.
θ denotes the set of new parameter. The required statistics for
the estimation of precision matrix parameters are given by

Wml
m =

∑T
t=1 γml

m (t)(ot − µm)(ot − µm)′

βml
m

(5)

βml
m =

T∑
t=1

γml
m (t) (6)

W ml
m and βml

m are the ML full covariance statistics and the
component occupancy counts respectively. For all the forms
of precision matrix modelling, the mean vectors are uncon-
strained. Thus, the following standard update formula may be
used

µm =
1

βml
m

T∑
t=1

γml
m (t)ot (7)

The ML update formulae for various precision matrix models
are summarised in [20]. Further details regarding these models
may also be obtained from the corresponding literatures ([9],
[10], [18], [19]).

III. M INIMUM PHONE ERROR (MPE) TRAINING

Recently, discriminative training has been found to yield im-
proved performance in LVCSR compared to the conventional
ML training [15]. Various forms of discriminative objective
functions have been described in these literatures, for example
Maximum Mutual Information (MMI), Minimum Phone Error
(MPE) and Minimum Word Error (MWE) criteria [14], [15].
Several forms of MMI trained precision matrix models have
recently been published.Goel et al., 2003 [18] presented the
MMI estimation of the SPAM models with small vocabulary
system.McDonough et al.[17] also employed MMI trained
STC models in speaker-adapted training (SAT).Tsakalidis
et al. [23] also introduced Discriminative Likelihood Linear
Transform (DLLT), a variant of MLLT whose parameters
estimation is also based on the MMI criterion. The consistent
improvement of MPE training on large scale diagonal co-
variance matrix systems compared to the MMI discriminative
criterion [15] motivates the investigation of MPE training of
precision matrix models on LVCSR systems.

A. Maximising the MPE Objective Function

MPE training aims to minimise the phone classification
error (or maximising the phone accuracy). The objective
function to be maximised by the MPE training,RMPE(θ),
may be expressed as

RMPE(θ) =
∑

r

∑
s pθ(Or|s)κP (s)PhoneAcc(s, sr)∑

u pθ(Or|u)κP (u)
(8)

whereOr is therth training sentence andP (s) is the language
model probability for sentences. κ is an acoustic de-weighting
factor, which can be adjusted to improve the test-set perfor-
mance.PhoneAcc(s, sr) represent the rawphoneaccuracies
of the sentences given the correct sentencesr.

As with the ML objective function, the MPE objective
function is difficult to optimise directly. In this paper, MPE
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training of the precision matrix models is based on the
approach presented byPovey et al.[15]. The MPE objective
function (8) is using an auxiliary function of the form1

Q(θ, θ̂) = Qn(θ, θ̂)−Qd(θ, θ̂) + F(θ, θ̂) (9)

where Qn(θ, θ̂) and Qd(θ, θ̂) are the auxiliary functions
for the numerator and denominator terms respectively in the
objective function. They differ from the ML auxiliary frunction
in that the “posterior” is no longer based onγml

m (t), but the
numerator and denominator counts,γn

m(t) andγd
m(t) respec-

tively. F(θ, θ̂) is a smoothing function which, as suggested in
[15], takes the form

F(θ, θ̂) = K +
1
2

M∑
m=1

Dm

{
log |P m| − Tr(P mΣ̂m)

}
(10)

whereΣ̂m is the current estimate of the full covariance matrix
andDm is a component-dependent constant that controls the
amount ofΣ̂m to be smoothed onto the covariance statistics.
Equation (9) is referred to as theweak-senseauxiliary function
in [15] because an increase in this function does not guarantee
an increase in the objective function. In the following, the
sufficient statistics required to optimise this weak-sense aux-
iliary function will be discussed and model parameter update
formulae for the EMLLT and SPAM models will be given.

B. Sufficient Statistics for MPE Training

The full ML covariance statistics,Wml
m , can be rewritten in

terms of the sufficient statistics such that

Wml
m =

(
Yml

m − xml
mµml′

m − µml
mxml′

m + βml
mµml

mµml′
m

)

βml
m

(11)

where the sufficient statistics,Θml = {βml
m ,xml

m ,Yml
m} for all

componentsm, are given by equation 6,

xml
m =

T∑
t=1

γml
m (t)ot (12)

Yml
m =

T∑
t=1

γml
m (t)oto

′
t (13)

Given the set of parameters,θ, the ML auxiliary fruntion 3
can be rewritten in terms of the ML statisticsΘml

Qml(θ, θ̂) = G(Θml) (14)

where

G(Θml) = K +
1
2

M∑
m=1

βm

{
log |P m| − Tr

(
P mW ml

m

)}
(15)

Equation (9) can also be expressed in terms of sufficient
statistics

G(Θmpe) = G(Θn)− G(Θd) + G(Θsm) (16)

whereΘn andΘd denote the sufficient statistics for numerator
and denominator respectively. The set of parameters,Θ(sm),

1Using this form of auxiliary function yields the same update formulae as
using the extended Baum-Welch (EBW) algorithm [24], [25]

which correspond to the smoothing function (10),F(θ, θ̂) =
G(Θ(sm)), are given by

βsm
m = Dm (17)

xsm
m = Dmµ̂m (18)

Ysm
m = Dm(Σ̂m + µ̂mµ̂′m) (19)

Maximising this auxiliary function with respect to the mean
vector and covariance matrix parameters yields the following
update formulae

µm =
xn

m − xd
m + Dµ̂m

βn
m − βd

m + Dm
(20)

Wmpe
m =

Yn
m −Yd

m + Dm(Σ̂m + µ̂mµ̂′m)
βn

m − βd
m + Dm

− µmµ′m(21)

It is also possible to consider a set of combined statistics where

Θc = Θn −Θd (22)

where this set “-” operator yieldsβc
m = βn

m − βd
m and

similarly for Yc
m andxc

m. Using this concept of functions over
statistics it is simple to incorporate smoothing techniques such
as I-smoothing [15] and Maximum a-Posteriori (MAP) [26]
smoothing. To ensure that the auxiliary function is valid,Wm

is required to be positive-definite. Combining equations (20)
and (21) gives the full covariance statistics in terms ofDm,

Wmpe
m =

B2D
2
m + B1Dm + B0

β
(c)
m + Dm

(23)

where

B2 = Σ̂m (24)

B1 = Yc
m + βc

m

(
Σ̂m + µ̂mµ̂′m

)
−

(
µ̂mxc′

m + xc
mµ̂′m

)
(25)

B0 = βc
mYc

m − xc
mxc′

m (26)

The constant,Dm, is given by the largest positive eigenval-
ues of the Quadratic Eigenvalue Problem (QEP) of equation
(23) [18]. In practice, a lower bound is applied to the smooth-
ing constant value such that the actual smoothing constant
value,D̂, is given by

D̂ = max
(
2D,Eβd

m

)
(27)

where the lower bound,Eβd
m is applied to ensure that the

combined occupancy count,βc
m, is greater than zero.E = 2

is empirically found to lead to good test-set performance [15].

C. I-Smoothing

I-smoothing is an interpolation technique proposed byPovey
.et .al [15] that incorporates prior information over each
Gaussian parameters to control the convergence of the MPE
training process. The prior is based on the ML statistics.
Using I-smoothing requires the redefinition of the weak-sense
auxiliary function (9) as

Q(θ, θ̂) = Qn(θ, θ̂)−Qd(θ, θ̂) + F(θ, θ̂) + p(θ)
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where

p(θ) = K +
τ I

2

M∑
m=1

{
log |P m| − Tr

(
P mWml

m

)}

Wml
m =

(
Yml

m − xml
mxml′

m /βml
m

βml
m

)

τ I is the I-smoothing constant. The prior can be regarded
as the log likelihood ofτ I data points with the mean and
variance of the ML estimate. Incorporating I-smoothing is easy
by rewriting the combined statistics as

xc
m = xn

m − xd
m +

τ I

βml
m

xml
m (28)

Yc
m = Yn

m −Yd
m +

τ I

βml
m

Yml
m (29)

βc
m = βn

m − βd
m + τ I (30)

It is simple to see that as the I-smoothing constant,τ I , tends
to infinity, the resulting estimation formulae tend to those of
the ML training.

IV. MPE TRAINING OF PRECISIONMATRIX MODELS

Once the overall statistics in equations (20) and (21) are
found, the auxiliary function in equation (9) can be maximised
to discriminatively train the precision matrix model parame-
ters. Since the MPE optimisation has been re-expressed in
terms of a set of combined statistics and a function over those
stastics that have exactly the same form as ML training all
the standard ML optimisation formulae may be used. This
is described in more detail in [20]. In this section, the basis
coefficient updates for EMLLT and SPAM models are given
as examples.

The basis coefficients of the EMLLT model,λ
(m)
ii , may be

updated using the formula given in [10], modified to refelct
the MPE statistics

λ
(m)
ii = λ̂

(m)
ii +

(
1

âiW
mpe
m â′i

− 1
âiΣ̂mâ′i

)
(31)

where λ̂
(m)
ii and Σ̂m are the current estimates of the basis

coefficient and full covariance matrix respectively.
Similarly, the basis coefficients of SPAM models may be

updated iteratively using the Polak-Ribeire conjugate-gradient
method [27], as presented in [11]. The change in the auxil-
iary function,Q(m)

∆ for a corresponding change in the basis
coefficient,∆m, is given by

Q(m)
∆ =

βmpe
m

2





d∑

j=1

log
(
1 + ∆mz

(m)
j

)
−∆m

n∑

i=1

d
(m)
i w̃

(m)
i





wherez
(m)
j is thejth eigenvalue of̂P

− 1
2

m

(∑n
i d

(m)
i Si

)
P̂
− 1

2
m ,

d
(m)
i is theith element of the direction vector calculated from

the Polak-Ribeire conjugate-gradient method andw̃
(m)
i =

Tr(Wmpe
m Si) is theprojectedstatistics which will be discussed

in Section V-A. As before, the standard ML full covariance
statistics is replaced by equation (21) for MPE training. The
formulation of determiningd(m)

i is provided in [20].

V. I MPLEMENTATION ISSUES

This section addresses the implementation issues of various
precision matrix models, paying particular attention to building
LVCSR systems. Many of these models have been successfully
applied to LVCSR systems [9], [12], [13]. This paper em-
phasises issues such as memory requirement, computational
feasibility and training robustness in LVCSR systems. System
efficiency may be adversely affected if these issues are not
addressed properly. Here, various implementation issues for
LVCSR systems will be considered.

A. Memory Issues

The major issue with implementing precision matrix models
on LVCSR systems is the large amount of memory require-
ment for full covariance statistics accumulation. The update
of the tied parameters is highly inefficient, especially for the
SPAM models where the basis matrices are not rank-1. In
general, it is more practical to get a good initial set of basis
matrices and concentrate on updating the basis coefficients
which is efficient. Moreover, updating basis coefficients does
not require the full covariance statistics. For models with rank-
1 basis (STC and EMLLT), the required statistics,Wmpe

m is
reduced to the so-calledprojectedstatistics,w̃i

w̃i = âWmpe
m â′

=
∑T

t=1 γ
mpe
m (t)(õti − µ̃mi)2

β
mpe
m

(32)

for i = 1, 2, . . . , n. w̃i is a scalar term.̃oti = aiot and
µ̃mi = aiµm are the projected observation and mean vectors
associated with the projection vector,ai. Hence, the total
amount of memory required is proportional ton rather than
d
2 (d + 1) for the full covariance statistics,W m. This dra-
matically reduces the total memory requirement. The values
of õti and µ̃mi will have been pre-computed and cached for
efficient likelihood computation [20]. Thus, no extra cost is
incurred in computing the projected statistics for STC and
EMLLT models.

Likewise, the sufficient statistics required to update the basis
coefficients for SPAM models can also be expressed in terms
of the projected statistics,̃wi, which is given by

w̃i = Tr (SiW m)

=
∑T

t=1 γm(t)(o′tSiot − 2µ′mSiot + µ′mSiµm)
βm

As before, the required memory is proportional to the basis
order, n and the termso′tSiot and Siot have already been
computed and cached when calculating the likelihood.

B. Basis Initialisations

In the basis superposition framework, the basis vectors
or matrices extract the common structure of the precision
matrices of all Gaussian components. The update of the basis
vectors for EMLLT models and basis matrices for SPAM
models does not have a closed form solution and generic
optimisation routines such as the conjugate gradient decent
method [27] have to be used. Thus, it is important to obtain a
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good initial set of basis to allow fast convergence and avoid
hitting a poor local maximum during parameters estimation
process. This is especially true for the EMLLT and SPAM
models, where the update of basis vectors/matrices is slow.
For STC, a trivial identity initialisation leads to a diagonal
covariance matrix system. Several basis initialisation schemes
are available for the EMLLT models [20]. The STC-HLDA
initialisation scheme was found to be the best in terms of WER
performance and is more flexible than simply stacking multiple
STC transforms [10], which constrainsn to be a multiple of
d.

According to [11], it is useful to initialise the set of basis
matrices{Si} for SPAM models as the symmetric matrices
associated to the topn− 1 singular vectors of the matrix

V =
∑M

m=1 cmvmv′m∑M
m=1 cm

(33)

where vm = vec(W−1
m ). On large systems, it was found

that the basis matrix initialisation given by equation (33) is
not robust due to the robustness of full covariance statistics
for each component. Instead, the inverse of the state-level
covariance statistics is used to produce a more reliable set
of basis matrices [20].

C. Variance Flooring

In situations of data sparseness, which is common in
LVCSR systems, a variance floor is required to prevent over-
fitting. It imposes a lower bound to the variances (diagonal
elements of the covariance matrix). The standard form, for
example in HTK [28], of the variance floor,σ(vf)2

ii , is

σ
(vf)2
ii =

α
∑S

s=1 βsσ
(s)2
ii∑S

s=1 βs

(34)

whereµ
(s)
i , σ

(s)2
ii andβs are the within state mean, variance

and occupancy count respectively.α is a scaling factor which
is typically set as 0.1 (10%). This method is readily applicable
to the basis coefficients of the STC models due to the
independent basis vectors [20].

However, the above method is not applicable to EMLLT
models due to the existence of negative basis coefficients.
Instead, in this work, variance floor is applied to the full
covariance or projected statistics used to update the model
parameters [19], [20]. Unfortunately, it is not possible to
apply variance floor onto the projected statistics,Tr (W mSi),
for SPAM models. However, if one of the basis matrices is
initialised to be positive-definite (S1) [11], the coefficient
corresponding toS1 can be gradually increased until the
final precision matrices satisfy the variance floor condition.
However, this approach is computationally inefficient.

D. Multiple Transformations Scheme

The basis superposition framework introduced earlier has an
extreme basis tying scheme. A single set of basis matrices is
shared by all the Gaussian components. This requires a large
set of basis matrices to yield good representation. Alterna-
tively, the components can be partitioned into clusters. Each

cluster will then contain a smaller number of components. Ex-
tracting basis for each cluster of Gaussian components yields
more accurate basis information. The basis matrices are now
tied at the cluster level. This leads to a multiple projections
scheme where each projection is associated with the set of
basis matrices. A good summarisation of multiple projections
schemes is given in [29]. Multiple HLDA projections models
have been found to lead to good recognition performance [30].
For multiple projections basis superposition models, equation
(1) can be rewritten as

P m =
n∑

i=1

λ
(m)
ii S

g(m)
i (35)

where m ∈ g(m) and g(m) denotes the cluster to which
componentm belongs to. There are many ways to perform
Gaussian clustering. One way is to use a regression class
tree [31] and the terminal nodes of the tree corresponds to
the clusters of Gaussian components.

E. Approximating the Smoothing Constant,Dm

Determination of the smoothing constant value as described
earlier is memory inefficient because solving the quadratic
eigenvalue problem for equation (23) requires storing of the
full covariance statistics. Storing the full covariance statistics
for large systems results in intensive memory requirement.

For STC and EMLLT models, the smoothing constant can
be determined more efficiently by considering the transformed
mean and variance vectors. By applying theith projection
vector to equation (23), the transformed variance statistics
(projected statistics [20]) are thus given by

aiW ma′i =
b
(i)
2 D2

m + b
(i)
1 Dm + b

(i)
0

β
(c)
m + Dm

(36)

where b
(i)
2 = aiB2a

′
i, b

(i)
1 = aiB1a

′
i and b

(i)
0 = aiB0a

′
i.

More details on projected statistics will be given in Section
V-A. Hence, the QEP is simplified to solvingn independent
quadratic equations given by equation (36) using only the
transformed statistics,aix

(c)
m and aiY

(c)
m a′i. Thus, the same

set of statistics is used to determine the smoothing constant,
Dm, and to estimate the model parameters.

Unlike STC and EMLLT models where the basis matrices
are rank-1, the ‘projected’ statistics,Tr(W mSi), associated
with the basis matrices,Si of the SPAM model can not
be used to determine the smoothing constant. There is no
way to infer the positive-definiteness of the full covariance
statistics,W m, from these ‘projected’ statistics. Instead of
obtaining the exact smoothing constant value by solving the
QEP for equation (23), this value can be approximated by
using apseudotransformation matrix,A∗. The transformed
space is assumed to have negligible correlation such that
the QEP is once again broken down inton independent
quadratic equations as for the STC and EMLLT models. Thus,
two sets of statistics are required: one for determining the
smoothing constant,Dm (a∗i W ma∗

′
i ) and the other one for

estimating the model parameters (Tr(W mSi)). To yield a
good approximation for the smoothing constant,A∗ should
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be chosen such that the transformed space is as uncorrelated
as possible. So, it is intuitive to select the STC transform
as thepseudotransformation matrix. In the case where STC
transform is unavailable, an identity matrix may be used. This
was found to be a good approximation [20].

VI. EXPERIMENTAL RESULTS

Discriminative training of precision matrices was evaluated
on an English conversational telephone speech (CTS) task,
which consists of multi-speaker spontaneous telephone conver-
sational speech, and an English broadcast news (BN) task, both
provided by the Linguistic Data Consortium (LDC). Data was
coded into 12 PLP coefficients at a frame rate of 10ms with
a frame size of 25ms, together with the log energy term, first,
second and third derivatives to form 52-dimensional feature
vectors. Acoustic models are represented by decision tree
state-clustered triphone models with 6189 distinct states. Side-
based Ceptral Mean Normalisation (CMN), Cepstral Variance
Normalisation (CVN) and Vocal Tract Length Normalisation
(VTLN) are used in all the systems.

The models used in all the experiments were built using the
HTK [28]. ML and MPE training were conducted with 4 and
8 iterations respectively. All HLDA systems used a 39× 52
transformation matrix trained once at 16-component models
and fixed for subsequent training. Basis matrices for EMLLT
and SPAM models were initialised as described in Section
V-B, where the STC-HLDA method was used for EMLLT
models. For memory tractability, only basis coefficients were
updated in MPE training. A multi-pass decoding strategy was
employed where word lattices were first generated using a
bigram language model and a dictionary comprising 58231
words with multiple pronunciation probabilities. These lattices
were then rescored using a trigram language model to produce
the final 1-best hypotheses.

Initial experiments were conducted based on the
h5etrain03 (296 hours) training set and thedev01sub
(3 hours) test set of the CTS English task to evaluate
the performance of various precision matrix models. The
performance of multiple transforms systems was also
compared using the same training and test sets. Finally,
selected systems were tested on the full CTS (6 hours
eval03 ) and BN (3 hours each fordev03 and eval03 )
English tasks.

A. Development Results

This section evaluates the performance of various precision
matrix models. 16-component models were trained because
of rapid training to serve as an initial comparison. The word
error rate (WER) numbers are summarised in Table I. The
second and third columns show the dimensions for the mean
vector and basis coefficients respectively. The HLDA ML
model has a WER of 33.5% ondev01sub . If the nuisance
dimensions are retained, the equivalent 52 dimensional STC
model yields a further 0.2% absolute reduction in WER. By
tying the 13 basis coefficients corresponding to the HLDA
nuisance dimensions using a HLDA-PMM model, another
0.1% absolute improvement was obtained. With 78 basis

System
Dimensions WER (%)

µ Σ ML MPE

HLDA
39 39

33.5 29.8

HLDA+SPAM 32.0 28.5

HLDA-PMM

52

39 33.2 29.4

STC 52 33.3 29.7

EMLLT 78 32.6 29.2

SPAM 39 32.8 29.2

TABLE I

COMPARISON OFWER (%) PERFORMANCE OFML AND MPE TRAINED

16-COMPONENT PRECISION MATRIX MODELS ONdev01sub CTS

ENGLISH TASK

coefficients, the EMLLT model is 0.9% absolute better than
the HLDA model.The SPAM model, with half the number of
basis coefficients, is only 0.2% absolute behind the EMLLT
model. By applying SPAM within the HLDA subspace, the
HLDA+SPAM model gave the best performance of 32.0%
WER, which is 1.5% absolute better than the baseline HLDA.
This illustrate the importance of compact model representation
to yield robust and improved performance.

The final column of Table I depicts the performance of
the MPE models. The gain from MPE training is about 3.4–
3.8% absolute. The gains form various precision matrix models
were retained after MPE training. The WER of the HLDA
and HLDA+SPAM MPE models were lowered to 29.8% and
28.5% respectively. This translates to an absolute improvement
of 1.3% absolute.

As described in Section V-D, multiple transformations mod-
els provide a simple and powerful way of improving modelling
accuracies without severely increasing the total number of
model parameters. Gaussian clustering is performed in two
different ways. For HLDA and STC models, a regression
class tree is used to cluster the Gaussian components with
an initial speech-silence split. Splitting criterion is based on
the Euclidean distance between Gaussian components. This
yields the 65-transform (64 speech, 1 silence) HLDA and STC
models2. Gaussian components for the EMLLT models were
clustered into 64 groups without an initial speech-silence split
and the splitting is based on the Euclidean distance of the
vectors of basis coefficients.

Table II summarises the WER results for multiple projec-
tions HLDA, STC and EMLLT models. These models are
0.8%, 1.0% and 0.6% absolute better than their corresponding
single transform models. After 4 MPE iterations, the WER
for the HLDA and EMLLT models were both reduced by
3.0% absolute while the STC model achieved a 2.6% absolute
WER reduction. After 4 additional MPE iterations, the WER
of the 64-transform EMLLT model was 28.3%, 0.9% absolute
better than its single-transform model. The slow convergence
of the basis update for SPAM models hinders the build of
multiple transformation SPAM models. Although it is possible
to initialise multiple sets of basis matrices for different cluster

2The multiple transforms HLDA and STC models were obtained from X.
Liu. These models have been trained and decoded using the same setup as
described earlier.
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System
# of ML MPE Iter.

transforms 4 8

HLDA
1 33.5 30.8 29.8

65 32.7 29.7 –

STC
1 33.3 30.3 29.7

65 32.3 29.7 –

EMLLT
1 32.6 29.8 29.2

64 32.0 29.0 28.3

TABLE II

COMPARING WER (%) PERFORMANCE OF16-COMPONENT PRECISION

MATRIX MODELS WITH MULTIPLE TRANSFORMATIONS

of Gaussian components using the method described in Section
V-B, the resulting basis matrices gave a poorer performance
than the single transform SPAM models.

B. State-of-the-art Results

So far, the performance of various precision matrix models
was presented based on thedev01sub test set for the CTS
task. This section compares selected precision matrix models
with the full CU-HTK LVCSR systems [16], [32] used in the
2003 Rich Transcription (RT03) evaluation3. The unadapted
28-component HLDA system was chosen as the baseline for
comparison. The models were trained onh5etrain03 and
evaluated on bothdev01sub andeval03 . Due to memory
constraint, the basis matrices for EMLLT and SPAM models
were initialised using the 16-component systems.

System
dev01sub eval03

ML MPE ML MPE

HLDA 32.3 29.1 31.7 28.4

HLDA+SPAM 31.1 27.9 30.4 27.3

TABLE III

WER PERFORMANCE OF28-COMPONENT PRECISION MATRIX MODELS ON

dev01sub AND eval03 FOR CTSTASK

The results are tabulated in Table III. The WERs of the
ML HLDA model were 32.3% and 31.7% respectively. The
gains from MPE are similar on both test sets, 3.2% and 3.3%
respectively. The best single-transform system from before,
HLDA+SPAM, was built with 28 Gaussian components per
state. Both ML and MPE models consistently outperform the
baseline by 1.2% absolute ondev01sub . On eval03 , the
gains after ML and MPE training were 1.3% and 1.1% abso-
lute, giving the final WER of 27.3% for MPE HLDA+SPAM
model. The gains from HLDA+SPAM in Table III were found
to be statisticallysignificant4. Although the 64-transform 16-
component MPE EMLLT model is 0.8% absolute better than
the 28-component HLDA model ondev01sub , this gain
does not generalise toeval03 . Only 0.3% improvement was
obtained on this test set.

3See http://htk.eng.cam.ac.uk/docs/cuhtk.shtml
4Significance tests were carried out using the NIST Scoring Toolkit

A 16-component HLDA+SPAM model was also built to
compare with the unadapted HLDA BN HLDA system trained
on thebnac+TDT4 (375 hours) date set. These systems were
evaluated on thedev03 andeval03 test sets, each consisting
of 3 hours data. The results are tabulated in Table IV. The

System
dev03 eval03

ML MPE GD ML MPE GD

HLDA 16.3 13.6 13.5 14.6 12.5 12.3

HLDA+SPAM 15.7 13.5 13.2 14.3 12.0 12.0

TABLE IV

WER PERFORMANCE OF28-COMPONENT PRECISION MATRIX MODELS ON

dev03 AND eval03 FOR BNTASKS

ML baseline WERs are 16.3%(dev03 ) and 14.6% (eval03 ).
After MPE training, the WERs reduced to 13.6% and 12.5%
respectively. An absolute gain of 0.6% was observed from
HLDA+SPAM ML model ondev01sub . The corresponding
gain oneval03 was only 0.3%. After MPE training, the gain
from HLDA+SPAM was reduced to 0.1% ondev03 but was
increased to 0.5% oneval03 . Similar to the RT03 setup, gen-
der dependent (GD) models were also built. Starting from the
gender-independent (GI) MPE model, GD models were built
with 3 MPE+MAP[26] iterations, using the corresponding GI
MPE models as the prior. The baseline system gave a further
0.1% and 0.2% WER reductions ondev03 and eval03
respectively. Meanwhile, the HLDA+SPAM model yielded
0.3% improvement ondev03 but no further improvement was
obtained oneval03 . The final absolute gains of 0.3% on both
test sets were found to be statistically significant.

VII. C ONCLUSIONS

This paper has presented the large vocabulary discriminative
training of various precision matrix models based on the
minimum phone error criterion. The structured approximation
of precision matrices was illustrated using a generic framework
of basis superposition, which subsumes many existing models
including the semi-tied covariance (STC), extended MLLT
(EMLLT) and subspace for precision and mean (SPAM) mod-
els. These models have efficient likelihood calculation which
leads to efficient decoding.

Various issues concerning large system implementation
were addressed. In particular, computational tractability and
memory requirement are two important factors that determine
the efficiency of the systems. Issue with high computational
cost and slow convergence of the basis matrix update was over-
come with good initialisation schemes. This also allows the
models to be trained by updating only the basis coefficients,
which is more efficient and requires significantly less memory.
The inefficiency in solving the QEP to find the smoothing
constant for the SPAM models was alleviated by using a
pseudotransformation matrix to mimic the smoothing constant
determination process for STC or EMLLT models.

Experimental results reveal that various precision matrix
models outperform the standard HLDA diagonal covariance
matrix system on the CTS English Task. Without dramatical
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increase in the total number of model parameters, multiple
transformations models were found to yield between 2% to
5% relative reduction in word error rate compared to single-
transform models. The best performance was achieved by
modelling the precision matrices using the SPAM model
within a HLDA subspace (HLDA+SPAM). 1.1% and 0.2%
absolute WER reductions were obtained on conversational
telephone speech (CTS) and broadcast news (BN) tasks re-
spectively over the unadapted HLDA model used in the 2003
Rich Transcription (RT03) evaluation.

In a nutshell, various precision matrix models have been
successfully implemented in LVCSR discriminatively trained
systems and several implementation issues were addressed to
yield robust training and efficient decoding.
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