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Abstract

We present an algorithm and the associated capture
methodology to acquire andtrack the detailed 3D shape,
bends, and wrinkles of deforming surfaces. Moving 3D data
has been difficult to obtain by methods that rely on known
surface features, structured light, or silhouettes. Multispec-
tral photometric stereo is an attractive alternative because
it can recover a dense normal field from an un-textured sur-
face. We show how to capture such data and register it over
time to generate a single deforming surface.

Experiments were performed on video sequences of un-
textured cloth, filmed under spatially separated red, green,
and blue light sources. Our first finding is that using zero-
depth-silhouettes as the initial boundary condition already
produces rather smoothly varying per-frame reconstruc-
tions with high detail. Second, when these 3D reconstruc-
tions are augmented with 2D optical flow, one can register
the first frame’s reconstruction to every subsequent frame.

1. Introduction

The modeling of dynamic cloth geometry is now receiv-
ing considerable attention [18, 19, 21, 26, 27]. The com-
plexity underlying the simplest of cloth motions motivates
capturing cloth geometry and motion data from the real
world.

Existing algorithms one might employ for capturing de-
tailed 3D models of moving cloth include multiple view
stereo [22], photometric stereo [9, 23], and laser based
methods [12]. However, most of these techniques require
that the subject stand still during the acquisition process,
or move slowly [15]. Another substantial challenge is that
even starting from a sequence of 3D scans of the deforming
object, registration is necessary to produce a single deform-
ing 3D model, suitable for CG animation or further data
analysis.

The proposed technique for acquiring complex motion
data from real moving cloth uses a practical setup that con-
sists of an ordinary video camera and three colored light
sources (see Fig.1). The key observation is that in an en-

Figure 1.Setup and calibration board. Left: a schematic repre-
sentation of our multispectral setup. Right: Linking the two clip-
boards and attaching a printed calibration pattern produces a pla-
nar trackable target for computing the orientation of the pattern’s
plane. Cloth inserted between the boards appears in the square
hole and creates the association between color and orientation.

vironment where red, green, and blue light is emitted from
different directions, a Lambertian surface will reflect each
of those colors simultaneously without any mixing of the
frequencies. The quantities of red, green and blue light re-
flected are a linear function of the surface normal direction.
A color camera can measure these quantities, from which
an estimate of the surface normal direction can be obtained.
By applying this technique to a video sequence of a deform-
ing object, one can obtain a sequence of normal maps for
that object which are used in two distinct ways: (1) These
normal maps are integrated to produce a sequence of depth-
maps and (2) 2D optical flow is computed between consec-
utive frames of the normal map sequence. This optical flow,
combined with a local rigidity constraint, registers the first
depth map will all subsequent ones, producing a single de-
forming 3D model.

The main contributions of this work are the following:

1. A simple and practical acquisition setup for acquiring
high-detail, per-frame reconstructions.

2. An optical-flow based registration technique for track-
ing the folds and creases of real moving cloth.

3. An interesting application of our method is a simple
technique for ‘dressing’ a virtual character with real
moving cloth.
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The rest of the paper is laid out as follows: Section2
discusses related prior work. In Section3 we describe the
extraction of a depth map sequence from video of a deform-
ing object, while Section4 presents the surface registration
technique. We report on experiments we carried out to ver-
ify our approach in Section5, and Section6 concludes with
a discussion of our main contributions.

2. Prior work

The animation and capture of cloth deformations is be-
ing explored in many fields, so we provide a general ex-
planation of their relevance in the context of the proposed
technique.

Texture Cues White and Forsyth [26, 27] and Scholzet
al. [21] have presented work on using texture cues to per-
form the specific task of cloth capture. Their methods are
based on printing a special pattern on a piece of cloth and
capturing video sequences of that cloth in motion. The es-
timation of the cloth geometry is based on the observed de-
formations of the known pattern as well as texture cues ex-
tracted from the video sequence. The techniques produce
results of very good quality but are ultimately limited by
the requirement of printing a special pattern on the cloth
which may not be practical for a variety of situations. In the
present work, we avoid this requirement while producing
detailed results.

Pilet et al. [18] and Salzmannet al. [19] proposed a
slightly more flexible approach where one uses the pattern
already printed in a piece of cloth, by presenting it to the
system in a flattened state. Using sparse feature matching
the pattern can be detected in each frame of a video se-
quence. Due to the fact that detection occurs separately in
each frame, the method is quite robust to occlusions. How-
ever the presented results dealt only with minor non-rigid
deformations.

Photometric Stereo Photometric stereo [28] is one of the
most successful techniques for surface reconstruction from
images. It works by observing how changing illumination
alters the image intensity of points throughout the object
surface. These changes reveal the local surface orienta-
tions. This field of local surface orientations can then be
integrated into a 3D shape. State of the art photometric-
stereo allows uncalibrated light estimation [14, 23] as well
as multiple unknown albedos [7, 10]. The main difficulty
with applying photometric stereo to deforming objects lies
in the requirement of changing the light source direction for
each captured frame, while the object remains still. This is
quite impractical when reconstructing the 3D geometry of
a movingobject. We show how multispectral lighting al-
lows one to essentially capture three images (each with a

different light direction) in a single snapshot, thus making
per-frame photometric reconstruction possible.

Colored and Structured Lights The earliest related
works are also the most relevant. The first reference to mul-
tispectral light for photometric stereo dates back 20 years
to the work of Petrov [17]. Ten years later, Kontsevichet
al. [11] actually demonstrated an algorithm for calibrating
unknown color light sources and at the same time comput-
ing the surface normals of an object in the scene. They veri-
fied the theory on synthetic data and an image of a real egg.
We use a simplified approach for calibration and the same
orientation-from-color cue to eventually convert video of
un-textured cloth into a single surface with complex chang-
ing deformations.

More recently, the parameters needed to simulate real-
istic cloth dynamics were measured in video by projecting
explicitly structured horizontal light stripes onto material
samples under static and dynamic conditions [3]. This sys-
tem measured the edges and silhouette mismatches present
in real vs. simulated sequences. Many researchers have uti-
lized structured lighting, and Guet al. [8] even used color,
although their method is mostly for storing and manipu-
lating acquired surface models of shading and geometry.
Weise et al. [25] is the current state-of-the-art for struc-
tured light and has some advantages in terms of absolute 3D
depth, but at the expense of both spatial and temporal sam-
pling, e.g. 17 Hz compared to our 60 Hz (or faster, limited
only by the camera used). Zhanget al. [29] is a nice com-
plete system also with structured lighting that applies to face
models and videos. Sandet al. dispensed with special light-
ing but leveraged motion capture and automatic silhouettes
to deform a human body template [20]. Our technique, on
the other hand, expects no prior models of the cloth being
reconstructed.

3. Depth-map video

In this section, we follow the exposition of Kontsevicet
al. [11]. For simplicity, we first focus on the case of a single
distant light source with directionl illuminating a Lamber-
tian surface pointP with surface orientation directionn.
Let S(λ) be the energy distribution of that light-source as
a function of wavelengthλ and letρ(λ) be the spectral re-
flectance function representing the reflectance propertiesat
that surface point. We assume our camera pixels consist
of three sensors sensitive to different parts of the spectrum.
If νi(λ) is the spectral sensitivity of thei-th sensor for the
pixel that receives light fromP , then intensity measured at
that sensor is

ri = l · n

∫

S(λ)ρ(λ)νi(λ)dλ, (1)



or in matrix form
r = Mn, (2)

where the(i, j)th element ofM is

mij = lj

∫

S(λ)ρ(λ)νi(λ)dλ. (3)

When more light sources are added, if the system is lin-
ear andl · n ≥ 0 still holds for each light, the response
of each sensor is just a sum of the responses for each light
source individually, leading to equation (2) still being valid
with

M =
∑

k

Mk, (4)

whereMk describes thek-th light source. Since each of
theMk is of rank 1, this implies that in the absence of self
occlusions, a minimum of three different lights needs to be
present in the scene forM to be invertible. If the surface is
uniformly colored, thenρ(λ) and consequentlyM will be
fixed across all un-occluded locations.

Equation (2) establishes a 1-1 mapping between an RGB
pixel measurement from a color camera and the surface ori-
entation at the point projecting to that pixel. Our strategy
is to use the inverse of this mapping to convert a video of
a deformable surface into a sequence of normal maps. The
next section describes our setup and explains how the RGB-
to-normal mapping is estimated.

3.1. Setup and calibration

Our setup consists of a color video camera and three light
sources which have been filtered with red, green and blue
filters respectively. The camera is placed 5m away from the
target object. The light sources are at a similar distance,
aimed at the target and at an angle of about30 degrees to
one another, not colinear. The filming occurs in a dark room
with minimal ambient light. Figure1 (left) describes this
schematically.

In [11] and [6], methods were proposed for the estima-
tion of the linear mappingM of equation (2) from the image
itself, using the constraints of uniform albedo and surface
integrability that must be satisfied by the normal mapn.
However the results obtained with these techniques can be
unsatisfactory, especially in situations where the targetob-
ject does not have many different surface orientations (if for
example it is mostly planar). We prefer to estimate the map-
ping by employing an easy-to-use calibration tool (Figure1
(right)) similar to the one used in [16]. The pattern is planar
with special markings that allow the plane orientation to be
estimated. By placing the cloth in the center of the pattern,
we can measure the color it reflects at its current orienta-
tion. We thus obtain a sequence of(r,n) pairs to which we
fit the mappingM using linear least squares.

3.2. Depth from Normals

By estimating and then inverting the linear mappingM

linking RGB values to surface normals, we can convert a
video sequence captured under colored light into avideo of
normal-maps. Due to the dark room conditions, by simple
intensity thresholding we can segment background pixels
in every frame of the original video, as they are almost per-
fectly black. We then integrate each normal map indepen-
dently to obtain a depth map in every frame by imposing
that the occluding contour is always at zero depth. This in-
tegration process is a fairly established technique and sev-
eral algorithms are available. We have used the Successive
Overrelaxation solver (SOR) [5] because of its robustness
and simplicity. At the end of the integration process, we
obtain avideo of depth-maps.

4. Tracking the surface

While thevideo of depth-mapsrepresentation can be ad-
equate for some applications, for cloth modeling, points on
different depth maps must be put in correspondence. This
is easily seen in the very common task of texture-mapping
a moving cloth. Figure3 (second row) shows the failure of
directly texture-mapping each depth-map without any reg-
istration. Our approach is to use the first depth-map of the
sequence as a 3D template which will be deformed to match
all subsequent depth-maps. Letzk (u, v) denote the depth-
map at framet. Our deformable template, which corre-
sponds to the depth-map at frame0, is a triangular mesh
with vertices

x0
i =

(

u0
i , v

0
i , z0

(

u0
i , v

0
i

))

i = 1 . . . N, (5)

and a set of edgesE . At frame t the template mesh is de-
formed to fit thet-th depth-map by applying a translation
Tt

i to each vertexxi so thei-th vertex at framet moves to
x0

i + Tt
i. This approach follows [2] where a human body

template is deformed to fit range scan data.The deforma-
tions of the template will be guided by the following two
competing constraints:

• the deformations must be compatible with the frame-
to-frame 2D optical flow of the original video se-
quence,

• the deformations must be locally as rigid as possible.

In the following sections we describe these two con-
straints in more detail.

4.1. 2D Optical flow

We begin by computing frame-to-frame optical flow in
the video of normal-maps. A standard optical flow algo-
rithm is used for this computation [4] which for every pixel



location(u, v) in framet predicts the displacementdt(u, v)
of that pixel in framet + 1. Let (ut, vt) denote the position
in framet of a pixel which in frame0 was at(u0, v0). We
canadvectdt(u, v) to estimate(ut, vt) using the following
equation from [20]

(uj , vj) = (uj−1, vj−1)+dj−1
(

uj−1, vj−1
)

j = 1 . . . t.

(6)
If there was no error in the optical flow and our template

from frame0 had been perfectly deformed to match framet,
then vertexx0

i of the template should be displaced to point

yt
i =

(

ut
i, v

t
i , z

t
(

ut
i, v

t
i

))

(7)

in framet. We formulate the constraint as an energy term
consisting of the sum of squared differences between the
displaced vertex locationsx0

i + Tt
i and the positions pre-

dicted by the advected optical flowyt
i at framet

ED

(

Tt
1, . . . ,T

t
N

)

=
N

∑

i=1

∥

∥x0
i + Tt

i − yt
i

∥

∥

2
. (8)

4.2. Rigidity

Simply moving each template vertex to the 3D position
predicted by optical flow using (8) can cause stretching and
other geometric artifacts like the ones displayed in Figure3
(third row). This is due to error in the optical flow caused by
image noise or occlusions. To regularize the deformation of
the template mesh, we require translations applied to nearby
vertices to be as similar as possible. This is achieved by an
energy termER defined by

ER

(

Tt
1, . . . ,T

t
N

)

=
∑

(i,j)∈E

∥

∥Tt
i − Tt

j

∥

∥

2
. (9)

4.3. Optimization

The two terms defined above are then combined into a
single energy function

ETOT

(

Tt
1, . . . ,T

t
N

)

= αED + (1 − α)ER, (10)

which is optimized with respect toTt
1, . . . ,T

t
N for every

frame t. For the optimization we use an iterated scheme
where we replace eachTt

i with the optimal translation̂Tt
i

given that every other translation is constant. This is actu-
ally a quadratic minimization problem which has a closed-
form solution leading to the update formula

T̂t
i = α

(

yt
i − xi

)

+ (1 − α)
1

N (i)

∑

j∈N (i)

Tt
j , (11)

whereN (i) is the set of neighbors of vertexi andα is a
parameter determining the degree of rigidity of the mesh.
The next section describes a set of experiments we carried
out to verify the quality of reconstruction and tracking of
deforming cloth.

5. Experiments

In all the results presented here we have used a color
video camera with a resolution of1280 × 720 and 60 fps.
Computation times are in the order of 20 seconds per frame
for the depth-map recovery and another 20 seconds for the
registration of the template mesh to the current frame. All
computations were carried out on a 2.8Ghz Pentium 4 pro-
cessor with 2Gb of RAM.

5.1. Comparison with photometric stereo

To evaluate the accuracy of the per-frame depth-map es-
timation we reconstructed a static object (a jacket) using
classic photometric stereo with three images each taken
under different illumination. The same object was recon-
structed using a single image, captured under simultaneous
illumination by three colored lights, using our technique.
Figure2 shows the two reconstructions side by side. The
results look very similar and the average distance between
the two meshes is only1.4% of the bounding box diag-
onal. This demonstrates that equation (2) works well in
practice. It is worth noting that even though photometric
stereo achieves comparable accuracy, it cannot be used on
a non-static object whose shape will change while the three
different images are captured. Since our method only uses
one image, it is suitable for obtaining frame-by-frame re-
constructions of a deforming object.

5.2. Texture-mapped moving cloth

For the second experiment shown here, a model wearing
a white sweater was filmed dancing under our multispec-
tral illumination setup (see first row of Figure3). We used
this sequence to evaluate the mesh registration algorithm of
Section4 by texture mapping the deforming sweater. Fig-
ure3 shows several approaches to mesh registration starting
with no registration at all (second row), registration using
the advected optical flow alone (third row) and the effect of
regularizing optical flow with the rigidity constraint (fourth
row), which is what this paper proposes. This last approach
is seen to outperform all others as it manages to track the
surface for more than 500 frames.

In Figure4 we show several views of frame380 with-
out the texture map in high resolution (the mesh consists of
approximately 180,000 vertices). The images clearly show
the high frequency detail of the sweater. To the best of our
knowledge, this is the only method able to reconstruct de-
forming cloth with such detail.

5.3. ‘Dressing’ a virtual character with moving
cloth

To demonstrate the potential of our method for capturing
cloth for animation, we attach a captured moving mesh to
an articulated skeleton. Skinning algorithms have varying
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Figure 2.Comparison with photometric stereo. (A-C) show three grayscale images captured by a digital camera, eachtaken under a
different illumination, providing the input to a classic photometric stereo reconstruction [28] shown in (D). (E) shows a frame from a jacket
sequence, where the same object is illuminatedsimultaneouslyby three different colored lights. Our algorithm only uses one such frame
to generate the surface mesh shown in (F). Note that both algorithms givevery similar results, but only the new one (bottom row) can
work with video since only one frame is required to obtain a reconstruction.As a quantitative comparison, the average error between both
reconstructions is only1.4% of the bounding box diagonal.

degrees of realism and complexity, e.g. [13]. We apply a
version of smooth skinning in which each vertexvk in the
mesh is attached to one or more skeleton joints and a link to
joint i is weighted bywi,k. The weights control how much
each jointi affects the transformation of the vertex [24]

vt
k =

∑

i

wi,kS
t−1
i vt−1

k ,
∑

i

wi,k = 1, (12)

where the matrixSt
i represents the transformation from

joint i’s local space to world space at time instantt. The
mesh is attached to the skeleton by first aligning both in
a fixed pose and then finding, for each mesh vertex, a set
of nearest neighbors on the skeleton. The weights are set
inversely proportional to these distances. The skeleton is
animated using publicly available mocap data [1] while the
mesh is animated by playing back one of our captured and
registered cloth sequences. Figure5 shows example frames
from the rendered sequence (please also see the video).
Even though the skeleton and cloth motions are not explic-
itly aligned, the visual effect of the cloth moving on a con-
trollable character is appealing. Such data-driven cloth ani-
mation can serve as a useful tool and presents an alternative
to physical cloth simulation.

6. Conclusion

Building on the long established but surprisingly over-
looked theory of multispectral lighting for photometric
stereo, we have discovered and overcome several new ob-
stacles. We developed a capture methodology that parallels
existing work for capturing static cloth, but also enables one
to capture the changing shape of cloth in motion. Integra-
tion of the resulting normal fields is already possible with
the simple boundary condition that the occluding contour is
at zero depth. We have verified the accuracy of the depth-
maps against classic photometric stereo. When such a se-
quence of surfaces is played back, it appears to be changing
smoothly. However, to really make use of such data, we had
to explore long-term registration.

The high level of detail captured by the normal fields in-
cludes surface bends, wrinkles, and even temporary folds.
Tracking of folds is inherently underconstrained, and will
continue to be a challenge. The solution we propose is
to register at least the visible details of the surface so that
points on the surface in the first frame are tracked through to
the last, through locally rigid deformations. In our frame-
work, 2D optical flow is combined with the sequence of
depth maps, creating a powerful 3D constraint which guides
the tracking through noisy flow as well as severe deforma-
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Figure 3.Cloth tracking results of a sweater sequence.First row: input video sequence of a person wearing a white sweater while
being illuminated by three colored lights from three different orientations. Second row:video of depth-mapsobtained by the technique
described in Section3 and directly texture mapped without any registration. The approach is quickly seen to fail after a few frames. Third
row: texture-mapping is obtained by advecting frame-by-frame 2D optical flow [20]. Error in the optical flow advection causes artifacts
after about 380 frames. Last row: Proposed method (Section4) where 2D optical flow is regularized with a rigidity constraint to reduce
advection errors. The texture is correctly registered throughout the entire sequence (please see the video).

tions. Our experiments, documented here and also in the
supplementary video, demonstrate this.

We found it practical to trade the printing of intricate
patterns on cloth for a slightly more complex lighting setup.
We hope this will lower the barrier to entry for others wish-
ing to record detailed cloth deformation. Finally, with ac-
cess to a unique stream of rich 3D cloth poses, we have
shown how easily the data is employed in a creative context
for realistic character animation of a clothed avatar.
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