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ABSTRACT

Multiple accents are often present in Mandarin speech, as most Chi-
nese have learned Mandarin as a second language. We propose gen-
erating reliable accent specific unit together with dynamic Gaussian
mixture selection for multi-accent speech recognition. Time align-
ment phoneme recognition is used to generate such unit and to model
accent variations explicitly and accurately. Dynamic Gaussian mix-
ture selection scheme builds a dynamical observation density for
each specified frame in decoding, and leads to use Gaussian mix-
ture component efficiently. This method increases the covering abil-
ity for a diversity of accent variations in multi-accent, and alleviates
the performance degradation caused by pruned beam search with-
out augmenting the model size. The effectiveness of this approach
is evaluated on three typical Chinese accents Chuan, Yue and Wu.
Our approach outperforms traditional acoustic model reconstruction
approach significantly by 6.30%, 4.93% and 5.53%, respectively on
Syllable Error Rate (SER) reduction, without degrading on standard
speech.

Index Terms— Reliable Accent Specific Unit, Dynamic Gaus-
sian Mixture Selection Scheme, Multiple Accents

1. INTRODUCTION

Accent variability is a significant degrading factor for most state-
of-the-art automatic speech recognition (ASR). Accented speech is
caused by the pronunciation differences between the speaker’s first
language or dialect, and that of the target speech. Such differences
can be either acoustical or phonological.

There are eight major dialects in China: Guanhua, Yue, Wu, Xi-
ang, Gan, Kejia, Minnan and Minbei, which can be further divided
into more than 40 sub-categories [1]. Pronunciation difference is se-
vere in Chinese, since written Chinese characters are ideographic
and independent from their pronunciations. Seeing as most Chi-
nese have learned Putonghua as a second language, their pronuncia-
tions are inevitably influenced by native dialects. Statistics show that
over 79.58% Putonghua speakers have regional accents, and 44.03%
speakers have strong accent [2]. Furthermore, multitude of accents
is very often in Putonghua [3]. As a result, ASR implemented for
standard Putonghua performs poorly on accented speech, especially
when there are multiple accents.

Conventional methods for handling accent variations focus on
modeling acoustic and phonetic variations at different levels of ASR.

For phonetic variations, phone set extension and augmented pronun-
ciation dictionary are common methods [4]. However, the extended
phone set and the alternative multiple pronunciations increase lex-
ical confusions, and do not lead to significant improvement. For
acoustic variations, the most straightforward way is to build acous-
tic models for each accent with a large amount of accented data [5].
However, for multiple accents, an extra accent identification mod-
ule is needed [6]. Another method is to apply Maximum A Pos-
teriori (MAP) or Maximum Likelihood Linear Regression (MLLR)
for acoustic adaptation to fit the acoustic characteristics of certain
accents [7]. A major weakness of these approaches is the adapta-
tions irreversibly change the parameters of the acoustic model, and
make them no longer suitable for standard speech. Recently, state
level pronunciation modeling and acoustic model reconstruction are
applied to handle both acoustic and phonetic variations for multi-
ple accents without sacrificing the performance on standard speech
[3][8]. On the other hand, we still face challenges in the above ap-
proaches. 1) Due to the mismatch of frames, accent specific units
(ASU) generated by traditional data-driven method are not reliable,
which causes inaccurate modeling for accent changes. 2) Acoustic
model reconstruction increases the model size and results in the low
efficiency of using Gaussian mixture components in the distribution
to cover accent variations.

Hence, we propose the use of reliable accent specific unit gen-
eration together with dynamic Gaussian mixture selection scheme
(DGMSS) for multi-accent. The contributions are summarized as
follows.

(1) Time alignment phoneme recognition is proposed to gen-
erate reliable accent specific units precisely and efficiently. Time
alignment phoneme recognition is able to eliminate the mismatch
of frames, which yields reliable accent specific unit candidates and
their reliable training samples. Time alignment phoneme recogni-
tion is conducive to accurately model variations of each accent as
well as to represent a diversity of multi-accent.

(2) In order to improve the efficiency of using Gaussian mix-
ture components in the reconstructed distributions to handle accent
variations, we propose to use dynamic Gaussian mixture selection
scheme that chooses most efficient Gaussian mixtures and constructs
a dynamical observation density for each speech frame in decod-
ing progress. The selected Gaussian components increase the cover-
ing ability for accent changes and can be used efficiently in decod-
ing. As a result, dynamic Gaussian mixture selection scheme brings
preferable recognition result and relieves performance degradation



in pruned beam search without augmenting the size of acoustic mod-
els.

The paper is organized as follows. In Section 2, we present the
generation of reliable accent-specific units. In Section 3, dynamic
Gaussian mixture selection with acoustic model reconstruction is de-
scribed. In Section 4, the recognition experiments are presented. We
conclude in Section 5.

2. RELIABLE ACCENT SPECIFIC UNIT GENERATION

2.1. Chuan, Yue and Wu accents

Chuan, Yue and Wu accents were used in our paper. A speaker
whose first language is a regional dialect always has a correspond-
ing regional accent. Chuan dialect is a sub-dialect of Guanhua; Yue
and Wu dialects are both major Chinese dialects. All these dialects
are quite different from Putonghua in pronunciations. For example,
linguists have shown only 60% of the Yue dialect pronunciations
are even close to Putonghua [9]. Furthermore, differences between
these dialects are also very apparent, linguists regard each of them as
a distinctive language in terms of phonological, lexical and syntactic
structures [9].

In Chinese ASR systems, initials and finals are usually used as
subword units to construct acoustic models. Initials and finals in the
three dialects are different from those in Putonghua. There are 22
initials and 36 finals for Putonghua in contrast to 20/38, 20/53 and
27/49 initials/finals for Chuan, Yue and Wu respectively [10]. The
inventories of initials/finals for the four languages are distinct. For
example, compared to other languages, Yue has an additional velar
nasal /ng/; initials for Wu are divided into voiced and voiceless while
initials for the other languages are not.

Consequently, speakers from each dialect region have difficulty
in pronouncing some Putonghua initials/finals. For instance, when
a Chuan dialect speaker tries to pronounce a Putonghua initial ‘n’,
the phoneme he made may lie between ‘n’ and ‘l’, and causes an
accent variation. An accent specific unit is widely used to represent
an accent variation. Hence, a diversity of accent variations in multi-
ple accent speeches is represented by different sets of accent specific
units [3].

2.2. Reliable accent specific unit generation

In speech recognition, an accent variation is an erroneous recogni-
tion of a canonical phoneme into a different one due to the effect of
accent. Accent specific unitB → S represents the variation thatB is
mis-recognized as S, whereB is the canonical subword unit and S is
its alternative unit. In general, accent specific unit candidates are ex-
tracted from the alignment of manually labeled canonical transcrip-
tions and automatic generated alternative transcriptions. The alter-
native transcriptions are obtained by free grammar phoneme recog-
nition [11], and contain substitution (transfer), insertion and deletion
(epenthesis) errors. Since there is rare initial/final level epenthesis in
Chinese accented speech, the existence of insertions and deletions
causes unnecessary frame mismatch to substitutions, and results in
unreliable accent specific units.

To eliminate insertion and deletion errors from alternative tran-
scriptions, we propose time alignment phoneme recognition. Time
alignment phoneme recognition decodes according to the exact du-
ration of each phoneme, which is obtained by forced alignment [11].
Time alignment phoneme recognition performs normal recognition
except for appending two additional result selection principles. 1)
The number of phoneme of the selected result should be the same as

that of the canonical transcription. 2) Each phoneme in the selected
result should be of the same duration as its corresponding phoneme
in the canonical transcription.

The procedure of generating reliable accent specific units is il-
lustrated in Figure 1 and is explained as follows.

1) Acquire canonical transcriptions with time. To get the dura-
tion of each phoneme automatically, we perform forced alignment to
phoneme-level canonical transcriptions using a pre-trained acoustic
model, and get the canonical transcriptions with time.

2) Obtain alternative transcriptions. With the duration informa-
tion from canonical transcriptions with time, we get the alternative
transcriptions by time alignment phoneme recognition.

3) Generate reliable accent specific unit candidates. Reliable
accent specific unit candidates are extracted by comparing phonemes
of the same duration in canonical and alternative transcriptions.

4) Select reliable accent specific units. Reliable accent specific
unit candidates include accent variations as well as errors from data
and recognizer confusions [9]. Hence, we select reliable accent spe-
cific units manually from the candidates, in reference with linguistic
knowledge and the confusion matrix.

The strategy for the selection in Step 4 includes the follow-
ing steps: 1) Remove language inherent confusion. For instance,
‘i2’→‘i1’ is not a typical accent variation in any of these dialects and
takes high confusion probability in Putonghua. Hence, ‘i2’→‘i1’ is
language inherent confusion and is removed. 2) Replace alternative
pronunciations of suspicious candidates with their inherent confu-
sion. For example, ‘an’→‘ai’ is not a typical Chuan change. How-
ever, Chuan speakers tend to pronounce ‘an’ as /æ/ that is an inex-

Fig. 1. Flow-chart for generating reliable accent specific units.



istent phoneme in Putonghua. Since the most similar final to /æ/ is
‘ai’, ‘an’→‘ai’ is an accent variation. 3) Remove errors from either
data or recognizers. For example, there is retroflex affricative ‘zh’ in
none of the three dialects, and ‘z’→‘zh’ does not coincide linguistic
knowledge and has much less instances than ‘zh’→‘z’. Therefore,
‘z’→‘zh’ is removed.

Time alignment phoneme recognition eliminates frame mis-
match, and captures accurate accent variations. Compared to the
traditional method using dynamic programming and edit distance
[12], our method captures more accent changes (e.g. ‘ch’→‘s’ in
Chuan accent). Furthermore, time alignment phoneme recognition
generates reliable instances of the candidates (e.g., 38 instances of
‘un’→‘en’ in Chuan accent did not meet linguistic knowledge in our
method while there were 61 such instances generated by traditional
method), which would be used as training samples for accent specific
unit models. Moreover, the selection is easier because there are al-
ways less recognition errors in time alignment phoneme recognition.
Reliable accent specific units and their reliable training samples lead
to accurate accent specific unit models, which play an important role
in acoustic model reconstruction.

It is remarkable that although there are similar accent specific
units in different accents (e.g., ‘zh’→‘z’), the tendency of the repre-
sented accent variations and their corresponding acoustic parameters
are distinct [3]. Additionally, speakers who have lived in more than
one dialectal region tend to have mixed accents. For example, in
the extreme case, pronunciation of ‘zh’ from such speakers can dis-
tribute over the entire range between ‘zh’ and ‘z’ [3]. Therefore, this
multitude of accents calls for more flexible acoustic models.

3. DYNAMIC GAUSSIAN MIXTURE SELECTION WITH
ACOUSTIC MODEL RECONSTRUCTION

We build triphone acoustic models for each set of reliable accent
specific units. We merge accent mixtures borrowed from such mod-
els into the pre-trained acoustic model through acoustic model re-
construction [9]. The purpose of this approach is to adjust the ob-
servation densities of the reconstructed tied-states, and increase the
robustness of the models to handle accent changes along with the
multitude of accents [9].

With the augmented size of the reconstructed acoustic models,
we propose using dynamic Gaussian mixture selection scheme in
decoding to improve the efficiency of using Gaussian mixture com-
ponents in the reconstructed distributions to cover accent changes.

3.1. Acoustic model reconstruction for multiple accents

In current ASR systems, words are presented by the concatenation
of subword units (e.g., phones or phonemes). The decoding formula
is

B̂ = arg max
B

P (X|B)P (B), (1)

where X is the input frame sequence, B = b1, b2, . . . , bN is the
canonical phoneme sequence, and N is the number of phonemes in
the utterance. P (X|B) is the acoustic model, and P (B) is the lan-
guage model that we will not consider in this paper. Due to the effect
of accents, some standard subword units can be pronounced incor-
rectly, Equation (1) needs to be rewritten to take accent variations
into consideration. Suppose S = s1, s2, . . . , sN is one possible al-
ternative pronunciation sequence, the decoding formula becomes

B̂ = arg max
B

[
P (B)

∑
S

P (X|B,S)P (S|B)

]
. (2)

In Equation (2), P (X|B,S) is the acoustic model, P (S|B)
is the pronunciation model. Both acoustic model P (X|B) and
P (X|S) (if accented data and alternative transcriptions are avail-
able) are sub-optimal when both standard and accented speech
would be met. We use the optimal model P (X|B,S) in this paper.
P (X|B,S) can be factorized into successive contributions

P (X|B,S) =

N∏
i=1

p(xi|bi, si), (3)

where xi is the speech frames corresponding to a canonical and
alternative phoneme in the utterance. Model p(xi|bi, si) is obtained
by acoustic model reconstruction [13].

In this paper, decision tree based tied-state triphone model is
used [11]. We build triphone models for each reliable accent spe-
cific unit. Decision trees for reliable accent specific unit models are
called auxiliary trees in contrast to those for the pre-trained models
are called standard trees. Since a leaf node of a decision tree repre-
sents a tied-state, acoustic model reconstruction that borrows accent
mixtures from reliable accent specific unit models to augment origi-
nal observation densities in pre-trained model is equivalent to merge
the auxiliary tree leaf nodes into standard tree leaf nodes. An auxil-
iary tree leaf node is merged into a leaf node, which is nearest to it
and is on the standard tree that represents the corresponding state of
its canonical subword unit [9].

The new output distribution of the reconstructed tied-state
P

′
(x|b) can be represented as

P
′
(x|b) = λP (x|b) + (1− λ)

V∑
i=1

P (x|vi)P (vi|b), (4)

where P (x|b) is the output distribution of the pre-trained model,
λ is determined by the probability of the canonical phoneme be cor-
rectly recognized [9]. V is the total number of merged nodes from
auxiliary trees. P (vi|b) is the confusion probability between the
canonical phoneme and alternative phoneme of the accent specific
unit, and can be estimated from the confusion matrix [3].

3.2. Dynamic Gaussian mixture selection scheme

In a reconstructed state, the observation density is augmented with
accent mixtures to spread its coverage for handling accent variations
as illustrated in part (A) and part (B) of Figure 2. Nevertheless,
acoustic model reconstruction considerably increases the model size
and degrades the efficiency of using Gaussian mixture components
to cover accent changes. For example, in our experiment, 6,620 ac-
cent mixtures were merged into 546 standard tied-states; the state
with the most accent mixtures borrowed 120 Gaussian components
that belong to various accent changes and placed them at different
parts of the distribution.

Dynamic Gaussian mixture selection scheme improves the effi-
ciency of using Gaussian components to cover accent changes with-
out further augmenting the model size. This is achieved by select-
ing suitable Gaussian mixtures to construct a dynamical observa-
tion density for each specified speech frame according to a k nearest
mixture principle. That is, k mixtures nearest to the speech frame



are selected to customize a new output observation density for the
frame. Considering the variances of Gaussian mixtures, we use Ma-
halanobis distance to measure the distance from a frame to a mixture.
Thereby, this principle can be presented as follows.

NoteNm = N(µm; Σm), b(o) =
∑M

m=1 cmN(o;µm; Σm) is
a reconstructed observation density, the Mahalanobis distance from
Gaussian mixture Nm to frame o can be presented as

dm(o) = (o− µm)TΣ−1
m (o− µm). (5)

SupposeN ′1, N ′2, . . . , N ′k are the k mixtures nearest to o among
all M Gaussian components, the dynamical observation density for
speech frame o is,

b′(o) =
∑k

m=1 c
′′
mN(o;µ′m; Σ′m)

c′′m =
c′m∑k

m=1 c
′
m

. (6)

Moreover, k is different for different tied-states, and is deter-
mined by experiment.

For an accent frame located at the boundary of distribution, prin-
ciple of the k nearest mixture selects k mixtures nearby the frame,
which are the most representative Gaussian mixtures for current ac-
cent change. Gaussian mixtures that do no present the characteris-
tics of the accent change are not included in the dynamical output
distribution. Consequently, the obtained dynamical observation den-
sity has sharper borders and better model resolution ability as illus-
trated in part (C) of Figure 2, which lead to better covering ability for
the corresponding accent change. Meanwhile, the selected Gaussian
components can be used high efficiently in decoding that alleviates
the performance degradation in pruned beam search. For a standard
frame located at the center of the reconstructed distribution, its dy-
namical observation density would be similar to the original obser-
vation density before model reconstruction as shown in part (D) of
Figure 2, which retains the covering ability for standard speech.

As a result, using dynamic Gaussian mixture selection scheme
with acoustic models reconstructed by accent specific unit models
for multi-accent, the efficiency of using Gaussian components to
cover accent changes is improved. Therefore, the covering ability of

Fig. 2. Sketch map for output distributions of acoustic model recon-
struction and dynamic Gaussian mixture selection scheme.

the model to handle a diversity of accent variations in multi-accent
is increased. Furthermore, the selected Gaussian components are
most representative for a specified accent change, and can be used
efficiently in decoding. As a result, dynamic Gaussian mixture se-
lection scheme relieves the performance degradation when pruned
Beam search is adopted. Meanwhile, the dynamic Gaussian mix-
ture selection scheme neither sacrifice the performance on standard
speech nor augments the model size.

4. RECOGNITION EXPERIMENTS

We selected the development sets and testing sets for each accent
from the 863 regional accent speech database [14], which is the
largest and most commonly used Chinese accented speech corpus.
We selected speakers with strong accents in the testing sets based on
the recording records. All speech data were sampled with 16kHz and
16bit-rate, and more details are listed in Table 1. The baseline acous-
tic model was trained using 100 speakers’ utterances with around 50
hours of Putonghua speech. It is built on HTK decision tree based
state tying procedures with 3,000 tied-states triphone models and 12
Gaussian mixtures per state [11]. The HMM topology is three-states,
left-to-right without skips. The acoustic features are 13MFCC ,
13∆MFCC and 13∆∆MFCC. Standard Chinese 28 initials and
36 finals including 6 zero-initials were used as subword units to build
HMMs. Hereafter we will use ASU to stand for accent specific unit,
and use DGMSS to take the place of dynamic Gaussian mixture se-
lection scheme for short, in all tables and figures.

165, 191 and 166 reliable accent specific units were generated
from DevC, DevY and DevW respectively. We constructed 495 aux-
iliary trees with 517 tied-states for Chuan, 573 auxiliary trees with
605 tied-states for Yue and 498 auxiliary trees with 533 tied-states
for Wu. These tied-states from accent specific unit models were
merged into the baseline AM through acoustic model reconstruc-
tion. The reconstructed acoustic model (System 3) included 42,620
mixtures with 14.2 mixtures per state on average. In order to show
the effectiveness of reliable accent specific units, 160, 187 and 166
traditional accent specific units were extracted from the alignment
on DevC, DevY and DevW individually, which were generated by
Flexible Alignment Tool [12]. Then, 480, 561 and 498 auxiliary
trees with 531, 582 and 569 tied-states were built for Chuan, Yue
and Wu unit correspondingly. The reconstructed acoustic model in-
cluded 42,728 mixtures (System 2). Moreover, we got System 4 by
using dynamic Gaussian mixture selection scheme with the acoustic
models from System 3. Different k (number of selected mixtures)
for each tied-state are determined using development sets. In our
experiment, k ranges from 1 to the number of mixtures in the state.

Table 2 shows the effectiveness of our proposed approach eval-
uated in free grammar Chinese syllable recognition task. Compared
to the Baseline (System 1), acoustic model reconstruction with tradi-
tional accent specific unit (System 2) yields significant SER reduc-
tion on every accented testing set. The reason lies in the fact that
accent mixtures in the reconstructed tied-states adjust the original
distribution and enable more Gaussians at the boundaries to cover
confusing pronunciation of accent changes [3]. Compare to System
2, System 3 gives 2.26%, 1.12% and 1.89% relative SER reduction
on TestC, TestY and TestW respectively. These results indicate that
the reliable accent specific units have better covering ability for ac-
cent changes than the traditional accent specific units.

With dynamic Gaussian mixture selection scheme, System 4 ob-
tains 4.13%, 3.85% and 3.71% lower relative SER than System 3.
The selected efficient Gaussian components increased the covering
ability for variations of multi-accent. Thereby, the joint use of re-



Table 1. Data sets separation in experiments.
ID DevC TestC DevY TestY DevW TestW TestP
Duration 6.5h 2.2h 6.1h 1.9h 6.6h 2.1h 1.8h
Syllable Number 51,907 18,824 51,341 18,363 52,584 17,666 9,055
Speaker Number 20 20 20 20 20 20 10
Utterance Number 3,205 1,000 3,091 1,000 3,471 1,000 1,000
Speech Type Chuan accent Yue accent Wu accent Putonghua

Table 2. Lower SER for using our approach compared to using traditional accent specific unit and MAP adaptation.

ID System Syllable Error Rate (SER) %
TestP TestC TestY TestW

1 Baseline 23.45 52.02 53.36 54.05
2 Reconstructed HMMs (Traditional ASU) 22.92 (-0.53) 43.78 (-8.24) 44.63 (-8.73) 43.94 (-10.11)
3 Reconstructed HMMs (Reliable ASU) 22.98 (-0.47) 42.79 (-9.23) 44.13 (-9.23) 43.11 (-10.94)
4 Reconstructed HMMs (Reliable ASU) + DGMSS 22.97 (-0.48) 41.02 (-11.00) 42.43 (-10.93) 41.51 (-12.54)
5 MAP adaptation with DevC, DevY and DevW 32.71 (+9.26) 43.91 (-8.11) 44.63 (-8.73) 43.41 (-10.64)

liable accent specific units and dynamic Gaussian mixture selection
scheme (System 4) achieves 6.30%, 4.93% and 5.53% lower rela-
tive SER than the traditional acoustic model reconstruction approach
(System 2) for TestC, TestY and TestW respectively.

Comparing System 4 to System 5, System 4 achieves signifi-
cantly 6.58%, 4.93% and 4.38% lower relative SER reduction than
System 5. These results show that explicitly and accurately mod-
eling each accent change is better than adapting a model to fit ac-
cent changes for all accents together. Meanwhile, our approach does
not degrade on standard speech, while MAP adaptation severely
does. MAP adaptation adjusts the parameter of acoustic models to fit
multi-accent, and makes them no longer suitable for standard speech.

An example for using dynamic Gaussian mixture selection
scheme to reduce local model mismatch for Yue accent is presented
in Figure 3. In this example, when using Baseline and System 3,
final ‘ing’ of syllable ‘jing’ was mis-recognized as ‘in’. This was
caused by an accent variation between ‘ing’ and ‘in’ in Yue accent.
The 3 states of the mis-recognized final are presented from frame
208 to 217. The acoustic scores of both Baseline and acoustic model
reconstruction with reliable accent specific unit severely dropped
around frame 209. In the system of acoustic model reconstruc-
tion with reliable accent specific unit, the borrowed accent mixtures
‘ing’→‘in’ helped to increase the acoustic score around frame 211,
but not enough to restore the local mode mismatch. However, with
dynamic Gaussian mixture selection scheme, representative Gaus-
sian mixtures were selected for the accent samples. The generated
dynamical observation densities further improved the covering abil-
ity for ‘ing’→‘in’. Therefore, System 4 successfully restored this
local model mismatch and gave a correct recognition result.

Finally, we will show the benefit that dynamic Gaussian mixture
selection scheme brings to pruned beam search. Table 3 presents
the performance under different pruning degrees. Parameter tmeans
any model whose maximum acoustic score falls more than the value
of t below the maximum among all of the models will be deactivated
[11]. Relative SER reductions to the best (i.e., no-pruned, t = 0) re-
sults are presented in brackets. From Table 3, we can see pruning
significantly reduced the time cost for decoding at the price of de-
creasing the recognition accuracy in different degrees. In addition,
dynamic Gaussian mixture selection scheme considerably relieved

the performance degradation in all cases. The reason lies that dy-
namic Gaussian mixture selection scheme chooses the most efficient
Gaussian mixtures that not only handle accent changes but can be
used with high efficiency in decoding as well.

Therefore, dynamic Gaussian mixture selection improves the
presentation of acoustic model reconstruction in pruned beam
search, which is necessary in a real ASR system. Moreover, it is re-
markable that the benefits from dynamic Gaussian mixture selection
scheme averagely costs about 24% more time. This additional time
consuming is not only spent on the execution of dynamic Gaussian
mixture selection itself, but also on expanding different searching
paths. The execution time of dynamic Gaussian mixture selection
can be reduced by a better implementation of the algorithm.

5. CONCLUSIONS

We have presented using time alignment phoneme recognition to ef-
ficiently generate reliable accent specific units, which capture vari-
ations accurately for multi-accent, and such units are able to model

Fig. 3. Use dynamic Gaussian mixture selection scheme to restore
local model mismatch in decoding.



Table 3. Performance degradation in pruned beam search.

Pruning
threshold

Reconstructed HMMs
(Reliable ASU)

Reconstructed HMMs
(Reliable ASU)

+ DGMSS
SER% Time(s) SER% Time(s)

t = 0 44.13 37,093.67 42.43 46,992.71

t = 250
44.59

(+1.04) 29,751.38 42.48
(+0.12) 38,465.84

t = 200
45.41

(+2.90) 20,031.06 42.95
(+1.23) 25,041.35

t = 150
47.73

(+8.16) 10,132.87 45.29
(+6.74) 12,105.82

t = 100
68.05

(+54.20) 2,447.08 57.98
(+36.65) 2,932.51

accent changes explicitly at both phonetic and acoustic level. Mean-
while, we propose dynamic Gaussian mixture selection scheme to
generate a dynamical observation density for each speech frame by
selecting the most efficient Gaussian mixture components. As a re-
sult, the approach of dynamic Gaussian mixture selection improves
the covering ability for a diversity of accent changes in multi-accent
and alleviates the performance degradation caused by pruned beam
search without augmenting the model size. Experimental results
show the joint use of these two methods yields 6.30%, 4.93% and
5.53% relative SER reduction on Chuan, Yue and Wu accents in-
dividually, compared to previous acoustic model reconstruction with
traditional accent specific unit. Compared with MAP adaptation, our
approach achieves 6.58%, 4.93% and 4.38% SER reduction on each
certain accent respectively, without sacrificing the performance on
standard Putonghua.

In future work, we plan to investigate an alternative way to select
reliable accent specific units from the candidates automatically. In
addition, other selection principles for dynamic Gaussian mixture
selection scheme and what if some discriminative training is jointly
used with our methods will also be investigated.
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