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Abstract—We present an algorithm and the associated
single-view capture methodology to acquire the detailed 3D
shape, bends, and wrinkles of deforming surfaces. Moving
3D data has been difficult to obtain by methods that rely
on known surface features, structured light, or silhouettes.
Multispectral photometric stereo is an attractive alternative
because it can recover a dense normal field from an un-
textured surface. We show how to capture such data, which
in turn allows us to demonstrate the strengths and limitations
of our simple frame-to-frame registration over time.

Experiments were performed on monocular video se-
quences of un-textured cloth, and faces with andwithout
white makeup. Subjects were filmed under spatially separated
red, green, and blue lights. Our first finding is that the color
photometric stereo setup is able to produce smoothly varying
per-frame reconstructions with high detail. Second, when these
3D reconstructions are augmented with 2D tracking results,
one can both register the surfaces and relax the homogenous-
color restriction. Quantitative and qualitative experiments
explore both the practicality and limitations of this simple
multispectral capture system.

Index Terms—Photometric stereo, multispectral, single
view, Video Normals.

I. I NTRODUCTION

The modeling of dynamic cloth geometry is increasingly
based on computer vision techniques [1], [2], [3], [4], [5].
Both cloth and faces entail complex underlying dynamics
that motivate capturing motion data from the real world
whenever possible.

Existing algorithms one might employ for capturing
detailed 3D models of moving cloth or skin include multiple
view stereo [6], photometric stereo [7], [8], and laser based
methods [9]. However, most of these techniques require
that the subject stand still during the acquisition process,
or move slowly [10]. Another substantial challenge is that
even starting from a sequence of 3D scans of the deforming
object, registration is necessary to produce a single 3D
model, suitable for CG animation or further data analysis,
such as used in [11] and [12].

The technique proposed here for acquiring complex
motion data from real moving cloth and faces uses a
highly practical setup that consists of an ordinary video
camera and three colored light sources (see Fig. 1). The key
observation is that in an environment where red, green, and
blue light is emitted from different directions, a Lambertian
surface will reflect each of those colors simultaneously
without any mixing of the frequencies. The quantities of
red, green, and blue light reflected are a linear function of
the surface normal direction. A color camera can measure
these quantities, from which an estimate of the surface nor-
mal direction can be obtained. By applying this technique
to a video sequence of a deforming object, one can obtain

Fig. 1. Setup and calibration board. Left: a schematic representation
of our multispectral setup. Right: Attaching two boards with a printed
calibration pattern results in a planar trackable target for computing the
orientation of the pattern’s plane. The association between color and
orientation can be obtained from a cloth sample inserted in the square
hole between the boards.

a sequence of normal maps for that object which, in turn,
allows us to make the following contributions:

1) A simple acquisition setup for acquiring high-detail,
per-frame reconstructions.

2) A simple calibration procedure that extends this tech-
nique to human faces.

3) An optical-flow based tracking that suffices for
medium-term registration of folds and creases of a
real deforming surface.

4) An algorithm for detecting self-shadows.
5) An application of our method for ‘dressing’ a virtual

character with real moving cloth.
In this paper, we apply our newest work for relaxing the

need for gray albedo [13] to extend our previous work [14]
with (i) a new self-shadow detection algorithm, (ii) exper-
iments on a rigid object for quantitative comparisons, and
(iii) qualitative experiments to showcase the problems with
registration and of using non-Lambertian surfaces. Video
and calibration data from our experiments will be provided
online1.

II. RELATED WORK

The animation and capture of cloth and face deformations
is approached from various perspectives, and we review the
most relevant ones with regard to the proposed technique.

a) Texture Cues:White and Forsyth [4], [5] and
Scholz et al. [3] have presented work on using texture
cues to perform the specific task of cloth capture. Their
methods are based on printing a special pattern on a piece
of cloth and capturing video sequences of that cloth in
motion, usually with multiple cameras. The estimation of
the cloth geometry is based on the observed deformations
of the known pattern as well as texture cues extracted from
the video sequence. The techniques produce results of very
good quality but are ultimately limited by the requirement
of printing a special pattern on the cloth which may not be

1http://mi.eng.cam.ac.uk/research/projects/VideoNormals/
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practical for a variety of situations. In the present work, we
avoid this requirement while producing detailed results.

Pilet et al. [1] and Salzmannet al. [2] proposed a slightly
more flexible approach where one uses the pattern already
printed in a piece of cloth, by presenting it to the system
in a flattened state. [15] were among the first innovators of
such approaches. Using sparse feature matching, the pattern
can be detected in each frame of a video sequence. Due
to the fact that detection occurs separately in each frame,
the method is quite robust to occlusions. However, the pre-
sented results dealt only with minor non-rigid deformations.

b) Photometric Stereo:Photometric stereo [16] is one
of the most successful techniques for surface reconstruc-
tion from images. It works by observing how changing
illumination alters the image intensity of points throughout
the object surface. These changes reveal the local surface
orientations. This field of local surface orientations can then
be integrated into a 3D shape. State of the art photometric-
stereo allows uncalibrated light estimation [17], [8] as
well as multiple unknown albedos [18], [19]. The main
difficulty with applying photometric stereo to deforming
objects lies in the requirement of changing the light source
direction for each captured frame, while the object remains
still. This is quite impractical when reconstructing the 3D
geometry of amovingobject, though Maet al. [20] have
recently built an impressive dome that uses structured and
polarized multiplexed lighting to capture human faces. Still
constrained by multiplexing, Vlasicet al. [21] demonstrated
a multi-view system with eight 240Hz cameras and 1200
individually controllable light sources to capture geometry
similar to our own. We show how multispectral lighting
allows one to essentially capture three images (each with a
different light direction) in a single snapshot, thus making
per-frame photometric reconstruction possible and very
accessible.

To really explore the limitations of our system, we also
capture highly deforming human faces. The newest works
by Ma et al. [22] and Wilson et al. [23] have among
the highest quality face capture systems, in part because
they build precise stages to capture both photometric stereo
and precise depth. [22] is close to the ideal situation in
all three ways, where photometric stereo captures detailed
normals, projected structured light patterns capture accurate
depth, and feature-tracking with extra cameras provides
excellent landmarks for registration over time. They show
how marker-based tracking can yield almost as high a
quality facial animation, thanks to training a model in
the heavily instrumented studio. Since heavy multiplexing
was keeping them at a maximum of 30fps, [23] used
high quality stereo cameras without the structured light to
compute good depths, and added a new flow-based tracking
to compensate for interframe motion. It could be interesting
to extend our approach to use high quality stereo cameras
in the future.

c) Colored and Structured Lights:The earliest related
works are also the most relevant. The first reference to
multispectral light for photometric stereo dates back 20
years to the work of Petrov [24]. Ten years later, Kont-

sevich et al. [25] actually demonstrated an algorithm for
calibrating unknown color light sources and at the same
time computing the surface normals of an object in the
scene. They verified the theory on synthetic data and an
image of a real egg. Drew and Kontsevich [26] even present
evidence suggesting that the famous Lena photo was made
under spectrally varying illumination. Woodham [27] also
demonstrated that multi-spectral lighting could be exploited
to obtain at least the normals from one color exposure. Also
similar to our approach, his normals could be computed
robustly when some self-shadowing was detected. Without
using a calibration sphere made of the same material as the
subject, we take a practical approach for calibration, and
the same orientation-from-color cue, to eventually convert
video of un-textured cloth or skin into a single dense surface
with complex changing deformations. For the simplified
case of a rigid object, [28] is using this principle to capture
relief details by pressing it against an elastomer with a
known-albedo skin.

The parameters needed to simulate realistic cloth dy-
namics were estimated from video by projecting explicitly
structured horizontal light stripes onto material samples
under static and dynamic conditions [29]. This system mea-
sured the edges and silhouette mismatches present in real
vs. simulated sequences. Many researchers have utilized
structured lighting, and Guet al. [30] even used color,
although their method is mostly for storing and manipu-
lating acquired surface models of shading and geometry.
Weiseet al. [31] leads the structured light approach, and
has some advantages in terms of absolute 3D depth, but at
the expense of both spatial and temporal sampling, e.g. 17
Hz compared to our 60 Hz (or faster, limited only by the
camera used). Zhanget al. [32] also presented a complete
system that uses structured light for face reconstruction.

d) Multi-View Registration with 3D Templates:Sand
et al. dispensed with special lighting but leverage markered
motion capture and automatic silhouettes to deform a
human skeleton and body template [33]. The numerous
and recent progress in cloth animation is based on this
concept of matching a specially-built 3D template mesh
to videos filmed in elaborate multi-camera systems with
studio lighting (or structured lighting as in [34]). Bradleyet
al. [35] opt for a simple manual step for template-creation,
that then hinges on the video resolution to create wrinkles.
De Aguiaret al. [11] use a single 360◦ laser-scan to create
a very precise template, and then address the challenge of
preserving those wrinkles and folds while the actor moves
around. Vlasicet al. [12] have a very similar process, that
also starts with a laser scan or with a template made by
Starck and Hilton [36]. Our technique, on the other hand,
expects no prior models of the cloth being reconstructed.
Instead, our algorithm could eventually be extended to be
a precursor stage for those systems. There are potentially
benefits if they used time-varying templates with our level
of detail, instead of static ones.

e) Registration With and Without Articulation:Reg-
istration is not the emphasis of our research, but it is
an inherent part of using our time varying surfaces in
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applications. Works in this area focus on the registration
problem itself, except [37] who couple registration with
their own capture system. Unlike ours, their approach both
requires and benefits from i) a pre-made smooth template
of the body, ii) an articulated skeleton of each subject
which is used in their standard articulated-motion-capture
framework, and iii) a multi-camera studio. Like most reg-
istration techniques, including our own, any assumptions
about smoothly changing normals can ruin the high quality
normal fields that may have been recovered. This technique
winds up smoothing and interpolating normals over a
window of five frames, precluding capture of normals for
examples with flapping cloth, like our pirateShirt sequence
visible online.

The focus of [38] is on articulated or piecewise-rigid
shapes, where there is a known number of limbs, and they
are pre-segmented for at least one depth-image. For this
technique to succeed, consecutive frames must be close
enough to give classic ICP a good initialization, which can
be viewed as similar to our assumption about local flow on
video normals. Other registration techniques for articulated
shapes are fully automatic, such as [39] who discretize pose
space and then seek out favorite transformations that align
large sections of the two point clouds. We found the spin-
images descriptor [40] to be brittle for single-view surface
scans, but [41] is able to make skeletons out of similar data,
enabling [42] to demonstrate good registration on synthetic
and man-made shapes.

Multiple techniques now attempt to register the available
point clouds (or volumetric scans [43]) in batch mode
instead of online. Mitraet al. [44] successfully registers
many scans of stiff objects all at once, instead of using a
sequence of ICP-steps chained together. Their extensions
for deformable bodies assume very limited degrees of
freedom, which is not the case with our data, and revert to
optimizing just one time slice, unlike the main 4D funcion.
They emphasized how errors crop up for them because of
incorrect normals and non-rigid motion, which are exactly
the problems we are addressing.

Also in the family of batch registration algorithms,
Süßmuthet al. [45] and Wandet al. [46] have shown very
nice general-purpose approaches that make few assump-
tions, and are mostly just limited by memory capacity. Both
have even registered sequences of faces as long as 150
frames. This is particularly hard with just points that are
not parameterized with some connectedness. [45] embeds
the series of 3D point clouds in a 4D implicit function, and
apply an EM-type optimization to find mesh deformations
that prefer rotation and keep close to the positions of
the point-clouds in the immediate temporal neighborhood.
Their algorithm can be seen as parallel to the registration
steps of our own, and possibly more extendible, in that
their embedding of the point clouds in an implicit function
(though costly) could be extended to allow the extracted
meshes to change topology over time. [46] presents an
impressive optimization system for computing a single
shape and its time-varying deformation function from a
sequence of point clouds (as many as 201 frames). The

point clouds must overlap substantially to allow registration
of temporal neighbors, but holes and gaps can come and go,
and the technique eventually merges the deforming scans
into a single urshape, with better coverage than individual
scans. At the heart of the algorithm is a meshless volumetric
deformation model with an energy function that allows
consistent parts of multiple point clouds to be aligned with
each other. Hierarchical processing in the time domain
leads to a globally consistent solution, which is attractive
compared to our frame-to-frame registration, except for the
memory constraints and running times. We have our own
data acquisition process that rivals what the authors of this
paper assume as input, and we explicitly detect occlusions
and apply no data-culling. Our registration does accumulate
error but has a simpler regularization that does not penalize
volumetric, velocity, and acceleration changes. So speaking
quite broadly, ours is “fast and cheap”, while theirs is slow
but good for many of the same situations we care about.
Qualitative evaluation of the resulting videos is necessary
to assess the amount of detail retained in our respective
registered models.

III. D EPTH-MAP VIDEO

In this section, we follow the notation of Kontsevicet
al. [25]. For simplicity, we first focus on the case of a
single distant light source with directionl = [ l1 l2 l3 ]T

illuminating a Lambertian surface pointx with surface
normaln. Let S(λ) be the energy distribution of that light-
source as a function of wavelengthλ and letρ(λ) be the
spectral reflectance function representing the reflectance
properties at that surface point. We assume our camera
consist of multiple sensors (typically CCD’s), sensitive to
different parts of the spectrum. Ifνi(λ) is the spectral
sensitivity of the i-th sensor for the pixel that receives
light from x, then intensity measured at that sensor is
ri = lTn

∫
S(λ)ρ(λ)νi(λ)dλ, or in matrix form

r = Mn, (1)

where the(i, j)-th element of the3-columnM is

mij = lj

∫
S(λ)ρ(λ)νi(λ)dλ. (2)

To solve for n, M must be rank3, meaning 3 or
more sensors (rows) are required. Actually, even with3
sensors,M would be of rank 1 when using just one light
source, because the per-sensor dot products are not linearly
independent. When more light sources are added, if the
system is linear andlTn ≥ 0 still holds for each light, the
response of each sensor is just a sum of the responses for
each light source individually, so we retain (1) but with

M =
∑

k

Mk, (3)

whereMk describes thek-th light source. Therefore, in the
absence of self occlusions, three sensors and a minimum of
three different lights need to be present in the scene forM
to be invertible. If the surface is uniformly colored (constant
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albedo), then the reflectanceρ(λ) and consequentlyM will
be fixed across all un-occluded locations.

Equation (1) establishes a one-to-one mapping between
an RGB pixel measurement from a color camera and the
surface orientation at the point projecting to that pixel. Our
strategy uses the inverse of this mapping to convert a video
of a deformable surface into a sequence of normal maps.

A. Setup and calibration

Our setup consists of a color video camera and three
light sources which have been filtered with red, green and
blue filters respectively. The camera is placed 5m away
from the target object. The light sources are at a similar
distance, not colinear, aimed at the target, and separated
by about30 degrees from one another. The filming occurs
in a dark room with minimal ambient light. Figure 1 (left)
describes this schematically.

In [25] and [47], methods were proposed for the esti-
mation of the linear mappingM of equation (1) from the
image itself, using the constraints of uniform albedo and
surface integrability that must be satisfied by the normal
map. However the results obtained with these techniques
can be unsatisfactory, especially in situations where the
target object does not have a wide range of surface ori-
entations (e.g. if it is mostly planar). We prefer to estimate
the mapping by employing an easy-to-use calibration tool
(Figure 1, right) similar to the one used in [48]. The
pattern is planar with special markings that allow the plane
orientation to be estimated. By placing the cloth in the
center of the pattern, we can measure the color it reflects at
its current orientation. We thus obtain a set of(r,n) pairs
from which the mappingM is estimated using linear least
squares [14].

B. Depth from Normals

By estimating and inverting the linear mappingM link-
ing RGB values to surface normals, we can convert a
video sequence captured under colored light into avideo of
normal-maps. Each normal map is integrated independently
for each frame using a Fast Fourier Transform (FFT)
method [49]. At the end of the integration process, we
obtain avideo of depth-maps.

IV. H UMAN FACE NORMALS

The motion of cloth can be dynamic and intricate,
but cloth is also flexible and easily used in our original
flat-surface calibration method [14]. Here we extend the
previous approach to reconstruct moving human faces.

A trivial extension for capturing Video Normals of mov-
ing faces is to fully apply makeup to the skin, and then use
the same makeup on a flat surface in the calibration board
of Figure 1. Such a calibration makes the assumption that
the makeup is matte and evenly applied. While approximate
and slightly inconvenient for the actor, this simple approach
is surprisingly effective (see Figure 2).

It is worth noting that some existing facial scanning [50]
and motion capture systems can already produce excellent

Fig. 2. Applying the original algorithm to a face with white makeup.
Top: example input frames from video of an actor smiling and grimacing.
Bottom: the resulting integrated surfaces.

results, but often at the cost of having a more complicated
setup. Ma et al. [20] use polarized spherical gradient
illumination patterns and multiplexing to recover detailed
surface geometry. Furukawa and Ponce [51] have recently
introduced a new tangential rigidity constraint for regis-
tration, but also rely on multiple synchronized cameras.
Bradley et al. [52] recently showed excellent results with a
14-camera system with special lighting that allowed them
to register geometry and textures using a stereo flow-based
technique, similar to the one we use here for single-view
capture. While they succeed by tracking highly detailed
texture, we are able to track the video of normals, though
we take no face-specific steps to counteract drift, which
eventually leads to error-accumulation.

Good facial expression capture should not depend on
makeup. The calibration step is extended, on the basis of
[13], to cope with unpainted faces, and more generally,
with single-albedo objects that can be rotated in front of
the camera without significant deformation. In practice,
during this calibration step, the makeup-free actor need only
hold some expression while turning their head all the way
to the left and right. The head itself is used as a rigid
calibration object, and the per-frame pose and 3D shape
are estimated in order to obtainM , the skin’s response to
this arrangement of multi-colored illumination.

The first step is to establish the changing pose of the
head. Although skin can appear mostly smooth, the blue
channel of facial skin shows fairly distinct (though sparse)
trackable features. The 3D pose of these points on a rigid
object is computed from the 2D tracks using established
SfM algorithms [53]. We feed our own 2D tracks to the
Boujou [54] software, producing the relative pose between
the camera and each frame of the head. If 2D tracks are not
available, silhouette-based calibration methods such as [55]
or [56] can serve this purpose.

The second step uses the poses to help estimate the shape
of the head, to an extent slightly better than a visual hull.
We apply the silhouette and stereo fusion technique of [57]
because it is simple and reliable. Reasonable alternatives
exist for this stage, including [58] and [59]. The expectation
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here is only that the surface patches with a given world-
orientation have a similar color overall, so the recovered
head model’s shape can be approximate. This initial head
geometry is shown in Figure 3(B).

In the third step, the head’s poses and approximate
geometry are used to compute the illumination directions
and intensities. Here, instead of the previous calibration of
the3×3 M matrix using a flat material sample, we use the
estimated head model itself. Unlike Lim et al.’s [17] recon-
struction algorithm, we do not assume that all projected 3D
surfaces are equally informative of illumination. We follow
the RANSAC-based formulation of [8], where lighting is
estimated from partially correct geometry. Our algorithm
randomly selects a fixed number of points on the surface
and uses their corresponding pixel intensities to hypothesize
an illumination candidate. All surface points are then used
for testing this hypothesis. This process is iterated and
the candidate with the largest support is selected as the
illumination estimate. This is more robust to both inaccurate
geometry and inconsistent albedo, because an illumination
hypothesized based on an unfortunate choice of three points
on the head mesh will receive fewer votes and appear as
an unusual outlier compared to choices from the dominant
albedo. For a pure Lambertian surface and distant point
light source model, only three points are required to esti-
mate illumination. However, the approach can easily cope
with more complex lighting models. For example, a first
order spherical harmonic model (3× 4 matrix) could be
estimated from four points. This approximation is equiva-
lent to a distant point light source with ambient lighting.
Figure 3 shows sample input and output frames from a
longer face sequence without the use of the calibration
board or any face makeup.

V. TRACKING THE SURFACE

While the video of depth-mapsrepresentation can be
adequate for some applications, for texture mapping, points
on different depth maps must be brought into correspon-
dence. Figure 10 (second row) shows the failure of directly
texture-mapping each depth-map of moving cloth without
any registration. As mentioned in Section II, one could
choose to register the time-varying surfaces using one of
many available algorithms, based on articulations, speed,
or subject-specific constraints. Instead, we showcase the
spatio-temporal detail of the points derived from Video
Normals by doing simple frame-to-frame registration that
is not limited by memory constraints when processing long
sequences. We use optical flow, precisely because it relies
on good texture details, and advect the first point cloud
in experiments using two different registration optimiza-
tions. Let zt (u, v) denote the depth-map at framet. Our
deformable template is the depth-map at frame0, and is a
dense triangular mesh with edgesE and verticesX = {x0

i },

x0
i =

(
u0

i , v
0
i , z0

(
u0

i , v
0
i

))
, i = 1 . . . N. (4)

Similarly to [61], the deformations of the template are
guided by the following two competing constraints:

• the deformations should be compatible with the frame-
to-frame 2D optical flow of the original video se-
quence,

• the deformations should be locally as rigid as possible.

A. 2D Optical flow

We begin by computing frame-to-frame optical flow
in the video of normal-maps. A standard optical flow
algorithm is used for this computation [62] which for every
pixel location (u, v) in frame t predicts the displacement
dt(u, v) of that pixel in framet + 1. Let (ut, vt) denote
the position in framet of a pixel which in frame0 was at
(u0, v0). We canadvectdt(u, v) to estimate(ut, vt) using
the following equation from [33]:

(uj , vj) = (uj−1, vj−1)+dj−1
(
uj−1, vj−1

)
, j = 1 . . . t.

(5)
If there were no error in the flow and our template from

frame 0 had perfectly deformed to match framet, then
vertexx0

i of the template would be displaced to point

yt
i =

(
ut

i, v
t
i , z

t
(
ut

i, v
t
i

))
. (6)

B. Regularization

Simply moving each template vertex to the 3D position
predicted by optical flow can cause stretching and other
geometric artifacts like the ones displayed in Figure 10
(third row). This is due to accumulated error in the optical
flow caused in part by occlusions. We tried two different
regularization techniques. The first, described in more detail
in our original paper [14], requires that translations applied
to nearby vertices are as similar as possible. This is
achieved by finding thêyi’s that optimize the energy term
E = αED + (1 − α)ER. Here,α determines the degree
of rigidity of the mesh,ED is the data term, andER

measures the dissimilarity of translations being applied to
neighboring vertices. Reasonably good registration results
are shown at the bottom of Figure 10.

The alternative regularization technique is similar to the
alignment-by-deformation of Ahmedet al. [63], and is
based on Laplacian coordinates [64]. Unlike [63], we use
the computed flow instead of SIFT features with adaptive
refinement. Given the fine grid connection graph ofX, we
make theN ×N mesh Laplace operatorL, and apply it to
the points from the template to convert them to Laplacian
coordinates,Q = LX. Q now encodes the high spatial
frequency details ofX and ignores its absolute coordinates.
Ŷ, the least-squares optimal absolute coordinates in the
next frame, is computed by solving the linear equation(

L
βIN

)
Ŷ =

(
Q
βY

)
, (7)

which trades off the Laplacian coordinates against the
results of tracking, using a similar rigidity parameterβ.
Section VII describes the qualitative evaluation of how
long each of the two regularization approaches tracks our
Video Normals through large deformations before eventu-
ally falling off. In all the experiments,α was set to0.9 and
β to 1e− 3.
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(A)

(B)

Fig. 3. Face sequence without makeup.Our calibration technique builds on multi-view reconstruction and lighting estimation (see Section IV). It is
made possible by first moving the head around with a fixed expression (A). The initial recovered head geometry, shown in (B), is only approximate.
The integrated surfaces are shown on the right using the self-shadow processing method of [60].

(A) (B) (C) (D) (E)
Fig. 4. SpandexSelfShadow images. (A-C) are the red, green, and blue
components of the recorded frame, while (D) shows the edges detected
by the Laplacian filter. Note the prominent blue line running down the
right leg, where the blue light cast a shadow. (E) shows where each of the
lights cast its color shadow, except that the background has already been
turned off.

VI. SELF-SHADOWING

So far, the algorithm is applied directly to each pixel
in a given frame, independently of its neighbors in that
frame. Unfortunately, it is inevitable that another part of
the subject can come between the light and the camera,
causing a self-shadow. This is also a problem for regular
photometric stereo, though there are potentially fewer self-
shadows induced by one light source than by three. The
three distributed lights however, offer a new opportunity
that can be exploited to partly compensate when computing
normals for shadowed surface patches.

For the first time in the algorithm, we consider the
spatial relationship of the pixels in an image. When a
photograph is considered as a composite of reflectance
and illumination, Sinha and Adelson [65] observed that
illumination varies more smoothly and is less likely to
align with reflectance changes. Though we must contend
with three sources of illumination, the three-channel video
camera allows us to examine each light in turn, while
reflectance changes were constrained from the outset. This
justifies the use of a simple Laplacian edge-detector in
each of the color channels of captured frameFRGB . The
resulting per-channel edges are pictured, with increased
contrast for illustration, in Figure 4D.

Per-channel edge pixels are analyzed in turn to determine
gradient orientation. We compute and quantize orientation
by checking along each of the eight cardinal directions, at

a distance of±2 pixels. Pixels whose gradient magnitude
falls below a thresholdτ are rejected. Adjoining pixels
whose direction agrees are grouped into connected compo-
nents, and we found empirically that for our footage, com-
ponents with fewer than20 pixels could safely be rejected at
the conservative setting ofτ = 5%. These parameters could
change for filming under different conditions, to match the
overall brightness of the averageF .

The remaining gradient pixels are used as seeds for
a conservative flood-filling algorithm which expands to
neighbors whose intensity is equal or darker. With
shadowed-pixels in each channel ofF labeled, we compute
a lookup visibility mask for each pixel, indicating which
channels are present, if any. A dark backdrop was enough
to insure that our algorithm labeled not only the correct
regions on the actors as having two, one, or no discernable
self-shadows, but also the surrounding scene as having all
three shadows.

Finally, the parts of a surface that are self-shadowed by
just one light source (i.e. k = 2) can now be processed
specially to compensate for the missing channel of informa-
tion (see Figure 5A-B). Onn and Bruckstein [66] addressed
precisely this situation when dealing with two-image pho-
tometric stereo. The same ambiguity exists whether two
gray-scale images are available, or when givenFRGB of a
surface illuminated by just two colored lights. The local sur-
face is constrained to have one of two possible orientations,
corresponding to the two acceptable roots of a quadratic
equation. Having classified the pixels as shadowed from a
particular light, we choose the root whose normal is locally
continuous with the unshadowed surface, under the constant
albedo assumption. Figures 5(A-B) illustrate the effect of
this improvement on the integrated surface. For the less
obvious improvement for dealing with self-shadows (once
found) and complicated albedo, see [60].

VII. E XPERIMENTS

Our experiments use real-world subjects filmed using a
color video camera with resolution of either1280 × 720
or 1024 × 1024 at 60fps. Since reconstruction consists
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(A) (B) (C) (D)

Fig. 5. Self-shadowing & the Lambertian assumption.(A-B): Inte-
grating the surface normals where all pixels are treated equally vs. using
our self-shadow detection and correction (Section VI). The difference is
most pronounced above the model’s right knee. Separate from the matter
of self-shadowing, (C-D) show a limitation of our system. Since the cloth
violates our Lambertian assumption, the integrated surface of a different
pose looks convincing from the front (C), but not from the side (D).

of a matrix-vector multiplication followed by a Poisson
integration [67], our FFT-based integration implemented
with CUDA libraries produces depth-maps at60 Hz. Com-
putation times were on the order of 8 additional seconds
for each registration of the mesh to the current frame. If
the shadow correction algorithm from [60] is used, then
the Poisson integration is about 10 seconds per frame. The
sweater sequence meshes are 365415 triangles and 183742
vertices, while the makeup-free face mesh is 611764 trian-
gles and 307362 vertices. Computations were carried out
on a 2.8Ghz Pentium 4 processor with 4Gb of RAM and
an nVidia GeForce 8800.

A. Quantitative comparisons

To evaluate the accuracy of the per-frame depth-map
estimation, we first reconstructed a static object (a jacket)
using classic photometric stereo with three images each
taken under different illumination. The same object was
reconstructed using a single image, captured under simul-
taneous illumination by three colored lights, using our
technique. Figure 6 shows the two reconstructions side by
side. The results look very similar and the average distance
between the two meshes is only1.4% of the bounding box
diagonal. This demonstrates that equation (1) works well
in practice. It is worth noting that even though photometric
stereo achieves comparable accuracy, it cannot be used on
a non-static object whose shape will change while the three
different images are captured.

We have a further measure to quantitatively evaluate
our technique. A rigid cylindrical object was wrapped in
smooth paper, and moved in front of the camera for30
seconds, exploring all six degrees of freedom. A best-
fit cylinder geometry is computed for the sequence, so
that for the cylinder’s pose in each frame, we know the
ideal normal-field, against which the Video Normals field
is measured. In Figure 7, each frame’s mean normal-vector
error in degrees and standard deviation are plotted. Overall,
the mean error was2.67◦, and the standard deviation was
4.29. Our test-frames, code for evaluating them, and per-
frame scores are online, with the aim of encouraging more
meaningful algorithm comparisons, when possible.

(A) (B) (C) (D)

(E) (F)

Fig. 6. Comparison with photometric stereo. (A-C) show three
grayscale images captured by a digital camera, each taken under a
different illumination, providing the input to a classic photometric stereo
reconstruction [16] shown in (D). (E) shows a frame from a jacket
sequence, where the same object is illuminatedsimultaneouslyby three
different colored lights. Our algorithm only uses one such frame to
generate the surface mesh shown in (F). Note that both algorithms give
very similar results, but only the new one (bottom row) can work with
video since only one frame is required to obtain a reconstruction. As a
quantitative comparison, the average error between both reconstructions
is only 1.4% of the bounding box diagonal.
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Fig. 7. Cylinder reconstruction evaluation. A rigid cylinder was
moved in front of the camera and the geometry estimation was evaluated
quantitatively. A best-fit cylinder geometry is computed for the sequence,
so that for the cylinder’s pose in each frame, we know the ideal normal-
field. The plot shows the per-frame mean and standard deviation of the
distance between the ideal and the estimated normals in degrees, as a
function of time. The overall mean error was2.67◦.

B. Qualitative tests of cloth and face

For the third experiment shown here, a model wearing a
white sweater was filmed dancing under our multispectral
illumination setup (see first row of Figure 10). For qualita-
tive purposes, in Figure 9 we show several views of frame
#380 without the texture map and in high resolution (the
mesh consists of̃180k vertices). The images clearly show
the high frequency detail of the sweater. To the best of
our knowledge, this is the only method able to reconstruct
deforming cloth with such detail. However, as expected,
materials that are far from Lambertian exhibit noticeable
artifacts, as in Figure 5C-D.

We used this sequence to evaluate the original mesh
regularization algorithm of Section V by texture mapping
the deforming sweater. Figure 10 shows several approaches
to mesh registration starting with no registration at all
(second row), registration using the advected optical flow
alone (third row) and the effect of regularizing optical flow
with the rigidity constraint (fourth row), as we propose.
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Fig. 8. Registering with different regularizations. Treating the first in-
tegrated Video Normals surface as a template that receives a checkerboard
texture, we automatically register that shape throughout a long sequence
by tracking flow frame-to-frame. The rows feature frame #10, #87, #116,
and #290 out of 1000. The left column uses the original translation
regularization from [14], while the middle column was registered using
the alternative Laplacian coordinates regularizer. Results on the right are
generated like the middle column, but with the benefit of slits for the
mouth and eyes, so some domain-specific input from a user.

This last approach is seen to outperform all others as it
manages to track the surface for more than 500 frames.

The fourth experiment explores tracking the much more
challenging deforming face sequence from Figure 3. Rows
of Figure 8 show different frames from among a sequence
of over 1000 frames. The Video Normals surfaces are reg-
istered using the two different regularization algorithms de-
scribed in Section V. In this experiment, the first depthmap
of the face sequence is used as a template for the rest
of the sequence. The left column of Figure 8 shows the
result of using the same rigidity constraint on the translation
vectors as for the white sweater, and as described originally
in [14]. The performance of this algorithm degenerates most
quickly. This is expected since the face undergoes much
bigger deformations than the cloth sequence, so, imposing
rigidity on the translation vectors is not enough. The
middle column of Figure 8 shows the tracking results using
our alternative regularization, the Laplacian coordinates
algorithm similar to [63]. This algorithm is better able to
impose rigidity constraints. However, the results show the
limitations of using optical flow for large deformations.
The optical flow easily accumulates errors, and even though
rigidity does help in recovering from flow errors, it even-
tually cannot cope with the amount of deformation shown
in this sequence. One possible avenue is to incorporate the
work of [45], though memory limitation hinder this. Their
algorithm is also targeted at deforming point clouds, which
is a harder problem than ours. Their example results do not

Fig. 9. Cloth reconstruction results of a deforming sweater.
Multispectral photometric reconstruction of a single frame of a longer
video sequence using the technique described in Section III. Multiple
viewing angles (frontal,±25 degrees,±50 degrees) of frame #380 of
the sweater sequence. This frame is representative of the quality of detail
reconstruction for this and other tested videos.

#0 #250 #340 #380 #427 #463 #508

Fig. 10. Cloth tracking results of a sweater sequence.First row: input
video sequence of a person wearing a white sweater while being illu-
minated by three colored lights from three different orientations. Second
row: video of depth-mapsobtained by the technique described in Section
III and directly texture mapped without any registration. The approach
is quickly seen to fail after a few frames. Third row: texture-mapping is
obtained by advecting frame-by-frame 2D optical flow [33]. Error in the
optical flow advection causes artifacts after about 380 frames. Last row:
Proposed method (Section V) where 2D optical flow is regularized with
a rigidity constraint to reduce advection errors. Please see the video.

exhibit nearly as much deformation as this face sequence.
Finally, with human supervision, some of the deformation
artifacts due to the eyes and mouth opening and closing can
be alleviated by introducing seams on the template at the
mouth and eye positions (see Figure 8 right). The seams
allow better tracking of large deformations, but the added
degrees of freedom can also negatively affect the overall
shape. Naturally, eventually, even the right-most registration
accumulates too much error.

C. ‘Dressing’ a virtual character with moving cloth

To demonstrate the potential of our method for capturing
cloth for animation, we attach a captured moving mesh to
an articulated skeleton. Skinning algorithms have varying
degrees of realism and complexity, e.g. [68]. We apply a
version of smooth skinning in which each vertexvk in the
mesh is attached to one or more skeleton joints and a link to
joint i is weighted bywi,k. The weights control how much
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Fig. 11. Attaching captured moving cloth to an animated character.
We apply smooth skinning to attach a moving mesh to an articulated
skeleton that can be animated with mocap data. The mesh is simply
animated by playing back the captured and registered dancing cloth
sequence (please also see the video).

each jointi affects the transformation of the vertex [69]

vt
k =

∑
i

wi,kSt−1
i vt−1

k ,
∑

i

wi,k = 1, (8)

where the matrixSt
i represents the transformation from

joint i’s local space to world space at time instantt. The
mesh is attached to the skeleton by first aligning both in
a fixed pose and then finding, for each mesh vertex, a set
of nearest neighbors on the skeleton. The weights are set
inversely proportional to these distances. The skeleton is
animated using publicly available mocap data [70] while
the mesh is animated by playing back one of our captured
and registered cloth sequences. Figure 11 shows example
frames from the rendered sequence (please also see the
video). Even though the skeleton and cloth motions are
not explicitly aligned, the visual effect of the cloth moving
on a controllable character is appealing. Such data-driven
cloth animation can serve as a useful tool and presents an
alternative to physical cloth simulation.

VIII. C ONCLUSION

Building on the long established but surprisingly over-
looked theory of multispectral lighting for photometric
stereo, we have discovered and overcome several new ob-
stacles. We developed a capture methodology that parallels
existing work for capturing static cloth, but also enables one
to capture the changing shape of cloth in motion. The same
technique works well for capturing deforming faces, when
the actor wears white makeup. Further, our SfM-based
reflectance calibration technique empowers us to compute
Video Normals of natural skin color,without any makeup.
Realtime integration of the resulting normal fields is pos-
sible with an FFT normal map integration algorithm using
CUDA libraries. We have verified the accuracy of the depth-
maps against classic photometric stereo, and measured the
space-time accuracy of normals using a rigid but moving
shape. When a sequence of reconstructed surfaces is played
back, they appear to change smoothly, even under abrupt
motions like flutter in strong wind. We also explored long-
term registration, and have devised a method to detect and
cope with mild self-shadowing.

The high level of detail captured by the normal fields
includes surface bends, wrinkles, and even temporary folds.

Tracking of folds and parting surfaces like eyelids is
inherently underconstrained, and continue to be a challenge,
and special templates may help [34], as may other domain-
specific constraints about the subject’s surface. Our system
could be extended for some scenes to to incorporate the
gradual-change prior of [71]. Also, a different mathemat-
ical model will need to be explored for non-Lambertian
materials. Another limitation is that in-the-round capture
would be challenging to arrange, because multiple triples of
lights would have to be set up, and they would need to have
non-overlapping wavelengths of light. Registration remains
the biggest limitation when making use of our monocular
capture system, as illustrated in our long sequences. This
problem is not singular to Video Normals, so we hope that
our shared data proves useful to other researchers as well.
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