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Abstract

Composite images are synthesized from existing photographs by artists who make concept art, e.g., storyboards
for movies or architectural planning. Current techniques allow an artist to fabricate such an image by digitally
splicing parts of stock photographs. While these images serve mainly to “quickly” convey how a scene should
look, their production is laborious. We propose a technique that allows a person to design a new photograph
with substantially less effort. This paper presents a method that generates a composite image when a user types
in nouns, such as “boat” and “sand.” The artist can optionally design an intended image by specifying other
constraints. Our algorithm formulates the constraints as queries to search an automatically annotated image
database. The desired photograph, not a collage, is then synthesized using graph-cut optimization, optionally
allowing for further user interaction to edit or choose among alternative generated photos. An implementation of
our approach, shown in the associated video, demonstrates our contributions of (1) a method for creating specific
images with minimal human effort, and (2) a combined algorithm for automatically building an image library with
semantic annotations from any photo collection.

1. Introduction
Paintings, illustrations, and photographs in particular are
very efficient for conveying information. But efficiency de-

Figure 1: An image generated by our system. The query was
“water” in front of Taj Mahal image (also see Figure 10).

pends on both the audience’s reception and the author’s ex-
pended effort. Our primary contribution is a new method for
creating images of specific things and people, with minimal
human effort. While a photographer might opportunistically
capture a desired image, we enable the average person to de-
sign a photograph semantically, as if explaining to another
human that “it looks like this.” Such images are desirable
as concept art that is normally carefully prepared for team
productions such as movies and architectural planning. Be-
yond aesthetic value, such art has very practical uses. The
layout of elements in a planning image conveys the cre-
ator’s vision, which can then be interpreted by others and
revised. Alfred Hitchcock’s storyboards are famous for their
impact on the scene-by-scene look of his movies, though
they are somewhat utilitarian. The industry of stock photog-
raphy is organized around themes of images, so that cus-
tomers can more easily locate each image of an intended
category, though combining of categories usually requires
some PhotoshopTM talent.

The goal of our proposed method is to simplify image
creation by leveraging raw image archives. Given an empty
canvas to start, the user can enter words such as “sky” and
“car” in the caption or at desired locations (See Figure 2).
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Figure 2: In (A), the user specifies only a semantic caption.
(B) and (C) show the automatically selected source images
used to synthesize the designed photograph (D).

The canvas also accepts other similar semantic labels such
as proper names of people, and can be supplemented with
copy-pasted islands of pixels for categories that lack seman-
tic labels, such as logos or scanned designs (Figure 1 shows
a result for which the query was a combination of text and
literal patches). Our algorithm treats the empty parts of the
canvas as don’t-cares, and searches a specified image library
to find candidate stock images. Different combinations of
these candidate images are then stitched together using a
graph cuts based seam optimization algorithm to generate
realistic photographs for each combination. The best com-
bination is then picked as the one with the minimum seam
cost. Our secondary contribution is a parallel algorithm for
automatically building an image library of semantic anno-
tations from any photo collection, that can then be used for
image creation as described above.

2. Background
The existing Content Based Image Synthesis work
of [DEJ04] also seeks a high-level interface for perform-
ing effective image manipulation, and operates by recom-
bining image regions from a database with semantic labels.
They define the problem in terms of semiotics, and explain
the three combinations of possible variations: (1) vary the
paradigm (meaning) and fix the syntagm (spatial position-
ing), (2) fix the paradigm and vary the syntagm, and (3) vary
both. They considered only the first combination and were
able to alter the mood of a photo by replacing, for example,
a clear sky with a stormy one. We instead consider the third
case, generating our semantic labels automatically instead
of manually; our user’s image design is populated by draw-
ing from 160,000 regions and 16,000 images, compared to
their 100 regions and 50 images. In addition, their inter-
face is meant for detailed manipulation of a manually spec-
ified region, while our method allows for very fast design

of new photographs. The Semanticons work [SABGG05]
parses files for their overall meanings and then automatically
merge icons which represent those meanings to create syn-
thesized icons for the files. These icons form an intuitive vi-
sual clue to the contents of the file, and were found in user
studies to raise user productivity.

Interfaces Annotated data has been employed to generate
different graphical elements based on simple user instruc-
tions. [AFO03] showed how annotated motion capture data
can be employed to synthesize animations with various de-
sired behaviors. A special high-level scripting language was
developed in [CDM∗02] to simplify the process of solid
modeling, while a beautiful interface that inferred the third
dimension from pen-strokes was presented in the surface
modeling of [IMT99]. Except for [HJO∗01] (who address
combination (2) above), there has been little progress for the
high level design of photographs.

Synthesis Novel image synthesis from example source im-
ages has been of great research interest in recent times. The
work most closely related to our own is that of Graphcut Tex-
tures [KSE∗03] in which a large texture image is synthesized
from a much smaller example image by intelligent place-
ment and stitching of multiple copies of the input example.
The stitching is performed using a graph cuts based opti-
mization algorithm to determine the least noticeable seam
(or transition boundary) that passes through a set of over-
lapping input patches. Graphcut textures also support low-
level user control for fusing together arbitrary input images
– not just textures – where the user can constrain certain
pixels to copy from a certain input before performing the
graph cut seam optimization. We use graphcut textures as
the backbone of our synthesis framework but allow user con-
trol at a much higher semantic level, where the constraints
are specified as annotations in the form of words and not
mere pixels. Other related techniques include Image Analo-
gies [HJO∗01], where example pairs of input-output images
are used as guides to learn filtering and painting operations,
that are then applied to new inputs. They also demonstrate
pixel-level user control in their texture-by-numbers applica-
tion. In Digital Tapestry [RKKB05], multiple images from
a photo collection are used to automatically construct a col-
lage by choosing informative and spatially compatible re-
gions from the collection. They attempt to pack as much
information as possible from the input collection into the
synthesized image, thereby creating a summary of the col-
lection. In our work, on the other hand, we extract only as
much information from the database as necessary to sat-
isfy the user specification, thereby culling away most of the
database.

Semantic Labeling of Image Libraries Semantic label-
ing of images is an especially active area of research for the
field of Computer Vision. It encompasses the problems of
object detection, recognition, and segmentation, expanding
the range of relevant semantic labels. Numerous approaches
exist because so far, all have significant failure modes, but
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the representative works of [KH05,SWRC06] are among the
newest algorithms that consider image regions in their con-
text of the rest of the image. Clever approaches for retriev-
ing images from automatically classified image libraries in-
clude [TS00] and [FB03]. The former has the original se-
mantic vocabulary used in [DEJ04], and the latter allows
for refinement of queries by allowing a user boolean control
over large sets of small category images. Interestingly, sev-
eral websites (Facebook.com and Flickr.com) dispense with
automation as being too unreliable, and maintain only la-
beling information entered by people visiting these sights to
view their friends’ photo albums. However, our method can
tolerate the shortcoming of current automatic category and
face labeling methods by virtue of having a human making
the final decision among results produced by the system.

We now proceed to explain how our system automatically
builds an image library, and our algorithm for allowing a user
to very quickly and easily build specific new photos.

3. Image-Library Preprocessing
A user is essentially allowed to paint using semantic labels,
so our method relies on the quantity and variety of available
image regions that have those labels. While images on the in-
ternet have contextual information, most digital photos have
no more than a timestamp. Even newspaper image archives
have little more than the text from each caption. The task
of automatically assigning semantic labels to pixel regions
is a long standing vision problem that we do not claim to
have solved. However, we are able to consolidate the com-
plimentary algorithms that currently lead the field for their
respective label categories. The result is an automatic means
of generating a broad range of semantic labels for thousands
of raw images.

3.1. Automatic Semantic Image Labeling
Our implementation uses the TextonBoost algo-
rithm [SWRC06] of Shotton et al. to accurately segment
test images into contiguous semantically labeled regions.
We provide a brief overview of this algorithm here. The
segmentation result is created by evaluating a learned
classification function at every pixel; we first describe the
image features used by the classifier, and then its form.

The algorithm takes an L*a*b* image and convolves it
with a bank of Gaussians, derivatives of Gaussians, and
Laplacian filters, over the three color channels. L*a*b*
space is used as it is a perceptually uniform color space and
has been shown to work well for the purposes of textoniza-
tion. Each pixel is then assigned a texton [MBSL99, VZ02]
number according to a nearest neighbor search within a
learned texton dictionary for the filter response vector at that
pixel, producing a texton map. The features used in the clas-
sification function, known as ’shape filters’, are each com-
puted as a count of pixels with a given texton number within
a particular sub-window of the texton map.

The classification function is an additive model learned

Figure 3: A sample training image with corresponding
ground truth which has been hand-labelled through a ’paint’
interface offline.
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Figure 4: Examples of matching query regions to a database
region. (a) Query region 1 can be fully contained within the
database region at some translation. (b) Query region 2 is
too large to fit within the database region at any translation.
(c) However, scaling up the database region allows query
region 2 to be fully contained. This match will be given a
higher cost since we desire minimum translation and scaling
of the database regions.

using the Joint Boosting algorithm of [TMF04]. It combines
a number M of weak classifiers hm additively as

Hi(c,x) =
M

∑
m=1

hi,m(c,x) (1)

at pixel i, for category label c and input image x. A posterior
category probability can then be computed trivially for each
category c with a soft-max function

Pi(yi = c|x) =
expHi(c,x)

∑c expHi(c,x)
(2)

where yi is the random variable representing the category
label at pixel i. Note that the learning algorithm requires
roughly labeled training data, as seen in Figure 3, and so
300 example images were hand-labeled in about 3hrs.

For the purposes of this paper, a maximum a-posteriori
(MAP) estimate of the category labels is taken at each pixel,
ŷi = argmaxc Pi(yi = c|x), and combined to give the MAP
image, y. The code for this labelling is available online at:
http://mi.eng.cam.ac.uk/~jdjs2/.

Semantic-Driven Search The MAP image is computed for
each database image offline. Each MAP image is then di-
vided into a set of contiguous semantically labeled regions,
by means of a standard connected-component analysis. To
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Figure 5: To determine matching locations, the query re-
gion is scanned across the database region. The matching
algorithm determines whether all scans of the translated
query region (marked with blue crosses) lie wholly within
scans of the database region (marked with brown crosses),
for all scan-lines at interval ∆. An example, matching, rel-
ative translation is indicated with a green check-mark, and
another, non-matching translation, with a red cross. The hor-
izontal red lines indicate the parts of query scans that fail to
be contained within the database scans. Note that the search
in scale has been omitted from this figure for clarity.

avoid spurious matches and increase efficiency, only regions
with a certain minimum area are kept.

Our search algorithm takes a query region, semantically
labeled through our user-interface, and attempts to match
it against all regions of the same category label in the
database, such that for a particular relative shift and scaling,
the database region completely covers the query region (see
Figure 4). A search over all possible shifts and a range of
scales can be done extremely efficiently by comparing sets
of spans (start and end x-coordinates) for each scan-line in
the query (see Figure 5). These spans can be pre-computed.

3.2. Automatic Face Recognition
The inherent difficulties of face recognition and those specif-
ically in the context of image and video retrieval [BBE∗04,
SEZ05] are well appreciated in the literature. Lighting, fa-
cial expressions, and head pose drastically change the ap-
pearance of faces, as do occlusions, blur and small resolu-
tion. The recognition algorithm we employ is based on the
adaptive filtering framework of [AC06]. We start with the
face detector of [VJ04]. We then recognize faces from sin-
gle photos by synthetically generating a face set from each
single input and then performing set-to-set matching.

Assuming that the face to image space embedding func-
tion is smooth, geodesically close images correspond to
small changes in imaging parameters (e.g. yaw or pitch).
Hence, the face motion manifold is locally topologically
similar to the affine warp manifold. We generate a set of face

Figure 6: Sample Retrieval Result. On the left is a sample
Literal Patch, placed by the user in the canvas as a con-
straint. The image on the right shows an intermediate step,
where an image with matching feature points has been found
in the database. Literal patch matching is necessary because
the Arc de Triomphe and many other objects are not yet rec-
ognized with semantic labels.

images from a single face by applying stochastic affine warp
perturbations to the face (see [Mar02] and [SP98]). Similar-
ity between two sets of images is computed as the weighted
average of the first three canonical correlations [BG73] be-
tween these sets. That similarity measures the variation of
subspaces spanned by the two sets.

3.3. Literal Patches
A good deal of recent work uses interest points and ro-
bust, local descriptors for image retrieval and matching
[Low04, KSH04, OM05, Kad02, LSP03, TG04]. The major-
ity of these methods incorporate a nearest neighbor search,
where the closest match for an interest point descriptor in
the query image is found for the ultimate purpose of dis-
covering which image or images in a database match the
query. Groups of these matches are verified, often using geo-
metric constraints, and then evaluated, the final result being
a ranked list of possible database images which appear in
some form in the query. A sample result from such a system
is shown in Figure 6.

Naturally, this process can be reversed such that all im-
ages in a database which contain a particular object are re-
turned in ranked order, and it is in this context that the tech-
nique becomes interesting for use in image synthesis. There
are certain circumstances when the user will want to spec-
ify that a particular patch of an image must be present in
the synthesized result, as is the case with a particular land-
mark, or a particular building facade. In these cases, asking
for a generic region from the database will not suffice, and so
the user is able to add a “literal” image patch to the canvas.
In order to find matching image patches to use in synthesis,
we use a modified version of PCASIFT [KS04] using the
database structure from [KSH04] along with a center clus-
tering technique for pose prediction to query the database.

4. Synthesis Framework
Our method for enabling an artist to create images of spe-
cific scenes benefits from an implementation with a clean
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user interface. While other interfaces can be built around
the algorithm, our implementation resembles a simple paint-
ing program. A blank box in the middle serves as a canvas
which the user annotates with descriptions of their desired
elements. The descriptions are usually in the form of text,
placed on the canvas to specify relative locations where the
requested categories should be generated.

The descriptions (or constraints) specified by the user are
converted into queries, which are pixel masks paired with
categories, then handed over to the search algorithm. The
procedure for query formulation from constraint specifica-
tion is explained in Section 4.1. The database search returns
a set of real photographs for each constraint specified by the
user. This set is then sorted into a list based on category-
specific heuristics and the magnitude of shifting and scal-
ing required to align the query and the database photograph.
Note that we can search for all user constraints in parallel
since they are considered independently of each other.

Once we have a sorted list of photographs for each user
constraint, we synthesize a set (or selection list) of output
photographs, where each output photograph is constructed
from a combination of database photographs. Each combi-
nation picks one photograph for each constraint by sampling
from its sorted list of photographs. For each combination,
the photograph is synthesized using the graph cut optimiza-
tion algorithm to find seams (transition boundaries) between
the database photographs in the combination†. Typically, we
search the top few combinations exhaustively and then sam-
ple the remaining greedily by favoring those with less costly
graph-cut seams. The synthesized photographs are eventu-
ally ranked based on their graph cut seam cost and returned
to the user for selection. See Algorithm 1 for pseudo-code.

4.1. Easy Formulation of Queries
Text by Itself The user enters text after clicking within the
canvas. Once one or more such constraint words have been
entered, the “synthesize” button converts the constraints into
mask images. If the word “car” was typed in the bottom
right, then that word is sent to our recognition database with
a query mask featuring a circle of on pixels in the bottom
right. The query proceeds as described in the Semantic-
Driven Search of Section 3.1 (see Figure 7 for examples).

Text with Paint A user may wish to design a photograph
in which some of the categories appear in specific shapes
and sizes. The paint-tool is used for this case, and each

† The expansion move algorithm [BVZ01, KZ04] is used to stitch
the candidate images together. Combining ideas from Graph Cut
Textures [KSE∗03] and Grab Cut [RKB04], a color model is learned
for each user specified region, and used to assign a cost to all pixels
within each source image. These unary potentials are combined with
pairwise potentials based on a contrast sensitive Potts model [BJ01].
The expansion move algorithm finds an (approximate) minimum en-
ergy which can compose multiple layers together simultaneously.

Algorithm 1 Synthesis Pipeline
for all constraint ∈ user_constraints_list do

query← ParseConstraint(constraint)
{query def= pair<mask,category>}

db_images← SearchDataBase(query)
db_images_list[constraint]← Sort(db_images)

end for {for loop executed in parallel}
synthesized_list← empty
repeat

source_images←NextCombination(db_images_list)
synthized_image←GraphCutsStitch(source_images)
synthesized_list.Add(synthesized_image)

until TestedEnoughCombinations()

(A)

(B)

Figure 7: Shown are examples of user’s text specification
and corresponding synthesized images: “tree,” “road,” and
“sky” in (A) and “building” and “water” in (B).

connected component of painted pixels is associated with a
typed constraint word (see Figure 8). Once the desired photo
has been designed, clicking “synthesize” generates location
mask queries, performs the search, and returns a collection
of synthesized images for the user to choose from.

Location-free Text in Image Captions When the user en-
ters constraining text without locating their preference of ob-
ject locations in the canvas, our application samples a lo-
cation prior that has been learned from the labeled training
images. The prior is learned by creating a normalized his-
togram for each category label of location. See Figure 9. To
sample from this prior we use a simple and efficient Gibbs
sampler. Figure 2 shows the result of entering scene direc-
tion for a movie script as the caption.

Literal Patches For situations where the desired photo
should contain an object from an unknown category, the user
can drag-drop an example of the object, assuming it has dis-
tinct image features, into the canvas as one of the constraints
(see Figure 10).
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(A)

(B)

Figure 8: The user may both specify text and paint desired
regions to synthesize a photo. (A) and (B) show the query for
“sky” and “building”; (C) and (D) show “car” and “road.”

Figure 9: Whiteness of dots indicates the learned prior
probability of that category occurring at that image loca-
tion; image intensities are displayed here with a gamma =
1.75 enhancement. Shown are example categories (left to
right, top row first): snow, sky, airplane, flower, face, tree.

5. Results & Conclusions
Our method for designing photographs has successfully en-
abled non-experts to quickly create a variety of images us-
ing only text, text and some markup of a canvas, or using
example pixel patches. The average image takes a few typed
words and 15 to 45sec. to synthesize, where most of that
time is spent waiting for the graph-cut optimization to try
out more combinations. The system returns an array of re-
sults like those shown in Figure 11 for the user to choose
from to find the one which is most aesthetically pleasing, or
appropriate to the task at hand.

The system does have distinct failure modes, as depicted
in Figure 12. They are related to known limitations of the
automatic semantic labeling and image stitching technolo-
gies, however, and as those systems improve so will ours. To
deal with the variety of images available in any significant
photo archive, the interface allows the user to revise results.

(A)

(B)

Figure 10: The drag-dropped example pixels are treated as
part of the image’s design. The synthesized image contains
pixels from a matching object, even though there is not yet a
semantic label for this category.

Figure 11: The system returns a wide array of results that
combine the input images in many different ways. These im-
ages along with the one in Figure 10B are the top four results
returned for the Taj Mahal and “water” query shown in Fig-
ure 10B.

To replace a stitched region within a result, the user picks an
alternate same-class source image from other most-highly
compatible candidates. Generally, so little human effort is
sufficient only because we were able to automate the ap-
proximate but broad image-database category labeling. With
fewer images, user requests for specific layouts would be
harder to synthesize, though image-flipping and automatic
color correction are known technologies that could be em-
ployed.

(A) (B) (C)

Figure 12: The system has three main failure modes: (A) the
stitching algorithm chooses incorrect seams and severs an
object; (B) the automatic semantic labeling fails and gives
an incorrect result for a semantic label; (C) scale differences
result in obvious resolution change across a border.
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