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Abstract—We propose to improve accented speech recognition 
performance by using asymmetric acoustic model. Our proposed 
model is generated based on reliable accent specific units and 
acoustic model reconstruction. The reliable units are extracted 
with time alignment recognition to cover accent variations at 
both acoustic and phonetic levels. The asymmetric acoustic 
model is obtained through selective decision tree merging 
together with dynamic Gaussian component selection in model 
reconstruction. The improved resolution of our proposed model 
is able to handle different levels of accented variations at 
different degrees. The effectiveness of our approach was 
evaluated on a typical Chinese accent. Our system outperforms 
traditional acoustic model reconstruction and MAP adaptation 
approaches by 8.28% and 7.14%, relatively on Syllable Error 
Rate (SER) reduction without sacrificing the performance on 
standard Mandarin speech. 

I. INTRODUCTION 

Most state-of-the-art automatic speech recognition (ASR) 
systems fail to perform well when the speaker has a regional 
accent. Accent is a serious problem for Chinese speakers 
since most of Chinese learn standard Mandarin (Putonghua) 
as a second language, and their pronunciations are strongly 
influenced by the native regional dialects [1]. There are eight 
major dialectal regions in China, which can be further divided 
into more than 30 sub-categories. The acoustic and linguistic 
representations are quite different between Putonghua and the 
dialects. Therefore, the pronunciation of Putonghua is 
inevitably influenced by the native dialect of the speaker. 
Statistics show that over 79.58% Putonghua speakers have 
regional accents, and 44.03% speakers have strong accent [2]. 
Accented speech differs from standard speech in terms of 
phonological, morphological, syntactic and lexical 
characteristics. As a result, ASR systems implemented for 
processing standard Mandarin usually perform poorly for 
non-native accented speech. 

Modeling accent effects at acoustic and phonetic levels are 
commonly used in recently researches [3][4][5][6][7]. 
Maximum A Posteriori (MAP), Maximum Likelihood Linear 
Regression (MLLR) adaptation and using discriminative 
training to refine acoustic models are efficient and 
straightforward approaches to handle accents at acoustic level 
[3][6]. Phone set extension and augmenting the pronunciation 
dictionary with accent specific units and their relevant 
probabilities are two typical methods at phonetic level in 

modeling accent variations [4][7]. A major weakness in above 
approaches is that MAP or MLLR irreversibly changes 
parameters of acoustic models, which makes them no longer 
suitable for multiple accents as well as native standard speech 
recognition. Meanwhile, the extended phone set and 
augmented pronunciations in dictionary may introduce more 
lexical confusion in decoder. The pronunciation changes in 
different accents are very flexible, and cannot be accurately 
modeled by using alternative phones only [5]. State level 
pronunciation modeling and acoustic model reconstruction 
was proposed to handle both acoustic and phonetic variations 
without degrading on standard speech [5][8]. However, we 
still face challenges in these approaches: the generated accent 
specific units (ASU) are not reliable due to the mismatch of 
frames caused by traditional data-driven method; the 
asymmetry of accent changes is not fully exploited.  

In this paper, we propose to use asymmetric acoustic model 
for accented speech recognition, and such model is generated 
based on reliable accent specific units and acoustic model 
reconstruction. To get reliable accent specific unit, we apply 
time alignment recognition that aims to eliminate frame 
mismatch by recognition according to accurate phoneme 
boundary information. Through the use of time alignment 
recognition, we are able to generate and select accent specific 
unit accurately and efficiently. We obtain their dependable 
training samples, and acquire better modeling for accent 
changes at both phonetic and acoustic levels. Subsequently, 
together with selective decision tree merging for acoustic 
model reconstruction, we use dynamic Gaussian selection to 
utilize the asymmetry of accent changes. Dynamic Gaussian 
selection selects appropriate Gaussian components to build a 
dynamical observation density for each specified speech 
frame in decoding. Therefore, the generated asymmetric 
acoustic model improves acoustic model resolution and 
handles different levels of accent variations at different 
degrees. Experiments show that our proposed method yields 
better recognition results than traditional acoustic model 
reconstruction method and MAP adaption, in addition to not 
degrading on standard speech. 

In Section 2, we introduce using time alignment recognition 
to generate reliable accent specific unit. In Section 3, we 
describe our approach of asymmetric acoustic modeling using 
model reconstruction and dynamic Gaussian selection. 
Section 4 and Section 5 are experimental results and 



conclusions. 

II. RELIABLE ACCENT SPECIFIC UNIT GENERATION 

In speech recognition, an accent change is an erroneous 
recognition of a canonical phoneme into a different one 
caused by the accented pronunciation variation made by the 
speaker. An accent specific unit is commonly used to 
represent an accent change, and is typically noted as B S  
in which B  is the canonical phoneme and S  is its alternative 
pronunciation [5]. It is remarkable that this asymmetric 
notation is in conformity with the asymmetric characteristic of 
accent confusions [9]. 

A common approach for obtaining alternative phoneme 
sequence is through free grammar recognition [1]. In general, 
such obtained sequence usually contains a large amount of 
insertion and deletion errors, which cause frame mismatch 
and result in unreliable accent specific units. For the sake of 
eliminating frame mismatch, we implement time alignment 
recognition to get the alternative phonemes with no insertions 
and deletions. Time alignment recognition acquires the 
phoneme boundary information in each utterance by forced 
alignment [10], and performs normal recognition except for 
appending an additional principle to select the result: the 
selected result should have the same number of phonemes as 
its canonical transcription, in the restriction that the duration 
for each alternative phoneme should coincide with its 
corresponding canonical phoneme boundary. 

The procedure of generating reliable accent specific units is 
illustrated in Fig. 1, and is explained as follows. 

1) Obtain canonical transcriptions with phoneme boundary 
information. We perform forced alignment to phoneme-level 
canonical transcriptions using pre-trained acoustic models to 
get the duration information for each phoneme. 

2) Produce alternative transcriptions. With the duration 
information from the transcriptions generated in step 1), we 
use time alignment recognition to generate the alternative 
transcriptions. 

3) Generate accent specific unit candidates. We extract the 
candidates by comparing phonemes at corresponding 
positions in canonical and alternative transcriptions. 

4) Select accent specific units. Accent specific unit 
candidates contain accent changes as well as errors from data 
and recognizer confusions [1]. Thus, we select reliable accent 
specific units manually from the candidates, in reference with 
linguistic knowledge and confusion matrix. 

The strategy for filtering accent specific unit candidates in 
step 4) includes following parts. 1) Remove errors from data 
and recognizer (e.g. ‘n’‘d’). 2) Remove language inherent 
confusions (e.g. ‘i2’  ‘i1’). 3) Replace alternative 
pronunciation of a suspicious candidate with its inherent 
confusion. For example, Sichuan accent speakers tend to 
pronounce ‘an’ as /ae/ that is an inexistent pronunciation in 
Putonghua. Since ‘ai’ is the most similar pronunciation to /ae/ 
in Putonghua, ‘an’‘ai’ is selected. Both errors from data or 
recognizer and language inherent confusions are obtained by 
linguistic rules and generated confusion matrix [5]. 

Time alignment recognition avoids frame mismatch and is 
able to capture accurate accent changes. Compared to 
previous method using free grammar recognition and Flexible 
Alignment Tool with cost transducer [1], the proposed 
method can cover a diversity of flexible accent changes (e.g. 
‘eng’  ‘uan’). Furthermore, our proposed method generates 
reliable instances for the candidates. For example, 29 
instances of ‘n’  ‘l’ do not meet linguistic knowledge 
produced by our method in contrast to 77 such instances 
generated by the traditional method. Moreover, the selection 
is easier since there are fewer errors in time alignment 
recognition. 

 

 

Fig. 1    Flow-chart for reliable generation procedure of accent specific units. 

III. ASYMMETRIC ACOUSTIC MODELING 

To build asymmetric acoustic model, we first perform 
acoustic model reconstruction with reliable accent specific 
units, then integrate dynamic Gaussian selection. For acoustic 
model reconstruction, we build triphone acoustic models for 
each reliable accent specific unit, and merge Gaussian 
components from accent specific unit models into the pre-
trained triphone acoustic models through decision tree 
merging, improving the robustness ability of the pre-trained 
models to cover various accent changes. Afterwards, our 
proposed approach of dynamic Gaussian selection is adopted 
to further utilize the asymmetry of accent variations by 



selecting suitable Gaussian components for each specified 
speech frame, and results in the asymmetric acoustic model. 

A. Acoustic Model Reconstruction 

Decision tree based tied-state triphone model is used in our 
work [10]. Decision trees for accent specific units are called 
auxiliary trees in contrast to those for the pre-trained acoustic 
models are called conventional trees. Since every leaf node of 
a decision tree represents a tied-state, borrowing Gaussian 
components from an accent specific unit model into a pre-
trained model, that makes the pre-trained model be able to 
cover accent changes, equals to merge an auxiliary tree leaf 
node into a standard tree leaf node, as illustrated in Fig. 2. 

 

 

Fig. 2    Sketch map for decision tree merging. 

Moreover, the mapping relationship between an auxiliary 
tree leaf node and a standard tree leaf node is decided by 
minimum distance, which is measured using the asymmetric 
distance in accordance with the asymmetry of accent changes 
[9]. More details about acoustic model reconstruction can be 
found in previous work [5]. 

B. Dynamic Gaussian Selection 

For a reconstructed tied-state, the observation density is 
enlarged with accent mixtures from reliable accent specific 
unit models to handle accent changes, as illustrated in part (A) 
and (B) in Fig. 3. To further improve modeling accent 
changes, we use dynamic Gaussian selection. This approach 
builds a dynamic observation density for each speech frame 
by selecting suitable mixtures from the reconstructed state 
according to a k-nearest mixtures principle, namely we select 
k mixtures nearest to the specified frame. In addition, to better 
meet the directional asymmetry nature of Gaussian 
distribution (i.e., the variance can be different in different 
dimensions), we choose the Mahalanobis distance to measure 
the distance from a frame to a Gaussian component, which is 
obviously an asymmetric distance in substance.  

Dynamic Gaussian selection is explained as follows. 
Note Nm  N(m;m ) , considering a reconstructed 

observation density b(o)  cm
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Moreover, k  is different for different reconstructed states, 

and is determined by experiment. 
 

 

Fig. 3    Sketch map for distributions of acoustic model reconstruction and 
dynamic Gaussian selection. 

Integrating dynamic Gaussian selection, the Gaussian 
distribution will be adjusted according to the parameter k , 
namely the selected Gaussian component numbers. For an 
accented frame located at the boundary of distribution, k  
mixtures nearby the boundary will be selected, and the 
achieved dynamical observation density has sharper borders 
as illustrated in part (C) of Fig. 3. With appropriate k , 
dynamic Gaussian selection is able to model different levels 
of accent changes at different degrees. Furthermore, it is well 
known that accent variations are asymmetric, that is, a 
pronunciation variation might be completely different from its 
inverse variation (e.g. ‘zh’‘z’ and ‘z’‘zh’) in terms of 
acoustic and phonetic parameters [9]. Therefore, using 
dynamic Gaussian selection better fits this asymmetry of 
accent changes, and improves the model resolution ability.  

Moreover, for a standard speech frame located at the 
center of distribution, the dynamical observation density for it 
would be similar to the original distribution as shown in part 
(D) of Fig. 3. As a result, dynamic Gaussian selection retains 
the covering ability for standard speech. 

 



IV. EXPERIMENTS 

We evaluated our approach in a Chinese desktop sentence 
speech recognition task. There is no word n-gram in these 
sentences so that we can isolate the effect of our approach 
without the influence from high-level information. 

The database includes both Putonghua and a typical 
Chinese accent-Sichuan for comparable experiment. The 
database was male and female balanced. All speech data were 
sampled with 16kHz and 16bit-rate.  A detailed data set 
separation in our experiments is described in Table 1. PTH 
and SC stand for Putonghua and Sichuan accent, respectively. 

 
TABLE   I 

THE SEPARATION OF DATASET IN EXPERIMENTS 
 

ID 
Train-
PTH 

Test- 
PTH 

Dev-SC Test-SC 

Speech Type Putonghua Sichuan accent 
Duration 51.5h 1.8h 5.3h 2.9h 
Syllable Number 340,556 16,214 51,094 29,870 
Speaker Number 100 10 26 10 
Utterance Number 25,920 1,000 1,734 1,000 

 
The HMM topology is three-states, left-to-right without 

skips. The acoustic features are 13MFCC , 13MFCC  and 
13MFCC . 28 initials and 36 finals including 6 zero-initials 
were used to generate context-independent HMMs. We built 
12 Gaussian mixtures triphone models with 3,000 tied-states 
using HTK decision tree based state tying procedures [10]. 
Dictionary with 413 syllables was used in all experiments.  

84 reliable ASUs were generated from Dev-SC. We 
constructed 252 auxiliary trees with 257 tied-states. Through 
acoustic model reconstruction, tied-states from reliable ASU 
models were merged into the pre-trained acoustic models with 
3,000 tied-state and 192 conventional trees. The reconstructed 
acoustic models contained 37,028 Gaussian mixtures. In order 
to show the effectiveness of reliable ASU, a control group 
was reconstructed with 89 traditional ASUs from Dev-SC. 
We constructed 267 auxiliary trees with 271 tied-states. The 
reconstructed acoustic model had 37,084 mixtures. 

 
TABLE   II 

LOWER SER FOR USING OUR APPROACHES COMPARED TO USING 

TRADITIONAL ASU AND MAP ADAPTATION 
 

System 
Syllable Error Rate (SER)% 

Test-SC Test-PTH 
1 Baseline 41.00 21.70 
2 Reconstruct HMMs with 

Traditional ASU 
35.85 
(-5.15) 

21.49 
(-0.21) 

3 Reconstruct HMMs with Reliable 
ASU 

34.51 
(-6.49) 

21.55 
(-0.15) 

4 Reconstruct HMMs with Reliable 
ASU + Dynamic Gaussian 
Selection 

32.88 
(-8.12) 

21.52 
(-0.18) 

5 Baseline + MAP Adaptation with 
Dev-SC 

35.41 
(-5.59) 

29.96 
(+8.26) 

 
Table 2 shows that accent gives an inverse impact on 

recognition accuracy when acoustic model is trained only 
from standard speech. k  for different tied-states are 

determined using Dev-SC. Compared to Baseline, the 
reconstructed HMMs with traditional ASU yield a significant 
5.15% absolute SER reduction on Test-SC. This result 
indicates that accent mixtures in reconstructed states adjusts 
the original mixture distribution and enables more Gaussians 
at boundaries to cover accent changes [1]. 

It is shown in Table 2 that System 3 gives 1.34% absolute 
SER reduction with respect to System 2. This result proves 
the reliable ASU models are more accurate than traditional 
ASU models, and are able to cover more accent changes. 
With the integration of dynamic Gaussian selection to System 
3, an additional 1.63% absolute SER reduction is achieved on 
accented speech. It is shown that asymmetric acoustic model 
improves resolution ability for accent changes by covering 
variations at different levels with different degrees and better 
fits the asymmetric characteristic of accent changes. As a 
result, the joint use of our proposed methods (System 4) 
yields a significant 8.28% relative SER reduction than 
traditional acoustic model reconstruction (System 2). 

Comparing System 4 to System 5, the proposed approach 
outperforms MAP adaptation significantly by 7.14% relative 
SER reduction, and does not degrade on standard speech 
while MAP adaptation severely does. The reason lies in the 
fact that the MAP adaptation irreversibly changes the 
parameters of acoustic models that make them no longer 
appropriate for standard speech. 

 

 

Fig. 4    Using asymmetric acoustic model to restore local model mismatch in 
decoding. 

An example for using asymmetric acoustic model to reduce 
local model mismatch is presented in Fig. 4. When using 
Baseline and System 3, initial ‘ch’ was misrecognized as ‘c’. 
This was caused by a pronunciation variation from ‘ch’ to ‘c’ 
in Sichuan accent, and the acoustic score drops significantly 
between frame 610 to frame 615. In System 3, accent 
mixtures from reliable ASU model ‘ch’‘c’ can increase the 
acoustic score but not enough to obtain high acoustic score to 
output correct recognition result. However, in System 4, as 
dynamical Gaussian selection selects appropriate mixtures for 
accented frames, the dynamic observation densities strengthen 
the effect of accent mixtures relatively from ‘ch’‘c’, thus 



successfully restores this local model mismatch and gives a 
correct recognition result. 

V. CONCLUSIONS 

We have described asymmetric acoustic model for accented 
speech recognition. This model is built on model 
reconstruction with reliable accent specific units, as well as 
dynamic Gaussian selection. Time alignment recognition is 
used to capture a diversity of accent changes according to 
phoneme boundaries. Dynamic Gaussian selection selects 
suitable Gaussian components to construct a dynamic 
observation density for each speech frame according to k-
nearest mixture principle. Asymmetric acoustic model 
handles accent variations of different levels at different 
degrees, and retains the covering ability for standard speech. 
Experimental results showed asymmetric acoustic model 
yielded 8.28% relative SER reduction than traditionally 
acoustic model reconstruction, and achieved 7.14% SER 
reduction compared to MAP adaptation without degrading on 
standard speech. 

ACKNOWLEDGMENT 

We would like to thank Prof. Chinhui Lee of School of 
Electrical and Computer Engineering, Georgia Institute of 
Technology for his valuable and instructive suggestion as well 
as providing useful tools in this paper. This work was support 
by Natural Science Foundation of China (60975018), the joint 
research grant of Nokia-Tsinghua Joint Funding 2008-2010. 

 

REFERENCES 

[1] Y. Liu and P. Fung, “Partial change accent models for accented 
Mandarin speech recognition,” in Proc. of the IEEE ASRU, 
2003. 

[2] Leading Group Office of Survey of Language Use in China, 
Survey of Language Use in China (in Chinese). Yu Wen Press, 
Beijing, 2006. 

[3] Y.R. Oh and H.K. Kim, “MLLR/MAP adaptation using 
pronunciation variation for non-native speech recognition,” in 
Proc. of the IEEE ASRU, 2009. 

[4] G.-H. Ding, “Phonetic confusion analysis and robust phone set 
generation for Shanghai-accented Mandarin speech 
recognition,” in INTERSPEECH, 2008, 1129-1132. 

[5] P. Fung and Y. Liu, “Effects and modeling of phonetic and 
acoustic confusions in accented speech recognition,” Journal of 
the Acoustical Society of America, Vol.118, Issue 5, pp.3279 
3293, Nov. 2005. 

[6] D. Vergyri, L. Lamel, J.L. Gauvain, “Automatic speech 
recognition of multiple accented English data,” in 
INTERSPEECH, 2010, 1652-1655. 

[7] L.-Q. Liu, F. Zheng, et.al., “Using a small development data set 
to build a robust dialectal Chinese speech recognizer,” in 
INTERSPEECH, 2007, 1729-1732. 

[8] M. Saraclar, H. Nock et.al. “Pronunciation modeling by sharing 
Gaussian densities across phonetic models,” Computer Speech 
and Language, Vol. 14, pp.137–160, 1999. 

[9] M.-Y. Tsai and L.-S. Lee, “Pronunciation variation analysis 
based on acoustic and phonetic distance measure with 

application examples on Mandarin Chinese,” in Proc. of the 
IEEE ASRU, 2003. 

[10] S. Young et.al., The HTK book, Entropic Cambridge Research 
Laboratory, 2009. 


