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Abstract—In this paper, we propose a discriminative dynamic
Gaussian mixture selection (DGMS) strategy to generate reliable
accent-specific units (ASUs) for multi-accent speech recognition.
Time-aligned phone recognition is used to generate the ASUs
that model accent variations explicitly and accurately. DGMS
reconstructs and adjusts a pre-trained set of hidden Markov
model (HMM) state densities to build dynamic observation den-
sities for each input speech frame. A discriminative minimum
classification error criterion is adopted to optimize the sizes of the
HMM state observation densities with a genetic algorithm (GA).
To the author’s knowledge, the discriminative optimization for
DGMS accomplishes discriminative training of discrete variables
that is first proposed. We found the proposed framework is able to
cover more multi-accent changes, thus reduce some performance
loss in pruned beam search, without increasing the model size
of the original acoustic model set. Evaluation on three typical
Chinese accents, Chuan, Yue and Wu, shows that our approach
outperforms traditional acoustic model reconstruction techniques
with a syllable error rate reduction of 8.0%, 5.5% and 5.0%,
respectively, while maintaining a good performance on standard
Putonghua speech.

Index Terms—Accented speech recognition, accent-specific unit,
dynamic Gaussian mixture selection (DGMS), genetic algorithm.

I. INTRODUCTION

A CCENT variability is a significant factor for performance
degradation for most state-of-the-art automatic speech

recognition (ASR). This is particularly serious for Mandarin
Chinese ASR systems with a large speaking population and a
wide range of accent variations when they use the same written
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Chinese characters that are ideographic and independent from
their pronunciations. Accented speech is often caused by some
pronunciation differences between the speaker’s first language
or dialect, and that of the target standard speech. Such discrep-
ancies can be either acoustical or phonological.
There are seven major dialects in China: Guanhua, Yue, Wu,

Xiang, Gan, Kejia and Min, which can be further divided into
more than 30 sub-categories [1]. As a large proportion of Chi-
nese speakers learn Putonghua as a second language their pro-
nunciations are inevitably influenced by their native dialects.
Statistics show that over 79.6% of Putonghua speakers carry
regional accents, and 44.0% of them speak strong accents [2].
Furthermore, multitude of accents is very common in Chinese
speech [3]. As a result, ASR systems implemented for standard
Putonghua cannot perform well on accented speech, especially
when multiple accents are involved.
There are quite a few previous studies on accent analysis

[4]–[6], classification [7]–[9], and detection [10]. In our current
study, we focus our attention on accented speech recognition.
Conventional methods that handle accent variations focus on

modeling acoustic and phonetic variations at different levels.
For phonetic variations, phone set extension and augmented
pronunciation dictionary are commonly adopted methods [11].
However, they usually increase lexical confusions [12], but do
not lead to a significant performance improvement. The other
approaches to reduce phonetic confusions include pronuncia-
tion modeling at either phone-level or HMM-level [13], [14].
For acoustic variations, the most straightforward way is to
build acoustic models for each accent using a large amount of
accented data [15]. On the other hand, for the case of multiple
accents, an extra accent classification module is needed [16] to
identify the exact accent the speaker has, and uses the acoustic
models relevant to that accent to perform speech recognition.
Another method is to apply maximum a posteriori (MAP) or
maximum likelihood linear regression (MLLR) for acoustic
model adaptation so as to fit the speech characteristics of cer-
tain accents [17]–[20]. A major weakness of the conventional
adaptation techniques is that the parameters of the acoustic
models undergo an irreversible change, making the models less
capable of covering other accents and the standard language.
To address issues of above methods, an approach to state-

level pronunciation modeling with model reconstruction was
proposed to handle both the acoustic and phonetic changes for
accented speech recognition [1], [3], [21], [22]. These methods
are able to cover multi-accent changes as well as retrain the
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performance for standard speech, and have finer model reso-
lution than phone-level or HMM-level pronunciation modeling
approaches [1], [3], [21]–[23]. These methods usually increase
the model size resulting in an inefficient use of the Gaussian
mixture components and sacrifice model resolution [23]. This
inevitably brings a serious performance loss to beam pruning in
the ASR decoding process.
To address the above challenges, we propose reliable

accent-specific unit (ASU) generation with discriminative
dynamic Gaussian mixture selection (DGMS) in multi-accent
speech recognition. In other words, we extend previous studies
of applying state-level pronunciation modeling approach
on multi-accent speech recognition task by reliable ASUs
generation and discriminative DGMS. Our contributions are
summarized as follows:
1) Time-aligned phone recognition is proposed to generate re-
liable ASUs precisely and efficiently. Being able to elim-
inate the frame mismatches, the reliable ASU1 candidates
together with their corresponding training samples can thus
be obtained.Meanwhile, time-aligned phone recognition is
helpful to model multi-accent variations accurately.

2) In order to improve model resolution of the statically
reconstructed states degraded by acoustic model shift due
to accents, we propose a dynamic Gaussian mixture selec-
tion (DGMS) strategy to construct a dynamic observation
density by choosing a number of Gaussian components
being most representative with and nearest to each input
speech frame. Such a selected observation density size
for each HMM state is set individually, and optimized
discriminatively based on a minimum classification error
(MCE) criterion [24], [25]. We also propose to solve
the implied integer programming optimization problem
efficiently using a genetic algorithm (GA) [26]. To the
author’s knowledge, optimizing DGMS by MCE based
GA implements discrete-variable discriminative training
for the first time, which operates on observation density
sizes rather than means, variances, and weights by regular
continuous-variable discriminative training [24], [25]. As
a result, the proposed discriminative DGMS algorithm
covers the potential multi-accent variations in speech with
an enhanced robustness via improved model resolution,
without increasing the model size, and therefore reduces
the performance degradation caused by pruning errors in
beam search based ASR decoding.

Moreover, there are some related studies on mixture and
frame selection in the literature [27]–[29]. Conventional
Gaussian mixture selection approach aims at improving the
efficiency of using Gaussian component while frame selection
is often adopted to increase system accuracy by abandoning
frames with high confusions. Different from these approaches,
our discriminative DGMS enhances the degree of matching
between the testing frames and the Gaussian components,
which is more close to what we would like to accomplish
in online adaptation [30]. In addition, Gaussian pruning and
weight normalization based frame-wise model re-estimation

1The term “reliable ASU” in this paper is an abbreviation of “the ASU that is
generated by the reliable ASU generation” rather than a different kind of ASU.

approach has been proposed recently for noise robust voice
activity detection [31]. This approach selects an uncertain
number of dominant Gaussian components for a testing frame,
which form a dynamic Gaussian Mixture Model (GMM) for
computing the likelihood of that frame. Both frame-wise model
re-estimation and our proposed DGMS approaches have the
idea of building a dynamic GMM to evaluate the testing frame
by selecting the most suitable Gaussian components. On the
other hand, the dynamic GMM model sizes associated to the
HMM states of DGMS are optimized discriminatively by MCE
based GA. In other word, DGMS uses a more complex and
automatically learnt Gaussian component selection strategy,
which is applicable to HMM based continuous density ASR
systems.
The rest of this paper is organized as follows. In Section II,

we discuss the generation of reliable ASUs. In Section III,
acoustic model reconstruction together with DGMS is de-
scribed. In Section IV, the discriminative DGMS framework
with MCE based, GA-style integer programming optimization
is elaborated. In Section V, a series of accented speech recogni-
tion experiments is presented. Finally we conclude our findings
in Section VI.

II. RELIABLE ACCENT-SPECIFIC UNIT GENERATION

A. Chuan, Yue and Wu Accents

Guanhua (Mandarin) is the largest dialect and is commonly
spoken in the vast areas of north and southwest China while the
other major dialects are often used in one or two provinces in
the southeast, the detailed geographical distribution of the seven
major dialects together with their sub-dialects could be found in
Table II in [32]. Particularly, Putonghua (the standard Chinese)
bases on the sub-dialects of northern Guanhuan.
Chuan, Yue (Cantonese) and Wu accents are investigated in

this study, which would be of extensive use. The Chuan dialect
is a sub-dialect of Guanhua in southwest China with more than
100 million users. And the Yue and Wu dialects are both major
Chinese dialects from the most development areas in China. All
these accents have very different pronunciations compared with
standard Putonghua. For example, linguists have shown that
60% of the pronunciations between Yue and Putonghua are not
even close to each other [33]. Many of them often regard Yue
as a distinctive spoken language from Putonghua, in terms of
phonological, lexical and syntactic structures. Phonologically,
the pronunciation distinction of the same Chinese character in
Yue and Putonghua is considered as different as that of the same
morphological word in French and English [1].
Chinese is a monosyllabic language with each of its syllable

constituted by an initial followed by a final [34]. An initial
refers to a consonant that starts a syllable except for the six
zero initials: a, o, e, i, u, and v, which actually represent
no physical phone but make the monophthong syllables have
logical initials [35]. A final is a vowel followed by 0 to 2 conso-
nants/vowels. Conventional Chinese initial/final notations with
their corresponding International Phonetic Alphabet (IPA) sym-
bols in parentheses are adopted in this paper. In typical Chinese
ASR systems, initials and finals are commonly used as subword
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units to construct acoustic models. These units are different be-
tween the three dialects and Putonghua. There are 22 initials and
36 finals in Putonghua in contrast to 20/38, 20/53 and 27/49 ini-
tials/finals in Chuan, Yue and Wu, respectively [33]. The inven-
tories of the initials/finals in the four languages are distinct. For
example, compared to other languages, Yue has an additional
velar nasal initial /ng/. In the meantime initials in Wu are usu-
ally divided into voiced and unvoiced groups but not for those
in the other languages.
Consequently, many speakers from each dialect region have

difficulty in pronouncing some Putonghua initials/finals. For
instance, when a Yue dialect speaker tries to pronounce a
Putonghua initial , ‘zh’(/tȿ/) the phone made may lie between
‘zh’(/tȿ/) and ‘z’(/ʦ/), causing an accent variation. An ASU is
widely used to represent an accent variation whereas a diversity
of multi-accent variations can be represented using different
sets of ASUs [3].

B. Reliable Accent-Specific Unit Generation

In ASR, an accent variation is an erroneous pronunciation of
a canonical phone, , into an alternative, say , due to the ef-
fect of an accent, causing a misrecognition error. The phone is
called an ASU of the phone . Conventional methods for gen-
erating ASU candidates extract phone pairs from the alignment
of the canonical and alternative transcriptions [3]. The canon-
ical transcriptions are manually labeled, and the alternative tran-
scriptions could be generated automatically by free grammar
phone recognition that produces substitution (transfer), inser-
tion and deletion (epenthesis) errors [36]. There is always a
large portion of insertions and deletions in alternative transcrip-
tions due to the poor performance of the pre-trained standard
speech acoustic models on accented data which causes frame
mismatches to substitutions. In our experiment, there are more
than 2 insertions and 2 deletions for each Yue accent utter-
ance on average while there is actually rare initial/final level
epenthesis in Chinese according to consensus in linguistics [34].
Fig. 1 is a real example to show how frame mismatches im-
pact on ASU generation. For ASU candidates generate by tra-
ditional methods, the canonical and alternative pairs of phones,
‘_i’→‘j’(/ʨ/), ‘iu’(/iəəu/)→ ‘ie’(/iĘ/), ‘_u’ →‘m’(/m/), ‘n’(/n/
)→‘_i’, and ‘ian’(/iεn/)→ ‘ve’(/yĘ/), belong to different audio
slices and are not representative accent variations, that results
in unreliable ASU.
We propose time-aligned phone recognition to eliminate

insertion and deletion errors. ASR performs 1-best decoding
based on the exact time boundaries of each phoneme obtained
from a forced alignment [36] by imposing the two following
selection principles: 1) the number of phone in the alternative
result should be the same as that of the canonical transcription;
2) each phone in the selected alternative should be of the
same duration as its corresponding phone in the canonical
transcription. The implementation could be as simple as adding
an operation of filtering all the hypotheses with these two
selection rules before ranking them according to the original
criterion (e.g., maximum a posterior criterion for the conven-
tional Viterbi decoding). A more efficient implementation is to
build a decoding network with the number of nodes in every

Fig. 1. A real example illustrates that frame mismatches cause inaccurate ASU
instances in contrast to reliable ASU instances. The vertical axis is time. Each
rectangle in a bar represents a phone with its length is the relevant phone dura-
tion. The results on the upper and lower parts in each group of bars are canonical
and alternative transcriptions, respectively.

possible path and the number of frames associated to every
node (associates to an HMM definition [36]) in that network
constrained by the number of segments and their durations in
the forced aligned reference transcriptions, separately. Then
the conventional network based searching and result selection
could be applied to this network to fulfill this time-aligned
phone recognition. In other words, time-aligned phone recog-
nition performs context-dependent phone classification rather
than recognition. This time-aligned phone recognition is dif-
ferent from slicing the data into individual initial/finals and
do segment-by-segment recognition since context-dependent
models could be applied in time-aligned phone recognition,
which captures more accurate accent changes.
The procedure to generate reliable ASUs is illustrated in

Fig. 2 and explained as follows:
1) Acquiring canonical transcriptions with time: a forced
alignment is performed on phone-level canonical tran-
scriptions with pre-trained acoustic models, and the
canonical transcriptions containing all phone durations are
obtained [36].

2) Obtaining alternative transcriptions:with phone durations
obtained from the canonical transcriptions with time, the
alternative transcriptions are generated by time-aligned
phone recognition.

3) Generating reliable ASU candidates: reliable ASUs are
those misclassified phones obtained by comparing the
canonical and alternative transcriptions.

4) Selecting reliable ASUs: reliable ASU candidates include
those with real accent variations as well as errors from data
and recognizer confusions [1]. Hence, reliable ASUs are
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Fig. 2. Flow-chart for generating reliable accent-specific units.

manually selected from the candidates in reference with
linguistic knowledge and a phone confusion matrix [1].

The selection strategy in Step 4 includes the following
steps: (i) removing language-inherent confusion: for example,
‘i2’(/ʅ/)→‘i1’(/ɿ/) may not be a typical accent change in any
of the three dialects if it takes a high confusion probability in
Putonghua. It is then treated as a language-inherent confusion
and removed; (ii) replacing pronunciations of suspicious alter-
natives with their inherent confusions: for instance, ‘an’(/an/)
‘ai’(/aI/) may not be a typical Chuan variation. But Chuan

speakers tend to pronounce ‘an’(/an/) as /ae/, which is not
a valid phone in Putonghua. Since the most similar final to
/ae/ is ‘ai’(/aI/), we then consider ‘an’(/an/) ‘ai’(/aI/) as an
accent variation; and (iii) removing errors from either data
or recognizers: for example, the retroflex affricative ‘zh’(/tʂ/)
is not in any of the three dialects. ‘z’(/ʦ/) →‘zh’(/tʂ/) does
not coincide with any linguistic knowledge either and has
much fewer instances than ‘zh’(/tʂ/)→‘z’(/ʦ/). As a result,
‘z’(/ʦ/)→‘zh’(/tʂ/) is removed.
Remarkably, we can use the pre-trained acoustic phone

models to obtain duration information associated with the
conventional transcriptions. It is intuitive that acoustic models
involving accent pronunciations generate more accurate seg-
mentations on accented data. To show how much do accent
changes affect the segment durations obtained by forced align-
ment, we mixed the development sets of Chuan, Yue, and
Wu accents to adapt the pre-trained models using the MAP
approach [3], [17]. Comparing the durations of the same phone

generated by the pre-trained and adapted models, if their start
or end time has a difference of more than 3 frames, the duration
by the pre-trained models is supposed to be inaccurate. The
threshold was set to 3 due to the well-known noisy nature of
the phone boundaries. Our results obtained by the pre-trained
models showed only 4.0%, 4.6%, and 3.0% of the phone seg-
ments resulted in inaccurate durations in the development sets
of the Chuan, Yue, and Wu accents, respectively. These high
duration accuracies can be attributed to the fact that the highly
likely paths during the forced alignment procedure are mostly
restricted to narrow regions. Therefore these results indicated
that the pre-trained models could be used to take the place of the
adapted models to acquire the durations of the accented phones.
This fact simplifies the procedure for generating reliable ASUs.
Time-aligned phone recognition eliminates the frame mis-

match problem and captures accurate accent variations. In
Fig. 1, by reliable ASU generation, “_i’, ‘iu’(/iəu /), and
‘ian’(/i n/) are correctly recognized phones rather than substi-
tutions; ‘ u’ and ‘u’(/u/) are not deleted phones; the generated
ASU candidates are then ‘ u’ ‘m’(/m/) and ‘n’(/n/) ‘l’(/l/)
rather than the five candidates obtained by traditional methods.
More specifically, compared to the traditional method that aligns
canonical and alternative transcriptions by dynamic program-
ming and edit distances [37], our method captures more accent
changes (e.g.,‘ch’(/tʂʰ/) → ‘s’(/s/) in Chuan accent). Further-
more, time-aligned phone recognition generates more reliable
ASU candidates (e.g., 38 instances of ‘un’(/uən/)→‘en’(/ən/) in
Chuan accent do no meet linguistic knowledge in our method
whereas there are 61 such instances in the traditional method),
which would be used as training samples for ASU models.
Moreover, the selection is easier since there are always less
recognition errors in time-aligned phone classification. With
reliable ASUs and their corresponding training samples, the
process results in accurate ASU model generation which plays
an important role in subsequent acoustic model reconstruction.
It is also noteworthy that although there are similar ASUs

in different accents (e.g., ‘zh’(/tʂ/)→‘z’(/ʦ/)), the tendency of
the represented accent changes and their corresponding acoustic
parameters are distinct [3]. In addition, speakers who have lived
in more than one dialectal region tend to have mixed accents.
For example, in the extreme case, pronunciation of ‘zh’(/tʂ/)
from such speakers can distribute over the entire range between
‘zh’(/tʂ/) and ‘z’(/ʦ/) [3]. Therefore, handling the multitude of
accents requires more flexible acoustic models to be discussed
in the next section.

III. DYNAMIC GAUSSIAN MIXTURE SELECTION WITH
ACOUSTIC MODEL RECONSTRUCTION

We build triphone acoustic models for each set of reliable
ASUs, and merge those Gaussian components borrowed from
such models into the set of pre-trained acoustic models to cover
accent changes, through acoustic model reconstruction [1]. A
key objective is to statically reconstruct the state observation
densities for a subset of the selected tied-states, and to increase
themodel robustness to handlemultiple accent changes [3]. This
is called an augmented HMM set.
Due to the problems caused by the increased model size and

model resolution loss in the augmented HMM set, we propose
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Fig. 3. Decision tree merging for ASU ‘ch’ ‘q’, where ‘ch’ is the canonical
phone, and ‘q’ an alternative phone.

to use DGMS to improve the model reconstruction process by
dynamically adjusting the statically reconstructed HMM state
densities based on the acoustic similarities between each input
speech frame and all the Gaussian components.

A. Acoustic Model Reconstruction for Multiple Accents

In the current ASR systems, words are presented by the con-
catenation of subword units (e.g., phones). The sequence of de-
coded units is obtained with maximum likelihood decoding as
follows:

(1)

where denotes the input frame sequence,
the frame number of that sequence, and

the canonical phone sequence corresponding to those frames.
represents the acoustic model probability, and

the language model probability that we will not consider in
this study. Due to the effect of accents, some standard units
can be pronounced incorrectly. Suppose is
one possible alternative pronunciation sequence, (1) needs to be
rewritten to take accents into consideration as follows:

(2)

In (2), represents the acoustic model taking an al-
ternative unit sequence into account, and the pronun-
ciation model [38]. Both acoustic models and
(if accented data and alternative transcriptions are available) are
sub-optimal when both standard and accented speech would be
met. We use the optimal model , which can be fac-
torized in into successive contributions:

(3)

where is the speech frame corresponding to a canonical phone
and its alternative phone . Model is the likeli-

hood of frame given the relevant canonical phone and al-
ternative phone [38].
In this paper, a decision tree-based tied-state triphone model

is adopted [36]. We build a triphone model for each reliable
ASU [1]. Decision trees for ASUs are named auxiliary trees in

contrast to those for the pre-trained models that are called stan-
dard trees. Since each leaf node of a decision tree represents
a tied-state, acoustic model reconstruction that borrows the ac-
cented Gaussian components from the ASU models to enlarge
the original observation densities in the pre-trained HMM states
is equivalent to merging the leaf nodes of the auxiliary tree into
the standard tree leaf nodes. A leaf node of an auxiliary tree is
merged into one leaf node on the standard tree relevant to its
canonical phone, if these two nodes have the minimum Maha-
lanobis distance [1], as shown in Fig. 3. The above decision tree
merge procedure is similar to the approaches used in cross lan-
guage mapping [38]–[40].
The new output distribution of the merged node for

this statically reconstructed tied-state is defined as follows:

(4)

where denotes the output density of the pre-trained
model, and is determined as the probability that the canonical
phone is correctly recognized [1], and is the total number
of the merged nodes from the auxiliary trees. and are the
canonical phone and alternative phone of an ASU.
is the confusion probability between and , and can be
estimated from a confusion matrix [3]. After acoustic model
reconstruction, Eq. (2) becomes

(5)

where is defined in (4).

B. Dynamic Gaussian Mixture Selection

The solid line in Fig. 4(a) illustrates the output observation
density of a tied-state in pre-trained acoustic models. For an
augmented HMM state, its statically reconstructed observation
density is enlarged with the borrowedGaussian components that
extend its coverage to handle accent variations, as shown by the
solid line in Fig. 4(b). Nevertheless, acoustic model reconstruc-
tion can significantly increase model size. For instance, in our
experiment, 6,620 accented Gaussian components were merged
into 546 standard tied-states. The state with the largest density
size borrowed 120 accented Gaussian components belonging
to various accent changes and placed them at different parts of
its distribution. Therefore, the likelihoods of the frames located
nearby the center of the augmented density decrease comparing
to those by the pre-trained models, as illustrated by the center
parts of the solid lines in Fig. 4(a) and (b). This likelihood reduc-
tion would result in confusions between the augmented models
and its competing models, which causes model resolution loss.
The problem caused by model resolution degradation was al-

leviated by DGMS without making any changes to the acoustic
models. This is achieved by selecting suitable Gaussian com-
ponents to construct a dynamic observation density for each
input speech frame according to a -nearest principle. That is,
Gaussian components being nearest to the current frame are

selected to customize a new output state observation density
to calculate its acoustic log-likelihood. Considering different
variances of the various Gaussian components, Mahalanobis
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Fig. 4. Output densities of acoustic model reconstruction and DGMS. The solid and dashed lines draw the output densities and their constituent Gaussian com-
ponents, respectively. (a) is the output density of pre-trained acoustic models by standard speech; (b) is the density of a augmented acoustic model obtained by
static reconstruction with Gaussian components borrowed from auxiliary decision trees; (c) and (d) show the dynamic densities for different accented frames;
(e) illustrates a dynamic density for standard frame.

distance is used to measure the distance between a frame and
a Gaussian component since it coincides with the asymmetric
property of acoustic confusions in accented speech [1], [4].
Hence, this principle can be presented as follows.
Note is the density for

a statically reconstructed state (also noted as in
Section III-A). Suppose are the compo-
nents nearest to among all the Gaussian components,

, then a dynamic observation density for
speech frame on state is:

(6)

where is the normalized weight of
the selected Gaussian components in dynamical observation
density.
For an accent frame located at the boundary of the density, the

principle of the -nearest neighbor selects Gaussian compo-
nents being nearest to the current frame, that are the most repre-
sentative Gaussian components for the relevant accent change.
Consequently, the obtained dynamic densities have better model
representation ability for accent changes as illustrated by the
solid lines in the left part and right part of Fig. 4(c) and (d),
separately, which reduces the performance degradation in state
pruning during beam search in decoding. Meanwhile as shown
in Fig. 4(e), for an acoustic sample of standard speech located
at the center of the statically reconstructed density, its dynamic
output density drawn by the solid line in the center part of the
figure would still be similar to that before model reconstruction,
and therefore retain its covering ability for standard speech.
It is remarkable that the nature of DGMS approach is to se-

lect a Gaussian mixture for an input frame rather than select
individual Gaussian components, due to the adoption of the
-nearest principle. For a specified , there are possible
combinations of the selected Gaussian components in the re-
constructedHMMstate. A combination of the selectedGaussian
components forms a Gaussian mixture, which could be used as a
dynamic observation density. Therefore, the approach is named
as dynamic Gaussian mixture selection as an indication of this
nature.
In addition, is pre-specified distinctively for different HMM

states that provides sound flexibility to fit the diversified accent
variation. This gives many flexible parameters to optimize in
statically reconstructed HMM states for DGMS, which are re-
ferred to as the parameter vector. Challenges in finding the op-

timal parameter vector include: (i) how to evaluate a parameter
vector; and (ii) how to find the optimum.

IV. MCE BASED DISCRIMINATIVE DISCRETE VARIABLE
OPTIMIZATION FOR DYNAMIC GAUSSIAN MIXTURE SELECTION

To estimate the parameter vector (namely an integer-valued
vector with every of its element associated to the number of se-
lected Gaussian components in a reconstructed state) for DGMS
precisely, we choose the MCE criterion that directly optimizes
on segment error rate [24], [25]. The selected Gaussian mix-
ture model sizes are discrete variables for the MCE loss func-
tion. Therefore, the optimal parameter vector cannot be solved
by conventional optimization techniques used for discrimina-
tive training of continuous variables (e.g., mean, variance, etc.)
[24], [25], since the derivatives for the Gaussian mixture model
sizes do not exist. Parameter optimization for DGMS is actually
an integer programming problem, so we use GA to solve it effi-
ciently [26].

A. MCE Criterion for Discriminative DGMS

MCE is widely used to minimize errors in the training set.
Its effectiveness has been proved in discriminative training of
HMMs for ASR [24], [25], [41], [42]. In this study, we utilize
MCE to estimate the parameter vector in discriminative DGMS.
Suppose is the feature sequence of a training utterance,

and is the set of parameters for acoustic models, MCE is
formulated with a discriminant function [24], [25],
which evaluates the acoustic log-likelihood for an output string
scored by DGMS with its parameter vector, . A misclas-

sification measure is used to evaluate the acoustic
difference between the canonical string and its alternative
strings.

(7)

For the convenience, we call the alternative string that has
the largest score as the best incorrect string. Therefore, the loss
function for MCE can be defined as follows.

(8)

We use the MCE loss function as the objective function in
optimizing the parameters of DGMS.When the optimal value in
(8) is obtained, DGMSminimizes the empirical risk by reducing
the training set errors, including those caused by accents and
increasing the covering ability for such variations.
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TABLE I
DATA SETS SEPARATION IN EXPERIMENTS

The canonical and alternative transcriptions are generated by
forced alignment with free grammar phone recognition, keeping
track of the full state alignment [36]. To obtain the best incor-
rect strings for a given vector , ideally we need to decode or
rescore the pre-generated lattices with and . However, since
a large number of parameter vectors would be examined, even
if we cache the likelihoods for every frame on every Gaussian
component to speed up the likelihoods calculation, the com-
putation cost for either decoding or lattice rescoring is not af-
fordable. We acquire the best incorrect string as the phone se-
quence that score the largest among fixed strings, which were
generated as the -best outputs with the reconstructed acoustic
models and rescored with current parameter vector , for the
purpose of reducing the computation cost. In order word, we use
the pre-generated -best outputs to approximate the lattice for
vector . Therefore, according to (7) and (8), when the recogni-
tion result for a sequence is correct, . Otherwise

. Hence, the optimization is to find the optimal
vector that results in the smallest value in (8).
It is worth noting that since our formulation is a discrete

variable optimization problem, there are no continuous vari-
able derivatives in the objective function. Therefore, the reason
why we use theMCE loss function as the optimization objective
rather than directly count the erroneous frames does not lie in
its smooth functional form, but in the followings: 1) the MCE
loss function allows different erroneous frames to have different
impacts to the objective function, and trade off these impacts
within an utterance to make the optimization on segment level
instead of individual frames; 2) we are able to control the opti-
mization using varying values of to assign different weights to
training utterances with different correct/incorrect degrees [41].
When is small (e.g., 0.01), training tokens of many utterances
are mapped to fall into the linear region of (8), that increases the
separation between correct and incorrect hypotheses as well as
the generalization ability on unseen data; when grows large
enough (e.g., 2.0), the MCE loss function counts the incorrectly
recognized utterances. A more detailed discussion about the ef-
fectiveness of different can be found in [41].

B. Genetic Algorithm

Let denote the number of statically reconstructed states,
the th such state has Gaussian components. Therefore, the
number of possible parameter vector candidates for DGMS
is , which grows exponentially as increases. As
there are usually hundreds of statically reconstructed states,
and every such state has tens of borrowed Gaussian compo-
nents, traversing every possible parameter vector to obtain the
optimum is computationally infeasible.

GA, which is a “search for solutions” algorithm mimics the
“survival of the fittest” process of natural evolution, is able to
find the optimal solution by examining over only a small frac-
tion of possible candidates [26]. Viewing a parameter vector
as an individual chromosome in evolution, the optimization
problem for finding the optimal parameters can be regarded as
selecting the fittest one from every chromosome appeared in
evolution, and the optimization can be efficiently handled by
GA. Therefore, a chromosome is constituted by positive
integers corresponding to the Gaussian mixture model size
for the statically reconstructed states in DGMS. Every

integer ranges from a pre-specified minimum to the maximum
model size in its relevant statically reconstructed state.
We use the MCE loss function to define the fittest function,
of GA. Note is the average

of over the entire training set. GA solves the optimal
parameter vector for DGMS as follows:
1) Randomly generate chromosomes as the initial
population;

2) Compute a fitness function for each chromosome ;
3) Select chromosomes randomly from the population,
is even. The selection probability is calculated as,

(9)

where refers to every chromosome in current population.
The “roulette-wheel sampling” method is used to make the
selection [26]. It generates a random positive number less
equal than 1, and successively sums for every in the
current population until a chromosome that causes the
sum to exceed the random sample size, then is selected.

4) Reproduce the chromosomes by sequentially dividing
them into pairs, then “one-point crossover” is used
for the reproduction of each pair [26]. That is, selecting a
random crossover point for each pair, and swapping inte-
gers beyond that point in either chromosome between the
parents. This step generates children.

5) Merge the children chromosomes generated in step 4 with
the unselected ones in step 3, and form a new population.
Generate a random probability for each chromosome at
each locus in the new population. If the random probability
is smaller than a pre-set mutation probability, the integer at
the current locus is randomly increased or decreased by one
with equal probability. Replace the original chromosomes
with their variations.

6) Replace the current population with the new population.
7) Repeat steps 2–6, if no satisfies and the max-
imum generation number is not reached.
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TABLE II
DETAILS OF THE ASUS AND THEIR CORRESPONDING AUXILIARY DECISION TREES

V. RECOGNITION EXPERIMENTS

A. Dataset

The 863 regional accent speech corpus [43] was used in
our experiments to evaluate our method on three typical ac-
cents—Chuan, Yue, and Wu. This database is the largest and
most commonly used one in Chinese accented speech recogni-
tion [1]. The training set is consisted of 25,920 utterances from
100 speakers with 51.5 hour of standard Putonghua speech.
This set was used to build the baseline Putonghua system. All
speech data were sampled at 16 kHz and with a 16-bit precision.
More details are listed in Table I. To prove the effectiveness
of the proposed approach, we selected the development sets
(DevC, DevY and DevW) and testing sets (TestC, TestY, and
TestW) as shown in Table I for each accent with the speakers
representing strong accents based on their recording records.

B. Recognition Systems

Five systems were tested, which are described as follows.
System 1: The Baseline system. The acoustic model was

trained using the training set. It is built on HTK decision tree
based state tying procedures with 3,000 tied-states triphone
models and 12 Gaussian components per state [36]. The HMM
topology is 3-state, left-to-right without skips. The acoustic
features are and .
28 initials and 36 finals, including 6 zero-initials, in standard
Chinese were used as the subword units for building HMMs.
System 2: Augmented HMMs with traditional ASU. Tradi-

tional ASUs were extracted from the alignment on the utter-
ances in DevC, DevY and DevW, individually, which were gen-
erated by Flexible Alignment Tool [37]. The auxiliary decision
trees are also built by HTK decision tree based state tying pro-
cedures with 4 Gaussian components per state. Details of the
auxiliary decision trees for the tradition ASUs and their relevant
tied-states are listed in Table II. The auxiliary tied-states were
merged into the same acoustic model as System 1. The statically
reconstructed model included 42,728 Gaussian components to
be used in System 2. This system was built in order to show the
effectiveness of conventional ASUs,
System 3: Augmented HMMs with reliable ASU. We list the

details of the reliable ASUs, their corresponding decision trees,
and tied-states for the three accents respectively in Table II.
The reliable ASUs were generated for each accent individu-
ally according to the procedure described in Fig. 2. We con-
structed auxiliary trees for the reliable ASUs and merged tied-
states into the baseline acoustic models through acoustic model
reconstruction. The augmented acoustic models in System 3 in-
clude 42,620 Gaussian components with 14.2 mixtures per state
on average.

Fig. 5. Gaussian mixture model sizes in state observation densities for some
representative tied-states with/without discriminative DGMS.

System 4: System 3 with discriminative DGMS. Our System
3 included 546 statically reconstructed tied-states. Therefore,
DGMS requires 546 parameters for model sizes. To optimize
these discrete variables, for the MCE criterion was set to 0.01;
and the population size , reproduction size , and mutation
probability for GA were set to 400, 200, and 0.3, respectively.
The 5-best hypotheses generated by System 3 were used to ap-
proximate the exact alternative transcriptions in GA. We op-
timized the DMGS parameter vector with utterances from the
DevC, DevY, and DevW sets. The optimization was forced to
stop at a maximum of 1,200 iterations, and its objective func-
tion value in (8) was converging and reduced from 0.86 to 0.62.
The obtained solution was used as the parameters for discrimi-
native DGMS in all experiments. Some selected sizes in our op-
timized vector for some representative tied-states are compared
in Fig. 5. Clearly these model sizes are smaller with DGMS than
those used in System 3 without DGMS.
System 5: System 1 acoustic models being MAP-adapted to

fit the acoustic characteristics of Chuan, Yue, and Wu accents
using a mixture of data from the DevC, DevY, and DevW sets.
This system was built as a control group for comparing our ap-
proaches with conventional accent adaptation approaches.

C. Results and Discussions

All results in syllable error rate (SER) with the five systems
discussed earlier are listed in Table III with a free grammar
for recognizing 410 Chinese syllables, in which decoding
any syllable can follow any syllable with equal probability.
The reason these studies evaluated the performance without
language models is to detach the influence of higher-level infor-
mation from the issue objective of obtaining the real acoustic
model improvement. Compared to the baseline (System 1),
the augmented HMM system with traditional ASUs (System
2) yielded a SER reduction on every accented testing set. The
reason lies in the fact that the borrowed accented Gaussian
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TABLE III
LOWER SER FOR USING OUR APPROACH COMPARED TO USING TRADITIONAL ASU AND MAP ADAPTATION

components in the statically reconstructed tied-states adjusted
the original distribution and enabled more Gaussian compo-
nents at the boundaries to cover the confusing pronunciation of
accent changes [1], [3]. Compare to System 2, System 3 gives
a relative SER reduction of 4.5%, 1.5% and 1.1% on TestC,
TestY and TestW, respectively. These results indicate that the
reliable ASUs have better covering ability for accent variations
than the traditional ASUs.
With discriminative DGMS, System 4 obtains a lower rel-

ative SER by 3.6%, 4.0% and 3.9% than System 3 on TestC,
TestY and TestW, respectively. Discriminatively trained DGMS
minimizes the classification errors in the training set and in-
creases the coverage abilities for multi-accent variations. Mean-
while, our proposed DGMS method also maintained the recog-
nition performance on Putonghua as we restricted the dynamic
output densities with no less than 6 Gaussian components by
DGMS, leading to retaining the pre-trained mixture distribu-
tions for standard speech. With the joint usage of our proposed
reliable ASU and discriminative DGMS (System 4) achieves
8.0%, 5.5% and 5.0% lower relative SER than the traditional
acoustic model reconstruction approach (System 2) for TestC,
TestY and TestW, respectively. System 4 clearly achieved the
best SER among all competing systems for multi-accent speech.
It is also noted from the two bottom rows in Table III that

System 4 outperforms System 5 by 7.8%, 4.0% and 4.9% lower
relative SER reduction. These results show: (i) explicitly and
accurately modeling each accent change is better than adapting
a model to fit accent changes for all accents together; and (ii)
the discriminative MCE criterion tackles the classification er-
rors directly which outperforms the generative MAP criterion.
Meanwhile, System 4 does not degrade the system performance
on standard Putonghua speech achieving an SER of 22.2%,
whereas System 5 severely dropped the SER to 30.6%. For our
setup MAP adaptation adjusts the acoustic model parameters
to fit multi-accents, and makes them no longer well-fit for
standard speech.
An example for using discriminative DGMS to reduce local

model mismatch for the Yue accent is illustrated in Fig. 6. In
this example, the initial ‘zh’(/tʂ/) in syllable ‘zhi’(/tʂʅ/) was
misrecognized as ‘z’ when using the baseline and System 3.
This is caused by the most typical Yue accent change between
‘zh’(/tʂ/) and ‘z’(/ʦ/). The 3 states of the misrecognized initial
were presented from frames 215 to 230. The acoustic log-like-
lihoods for both the baseline and the augmented HMM system
with reliable ASUs severely drop at around frame 222. In the
augmented HMM system with reliable ASUs, the borrowed
accented Gaussian components for ‘zh’(/tʂ/) → ‘z’(/ʦ/) is
helpful to increase the acoustic log-likelihood at frame 222,

Fig. 6. An example of using discriminative DGMS to correct local model mis-
match in Yue accent.

but not enough to restore the local mode mismatch. Moreover,
with discriminative DGMS, the robustness for covering accent
changes is improved as shown in the solid curve with the
dynamic observation densities further increased the covering
ability for ‘zh’(/tʂ/) → ‘z’(/ʦ/). As a result, System 4 reduces
the degree of this local model mismatch and gives a correct
recognition result.
Finally, we examine the effectiveness in using DGMS to

avoid model resolution loss. We evaluate the resolution by

(10)

where is the acoustic log-likelihood with canonical state
is the same as in (2) that represents the acoustic difference for
a observation sequence scored on its canonical and alternative
states. Therefore, the model resolution for state increases when

is increased. Let denote the set of acoustic parame-
ters of the augmented HMMs with traditional ASUs, its
resolution, a set of acoustic parameters, the relative model
resolution improvement by can be defined as follows in (11)
to measure the ratio of a discrimination power in terms of mis-
classification measures,

(11)

The relative model resolution improvements as measure in
(11) for some selective tied-states are illustrated in Fig. 7, which
shows DGMS improved the relative model resolution, i.e., en-
hancing the separation between the canonical states and their
competing alternative states. The larger the model resolution
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Fig. 7. Relative model resolution for representative tied-states with/without
discriminative DGMS evaluated on Yue accent.

Fig. 8. SERs for augmented HMMs (reliable ASUs) with and without DGMS,
when the pruning threshold varies from 100.0 to 250.0 in testing Yue speech.

improvement, the better the model separation, which also in-
dicates enhanced separation between the target model and its
competing models. Clearly, the model resolution is better with
DGMS than that without DGMS.
This effect can also be reflected in beam search where a

pruning threshold is set so that the models whose maximum
acoustic scores fall below it are deactivated in decoding. By
having a good model resolution the search paths reserved by
DGMS are more accurate than those saved without DGMS,
relieving the performance degradation in pruned search caused
by acoustic model reconstruction, as we demonstrate in the
two sets of curves in Fig. 8. With DGMS, the SER is always
lower than that without DGMS. Furthermore the system per-
formance degradation with smaller thresholds is more severe
without DGMS than those with DGMS. Obviously, the SER
difference between the two curves in Fig. 8 widens when the
threshold value decreases indicating an enhanced robustness
with a better model resolution for DGMS than that without
DGMS. Remarkably, the power of DGMS comes with a price
of increasing the computation complexity of decoding. Since
Mahalanobis distance can be regarded as a part of the likeli-
hood, the computing of the distances will yield no additional
computation cost. The extra computations arise from sorting
the Gaussian components based on their distances to current
input frame. Therefore, for a set of augmented HMMs with
reconstructed states, sorting would be performed for a testing

frame. If quicksort is adopted, the computation complexity for
sorting Gaussian components is .

VI. CONCLUSION

Unexpected acoustic variations occur constantly at run time
in automatic speech recognition. In this paper, we propose
to use time-aligned phone recognition to efficiently generate
reliable accent-specific units. It is shown that reliable ASUs
are able to capture accent changes accurately and explicitly at
both the phonetic and acoustic levels. We also propose DGMS
(dynamic Gaussian mixture selection) to handle multi-accent
speech variation. When dynamically restructuring a pre-trained
set of Gaussian mixture models at each input speech frame
to cover the unexpected variations at run time, we show that
discriminative DGMS, trained with genetic algorithm based
on the minimum classification error criterion, improves model
robustness and enhances model resolution for accented speech
recognition, with an increasing acoustic covering ability for
accent changes as well as reducing performance degradation in
pruned beam search, and achieves discrete-variable discrimi-
native training through integer programming for the first time
known by the authors. Experimental results show that the com-
bination of our proposed approaches yield a relative syllable
error rate reduction of 8.0%, 5.5% and 5.0% on Chuan, Yue and
Wu accents, respectively, when compared with the traditional
acoustic model reconstruction techniques. Over conventional
MAP adaptation, our approach achieves an SER reduction of
7.8%, 4.0% and 4.9% on the three accents, individually, with
no accuracy impact on standard Putonghua.
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