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Abstract
This paper describes the recently developed artificial neural net-
work (ANN) modules in HTK hidden Markov model toolkit,
which enables ANN models with very general feed-forward ar-
chitectures to be used for either acoustic modelling or feature
extraction. The HTK ANN extension includes many recent
ANN-based speech processing techniques, such as sequence
training, model stacking, speaker adaptation, and parameterised
activation functions. The implementation allows efficient train-
ing by supporting GPUs and various types of data cache. The
ANN modules are fully integrated into the rest of the HTK
toolkit, which allows existing GMM-HMM methods to be eas-
ily used in the ANN-HMM framework. Speech recognition re-
sults on a 300 hours DARPA BOLT conversational Mandarin
task show that HTK can produce tandem and hybrid systems
with state-of-the-art performance on this very challenging task.
Furthermore, the flexibility of the implementation is illustrated
using demo systems for a Wall Street Journal (WSJ) task. The
HTK ANN extension is planned for release in HTK version 3.5.

1. Introduction
HTK [1] is a research source code toolkit designed primarily for
automatic speech recognition (ASR) with more than 100,000
users around the world. The most recent version is 3.4.1 [2]
which was released in 2008, and contains many commonly used
hidden Markov model (HMM) based ASR techniques, such as
phonetic decision tree based state-tying [3], speaker adaptation
[4], and lattice-based discriminative training [5]. These have
allowed the construction of state-of-the-art speech recognition
systems which have been used for both research as well as com-
mercial deployment. Beyond the official HTK release, there are
a number of extensions, and the most well-known is the HTS
system for parametric speech synthesis [6].

Since 2010, there has been a resurgence in the use of ANNs
in the speech community [7, 8], mainly due to the recent devel-
opment and good performance of systems using deep learning
[9, 10] which uses many layered “deep” ANNs or deep neural
networks (DNNs). Deep ANNs have successfully been used,
for acoustic model likelihood computation [7, 11, 12] where
they replace the Gaussian mixture models (GMMs) normally
used in HMM-based speech recognition systems in a hybrid
model setup; for feature extraction [13] where the generated
features are modelled by GMMs in a tandem setup; and finally
for language models which often include recurrent network con-
nections [14, 15]. ASR toolkits with built-in ANN support in-
clude Kaldi [16] and RWTH-ASR [17].
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However, previously HTK has not directly supported
ANNs, and therefore the use of ANNs in HTK-based systems
has relied on external ANN tools such as QuickNet [18]. In
this paper, we describe a recently developed general ANN ex-
tension to HTK (HTK-ANN), which has been actively tested at
Cambridge University Engineering Department (CUED), and
proved to be able to generate state-of-the-art ANN based sys-
tems on data sets ranging from 3 to 1,000 hours [19, 20].

Three principles were applied to the design of the HTK
ANN extension. First, in order to accommodate new models
and methods easily, without sacrificing efficiency, the design
should be as generic as possible. HTK-ANN supports ANNs
with flexible input feature configurations and model architec-
tures, and relies on a universal definition of ANN layer input
features. Second, the new ANN modules should be compati-
ble with as many existing functions in HTK as possible, which
minimises the effort to reuse previous HTK related source code
and tools in the new framework and simplifies the transfer of
many techniques, for instance, sequence training [11, 21, 22],
and speaker adaptation [23, 24], from the GMM to the ANN
framework. Third, it should be “research friendly” so that fur-
ther extensions and modifications can be created. To promote
ease of reuse and future extensions, the functions are designed
to be fine-grained and loosely coupled.

The rest of the paper is organised as follows: the implemen-
tation details of HTK-ANN are described in detail in Section 2.
Brief examples of a tandem and a hybrid system are given in
Section 3. In Secion 4, experimental results of state-of-the-art
hybrid and tandem systems, along with the example systems are
presented. We conclude in Section 5.

2. Implementation Details
HTK includes many widely used speech processing technolo-
gies, covering the entire ASR pipeline [2]. Many of these fea-
tures including front-end feature extraction, phonetic decision
trees, feature transforms, and sequence discriminative training,
large vocabulary decoders and lattice generation and process-
ing are all used in the design of ANN based ASR systems.
Therefore, implementing native support of ANNs in HTK can
simplify the use of all of these established approaches and al-
low ANN-based systems to benefit from the HTK infrastruc-
ture. This is achieved by developing HTK-ANN as a number
of new HTK modules (libraries) and tools, and extending other
libraries and tools to be compatible with them. An overview of
the newly added and extended HTK modules and tools is shown
in Table 1. Here we describe how HTK-ANN is implemented.

2.1. Generic ANN Support

In HTK-ANN, an ANN model is presented as a layered struc-
ture. Each layer l has a weight matrix, a bias vector, param-
eter vectors for parameterised activation functions [25], and a
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Name Function Descriptions/Updates
HANNet† ANN structures & core algorithms
HCUDA† CUDA based math kernel functions
HFBLat Hybrid MMI/MPE/MWE computation
HMath ANN related math kernel functions
HModel ANN model reading/writing interface
HNCache† Data cache for data random access
HParm New feature types for ANNs
HDecode Tandem/hybrid system LVCSR decoder
HDecode.mod Tandem/hybrid system model marking
HHEd ANN model creation & editing
HVite Tandem/hybrid decoder & alignment
HNForward‡ ANN evaluation & output generation
HNTrainSGD‡ SGD based ANN training

Table 1: List of the HTK-ANN related modules and tools. † new
HTK modules; ‡ new HTK tools.

feature mixture that defines the components of its input feature
vector xl. A feature mixture can have any number of feature
elements, with each of which defines a fragment of xl, based
on its source and the context shift set. The source of a feature
element can be an ANN layer, input acoustic features, or aug-
mented input features [26]. Meanwhile, a context shift set c
is a set of integers indicating their time differences to the cur-
rent time. For example, c = {−1, 0, 2} for the input acoustic
feature vector ot at time t means that the concatenated vector
is formed by stacking ot−1, ot, and ot+2. It is known that a
feedforward neural network (FNN) can have any architecture
equivalent to a directed acyclic graph (DAG), while the topol-
ogy of a recurrent neural network (RNN) contains directed cy-
cles and is presented as a directed cyclic graph (DCG) [27].
HTK-ANN supports flexible model structures equivalent to any
DCG. Other toolkits that support similar model architectures are
Theano [28], RWTH-ASR [17], and CNTK [29].

Currently HTK-ANN only has support for training using
standard error backpropagation (EBP) [27] rather than back
propagation through time (BPTT) [27]. Therefore, it is able
to train FNNs with any layered architecture. Furthermore, in
EBP, gradients for the parameters of layer l are accumulated
nl =

∑
e |c

l
e| times, where e refers to the feature elements

whose source are layer l, and cle is the context shift set associ-
ated with e. Therefore, gradients of parameters of layer l need
to be normalised by dividing by nl.

Besides providing a very flexible approach to defining the
model architecture, HTK-ANN also supports different kinds of
activation functions, such as linear, softmax, sigmoid, ReLU
[30], softplus [31], and parameterised functions [23, 25].

2.2. ANN Training

HTK-ANN supports both frame-level criteria such as cross en-
tropy (CE) and minimum mean squared error (MMSE), and se-
quence discriminative criteria including maximum mutual in-
formation (MMI), minimum phone error (MPE), and minimum
word error (MWE). When training FNNs with sequence dis-
criminative criterion F using EBP, the first step is to compute

∂F
∂ log ylout

k (ot)
= κγk(ot), (1)

where κ is the acoustic scaling factor, γk(ot) is the posterior
probability of being in the HMM state related to ANN out-

put target k at time t. γk(ot) is acquired by lattice based
forward/backward rescoring. Therefore, for different training
modes, the supervision used for ANN training can come from
label files with frame-to-label alignment (for CE and MMSE
training), feature files (for autoencoders), and from lattice files
(for MMI, MPE, and MWE).

After computing the gradients with the given criterion us-
ing EBP, HTK-ANN can apply commonly used modifications
to the gradients, including the use of momentum, gradient clip-
ping [14], weight decay, and max norm [32]. Then the refined
graidents are scaled by learning rates and used to update ANN
parameters based on stochastic gradient descent (SGD). HTK-
ANN contains several different types of learning rate sched-
ulers, such as List (pre-determined piecewise constant learning
rate) [18], NewBob [18], AdaGrad (per parameter basis learn-
ing rate decay akin to 2nd-order method) [33], etc. In particu-
lar, we modified NewBob to be less aggressive in learning rate
decay, and to enforce a minimum required number of training
epochs, Nmin. When the optimisation criterion value increase
is smaller than the set threshold, if the current epoch number is
smaller than Nmin, the learning rate will only be reduced once;
otherwise it will follow the standard NewBob schedule and re-
duce the learning rate in all successive epochs.

2.3. Data Cache

In SGD based speaker independent (SI) ANN training, it is im-
portant to randomise the input data to avoid the information
from a particular speaker, accent, noise, or channel causing too
much bias for consecutive updates. In order to minimise the I/O
cost from random data access, loading data into the memory
through a cache is usually crucial. To make the cache suffi-
ciently large, HTK now includes 64bit support. Three different
data rearrangements are available in the HTK-ANN data cache
to support different types of models and training modes:

1. Frame level randomisation/shuffling. All frames from
all utterances in the cache are shuffled, which is a com-
monly used approach for frame level ANN training.
However, in HTK-ANN, in order to process FNNs with
any architecture, context shifts for every frame in the
batch should be available as well. This also paves the
way for training recurrent neural network (RNN) acous-
tic models using an unfolding strategy [12].

2. Utterance based shuffling. This is useful in sequence
training [21] and speaker adaptive training.

3. Batch of utterance level shuffling. A batch of utterances
is randomly selected and is processed in parallel. Once
an utterance is finished, a new utterance will be loaded to
the empty position in the batch. This kind of cache has
been used for RNN training [15], as well as sequence
training with asynchronous SGD [34].

Efficiency is a key factor in cache design. An extra thread
can be enabled to load data into the cache, while the main thread
is working on forward/backward propagation.

2.4. Other Key Features

2.4.1. Math Kernels

A set of math kernel functions required by ANN processing was
added. Every new kernel has standard CPU, Intel MKL, and
CUDA based implementations. Both single and double preci-
sion float numbers are supported.
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2.4.2. Input Transforms and Speaker Adaptation

In HTK, ANNs can directly utilise many types of SI and SD
input transforms estimated by GMM-HMMs, including HLDA
[35], STC [36], and CMLLR [37]. Meanwhile, since all ANN
parameters are stored as either matrices or vectors, we have
added a new light-weight speaker adaptation mechanism, which
works for sequence training by swapping some small-grained
ANN parameter units, represented by matrices and vectors, ac-
cording to speaker ids.

2.4.3. Model Editing

Like previous versions of HTK, the HTK model editor tool,
HHEd, is used to edit the structure of ANN models. Current
edit operations allow the insertion, removal and initialisation
of a layer; changing the activation functions or dimensions of a
layer; modifying a feature mixture by adding or removing a fea-
ture element, or changing its associated context shift set. These
operations can be used to generate ANNs with any DCG equiva-
lent architectures, and any intermediate models for pre-training.
HHEd can also associate an isolated ANN with a GMM-HMM
set by assigning each ANN output target an HMM state.

2.4.4. Decoders

Both the standard HTK Viterbi decoder HVite and the LVCSR
decoder HDecode were updated to support tandem and hybrid
system decoding. In ANN-HMM training, HVite is also used to
produce the frame-to-label alignments. Both HVite and HDe-
code.mod, a variant of HDecode, implement model marking on
word lattices with ANN-HMMs, which is required by MPE.

Another more recent HDecode variant, HDecode.joint, per-
forms joint decoding of multiple HTK acoustic models with a
shared decision tree by performing a log-linear combination of
the log-likelihoods. Our recent studies have found that even
with pre-determined fixed combination weights, the joint de-
coder is able to improve both speech to text [19] and key word
spotting [20] performance.

3. HTK based Hybrid/Tandem Systems
In this section, we show how a state-of-the-art hybrid SI sys-
tem, a tandem SAT system, and a demo hybrid system with a
complex architecture can be built using HTK.

3.1. Building Hybrid SI Systems

In HTK-ANN, the first step to build DNN-HMMs is to use
HHEd to associate a DNN proto-type with a pre-generated
HMM set such as a set of tied state GMM-HMMs produced by
the decision tree tying approach [3]. Then the DNN parameters
are trained according to the frame-to-state labels produced by
Viterbi alignment using HVite with a pre-existing system (e.g.
a tandem system).

Discriminative pre-training [7, 8] for DNNs with sigmoid
activation functions is implemented using HHEd to insert a new
hidden layer once the current model is trained for one epoch us-
ing HNTrainSGD. Once the desired DNN structure is achieved,
it is further trained with EBP until convergence, which is the
fine-tuning step. The frame-level training for DNN-HMMs is
now complete.

Then, the resulting DNN-HMMs are used to produce the
denominator word lattices using HDecode for sequence dis-
criminative training. If the MPE criterion is used [5], phone
based model marking is performed with HDecode.mod, which
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Figure 1: A composite ANN as a Tandem SAT system front-end.

generates the numerator and denominator phone lattices. Fi-
nally, HNTrainSGD is used again for sequence discriminative
training by computing γk(ot) based on Eq. (1).

3.2. ANN Front-ends for GMM-HMMs

In HTK, ANNs can be used as standalone models in a hybrid
setup as ANN-HMMs, or for feature extraction with GMM-
HMMs. To integrate ANNs into GMM-HMMs, an ANN feature
mixture can be used to define the composition of the GMM-
HMM input vector. Therefore, the entire HTK-ANN serves
as a front-end to the GMM-HMMs, and it is possible to use
any ANN for all types of GMM-HMMs supported by HTK in a
seamless manner.

For example, Fig. 1 illustrates how a-state-of-the-art tan-
dem system built with speaker adaptive training (SAT) is im-
plemented as a single system with HTK-ANN. A composite
FNN without a strictly layered structure is acquired by connect-
ing STC, HLDA, and CMLLR transforms as ANN layers to the
bottleneck DNNs. The mean and unit variance normalisation
usually applied to the bottleneck features is implemented with a
parametric linear activation function, f l

i (·) for node i of layer l,

f l
i (a

l
i(ot)) =

1

σi

(
ali(ot)− µi

)
,

where ali(ot) is the input activation of f l
i (·) at time t, µi, and

σi are the ith dimension of the mean and standard deviation
vectors. The CMLLR transforms, and the pre-computed mean
and standard deviation vectors are replaceable according to the
speaker ids. This is achieved using the matrix/vector swap
method mentioned in Section 2.4.2. This allows mean/variance
normalisation at any level to be applied to the bottleneck fea-
tures generated on the fly. As a result, we can construct a single
system identical to a tandem SAT system usually generated by
dumping tandem features or loading ANN generated features
through either a pipe or a socket.

This native support for the tandem system reduces the dif-
ficulties in building even more complicated systems, and en-
ables the joint optimisation of GMM-HMMs, transforms, and
the ANN front-ends.

3.3. Demo Hybrid System with Flexible Structures

In this subsection, an example of constructing an ANN-HMM
system without a strictly layered structure using HTK-ANN
is presented. The ANN architecture is similar to the deep
convex network (DCN) [38]. We built the model by stack-
ing 4 layer bottleneck FNNs, and each FNN takes the origi-
nal acoustic features, as well as the bottleneck features from
all previous FNNs as the input. This is achieved by using
HHEd to extend the input layer feature mixture to have an ad-
ditional feature element associated with the bottleneck layer of
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each previous FNN, with the context shift set as {0}. Here,
the input acoustic vector has 468 dimensions, and the hid-
den layer, bottleneck layer, and output layer sizes are 1000,
200, and 3000, respectively. The structure of the nth FNN is
(468 + (n− 1)× 200)× 1000× 200× 3000, n = 1, 2, . . .. If
the final model is stacked by N 4-layer FNNs, the last FNN has
no bottleneck layer, i.e., (468+(N−1)×200)×10002×3000.

Every time a new FNN is stacked, the current ANN is
trained for one epoch using HNTrainSGD based on the CE cri-
terion. This is just like the discriminative pre-training men-
tioned in Section 3.1. An alternative intialisation is in [38].
Once the desired ANN structure is realised, HNTrainSGD is
used for fine-tuning. HNTrainSGD can automatically parse the
model structure and do forward/backward propagation.

From the above procedure, we can see that with HTK-
ANN, it is possible to build ANNs with complex structures us-
ing only HHEd and HNTrainSGD commands. We believe this
provides a good platform to study more types of ANNs with
different topologies.

4. Experiments
4.1. Experiment Setup

In this section, experimental results of the example systems
trained using 300 hours of Mandarin conversational telephone
speech (CTS) data from DARPA BOLT project are given. The
data were spontaneous speech with multi-accent, mixed lan-
guages (Mandarin and English), and overlapping speech, which
makes the task very challenging. The Hybrid SI system was
built following the paradigm mentioned in Section 3.1, while
the Tandem SAT system was the same as illustrated in Fig. 1.
More details about the data and systems can be found in [19].
We used the development set released in 2014, dev’14, for test-
ing [19].

The demo system with the structures described in Sec-
tion 3.3 were trained on 15 hours Wall Street Journal (WSJ0)
training set (SI-84), and tested on the 65k vocabulary 1994 H1-
dev (65k dt) and Nov’94 H1-eval (65k et) testing sets [39]. The
52d acoustic feature vector consists of 13d PLP along with its
∆, ∆∆, and ∆∆∆ features. The general setup is the same as
in [39].

All of the BOLT and WSJ0 DNNs had sigmoid activation
functions, and their inputs were formed by concatenating the
current frame with 4 frames to its left and its right context.
Parameter updates were averaged over a mini-batch with 800
frames and smoothed by adding a “momentum” term of 0.5
times the previous update. In each case, 10% of the training
set was randomly selected for held-out validation, and the mod-
ified NewBob learning rate scheduler presented in Section 2.2
was used for all CE training. The initial learning rate and min-
imum epoch number were set to 2.0 × 10−3 and 12. All se-
quence training was carried out with per utterance update based
on MPE without the use of momentum. For the BOLT system,
sequence training was performed for 2 epochs, with fixed learn-
ing rates of 4.0× 10−5 and 2.0× 10−5.

4.2. BOLT Systems

Both hybrid and tandem CE DNNs were trained with align-
ments generated by another tandem SAT system. They used
a standard DNN structure of 504× 20004× 1000× 12000 and
504 × 20004 × 1000 × 26 × 12000, respectively. The tan-
dem system also has 12,000 GMM-HMM states. The WERs
are listed in Table 2. Compared to the Tandem SAT system,

the Hybrid SI systems trained using the CE and MPE crite-
ria were respectively 3.8% worse and 4.8% better in terms of
WER. Two epochs of MPE sequence training gave an 8.9% rel-
ative WER reduction, which is fairly consistent with previously
reported results [21, 22]. Moreover, the overall results bene-
fit from the complementary information from different systems,
joint decoding of the MPE Hybrid SI and Tandem SAT systems
[40, 19] with system dependent combination weights (1.0, 0.2)
resulted in a further 1.9% relative decrease in WER.

System Criterion %WER
Hybrid SI CE 34.5
Hybrid SI MPE 31.6

Tandem SAT MPE 33.2
Hybrid SI ⊗ Tandem SAT MPE 31.0

Table 2: Performance of BOLT tandem and hybrid systems with
standard configurations evaluated on dev’14.

4.3. WSJ Hybrid Systems

The held-out set frame classification accuracies along with the
WERs are shown in Table 3.

FNN %Accuracy %WER
Num Train Held-out 65k dt 65k et

1 69.9 58.1 9.3 10.9
2 72.8 59.1 9.0 10.4
3 73.9 59.1 8.8 10.7

Table 3: Performance of the WSJ0 Demo Systems.

In Table 3, the stacking procedure was stopped because
over-fitting was observed from the results. The system stacked
with 3 modules results in a complex structure. However,
this demo system shows that HTK-ANN can perform for-
ward/backward propagation through complex architectures.

5. Conclusions
We present our recently developed ANN extension, which in-
tegrates native support of ANNs into HTK and enables HTK
based GMM technologies to directly apply to the ANN-based
systems. HTK-ANN can build FNNs with very flexible topolo-
gies, different activation functions, various input features, using
frame or sequence level discriminative training. An ANN based
speaker dependent parameter swap method and parameterised
linear activation functions are also proposed, and help to ac-
commodate the tandem SAT system architecture. Experiments
on 300 hour CTS task showed HTK can generate standard state-
of-the-art tandem and hybrid systems. The other WSJ0 hybrid
training task showed that HTK can build systems with very flex-
ible structures with a simple standard feedforward architecture.
A version of HTK-ANN will be made available with the re-
lease of HTK 3.5 in 2015. It is intended to continue to de-
velop HTK in future and to integrate backpropagation through
time (BPTT), convolutional layers, and 2nd-order optimisation
methods.
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