

Introduction

Standard CD-DNN training:

- A well-trained GMM-HMM system has to be used for CD-DNN training for
- state-to-frame alignments;
- defining a set of tied context-dependent (CD) states.
- State-to-frame alignments serve as the training labels of CD-DNNs.
- DNN targets are derived from decision-tree based tied-state GMM-HMM system.

Standalone CD-DNN training:

- We propose to train CD-DNNs independently from any existing system by
- training CI-DNNs using discriminative pre-training with integrated realignments; modifying standard decision tree state tying to cluster explicitly estimated
- (approximately equivalent terms to) CD-DNN output distributions.
- Proposed technique gives comparable WERs to GMM-HMM dependent CD-DNNs.

Proposed Training Procedure for CI-DNNs

Initial Alignment Refinement:

- The initial alignments are transcriptions with uniformly segmented CI states.
- The alignments are repeatedly refined for a number of iterations by
- 1. training a 3-layer MLP from scratch for 1 epoch with current alignments; 2. using the resulting MLP to realign the training set.

Discriminative Pre-training with Realignment:

- Aim is to interleave training label refinement with adding hidden layers to the DNN. The pre-training steps are
- . train a 3-layer MLP for 1 epoch and use it to realign the data;
- 2. replace current output layer with a hidden layer along with a new output layer;
- 3. train the modified MLP with the latest alignments for 1 epoch;
- 4. use the MLP to realign the reference transcriptions;
- 5. repeat steps 2-5 until required DNN structure is realised.

DNN Class-Conditional Distributions for Decision Tree Tying

- To use decision tree tying, DNN class-conditional distributions are needed.
- If \mathbf{z}_t is the input to the final layer. For a DNN output target class \mathcal{C}_k , assume $p(\mathbf{z}_t | \mathcal{C}_k) = \mathcal{N}(\mathbf{z}_t; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}), \text{ we have }$

$$p(\mathcal{C}_k | \mathbf{z}_t) = \frac{\exp\left\{-0.5 \cdot \mathbf{z}_t \Sigma^{-1} \mathbf{z}_t + \boldsymbol{\mu}_k^\mathsf{T} \Sigma^{-1} \mathbf{z}_t - 0.5 \cdot \boldsymbol{\mu}_k^\mathsf{T} \Sigma^{-1} \boldsymbol{\mu}_k\right\}}{\sum_{k'} \exp\left\{-0.5 \cdot \mathbf{z}_t \Sigma^{-1} \mathbf{z}_t + \boldsymbol{\mu}_{k'}^\mathsf{T} \Sigma^{-1} \mathbf{z}_t - 0.5 \cdot \boldsymbol{\mu}_{k'}^\mathsf{T} \Sigma^{-1} \mathbf{z}_t\right\}}$$

The relation between $\mathcal{N}(\mathbf{z}_t; \boldsymbol{\mu}_k, \boldsymbol{\Sigma})$ and the final layer is

$$\eta \mathbf{w}_{k}^{\mathsf{T}} = \boldsymbol{\mu}_{k}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}$$
$$\eta \mathbf{b}_{k} = -0.5 \boldsymbol{\mu}_{k}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_{k} + \ln P(\mathcal{C}_{k}),$$

where \mathbf{w}_k and b_k are the weights and bias of \mathcal{C}_k , η is a scaling factor.

Standalone Training of Context-Dependent Deep Neural Network Acoustic Models

Chao Zhang and Phil Woodland

Cambridge University Engineering Department

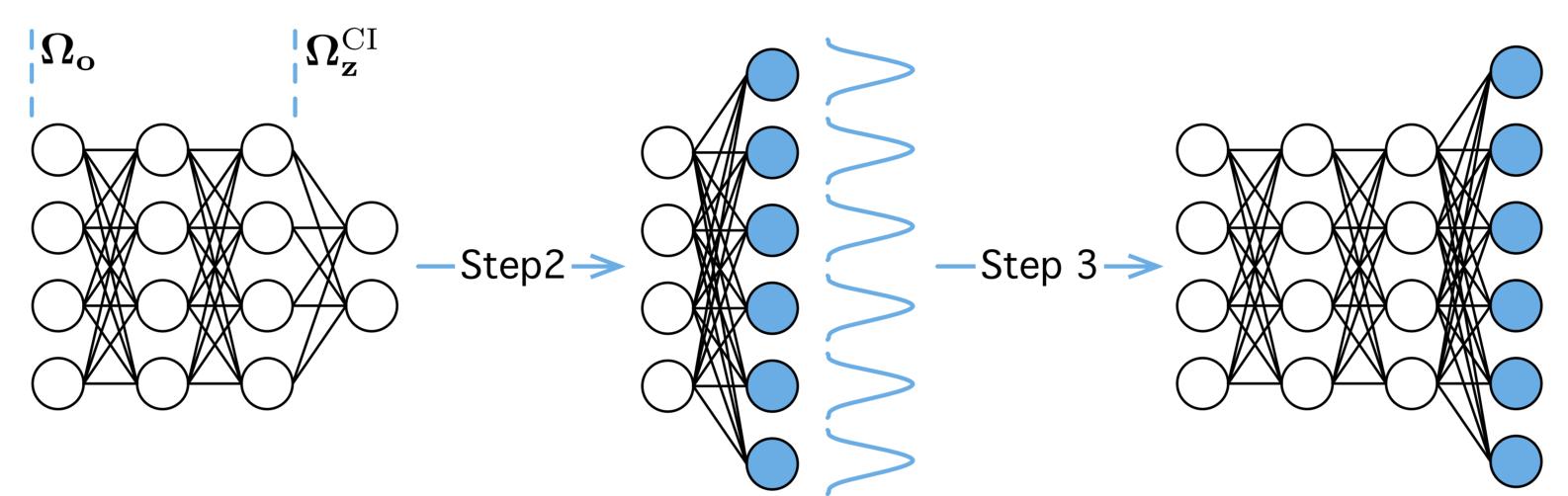
DNN-HMM based Decision Tree Target Clustering

Adapting GMM-HMM decision tree tying to DNN-HMMs:

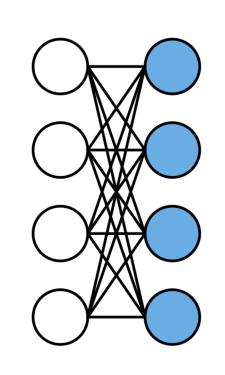
- Estimate $\mathcal{N}(\mathbf{z}_t; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) \rightarrow$ convert to a DNN output layer \rightarrow collect $\sum_t \gamma_k(t)$ using a modified DNN \rightarrow do decision tree tying with $\mathcal{N}(\mathbf{z}_t; \boldsymbol{\mu}_k, \boldsymbol{\Sigma})$ and $\sum_t \gamma_k(t)$.
- $\triangleright \mathcal{N}(\mathbf{z}_t; \boldsymbol{\mu}_k, \boldsymbol{\Sigma})$ are estimated based on maximum likelihood criterion.
- ▶ PCA is used to simplify the computation of $|\Sigma|$ for decision tree tying.
- GMM/DNN based decision tree clusters in Ω_o/Ω_z , the space of o/z.

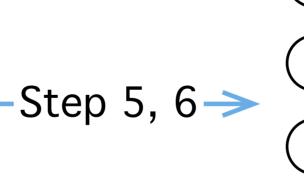
Training CD-DNN-HMMs based on CI-DNN-HMMs:

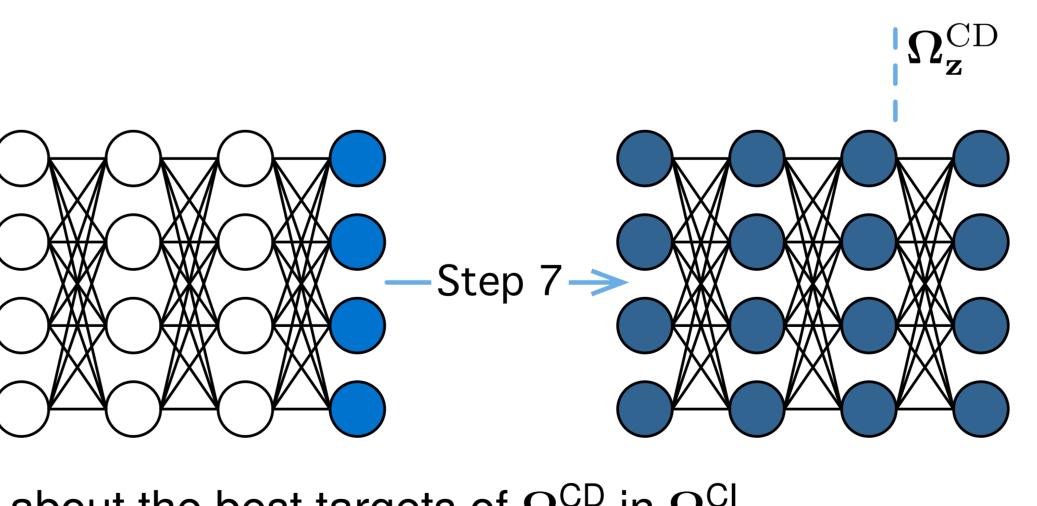
- The steps of training CD-DNN-HMMs using existing CI-DNN-HMMs are
- 1. realign the training set with CI-DNN-HMMs;
- 2. estimate $p(\mathbf{z}_t | C_k)$ for all seen untied CD states with CI-DNN-HMM hidden layers;
- **3.** convert $p(\mathbf{z}_t | \mathcal{C}_k)$ to an output layer with untied CD states to collect $\sum_t \gamma_k(t)$;



- 4. perform DNN decision tree tying to generate the clustered CD state targets; 5. add a new output layer with the clustered targets to CI-DNN-HMM hidden layers; 6. train the output layer only and realign the training set with the resulting model;
- 7. perform fine-tuning according to the new alignments.







This method make predictions about the best targets of Ω_7^{CD} in Ω_7^{CI} .

Experimental Setup

- Wall Street Journal training set (SI-284), along with 1994 H1-dev (Dev) and Nov'94 H1-eval (Eval) testing sets were used.
- MPE GMM-HMMs with $((13PLP)_{D_A,T_Z})_{HLDA}$ had 5981 tied triphone states.
- Every DNN was with 9 \times (13PLP)_{D_A_Z} and had 5 \times 1000 hidden layers.
- All experiments were with a 65k dictionary and a trigram language model.

 $\iota_k + \ln P(\mathcal{C}_k) \}$ $\left[{}^{1}\boldsymbol{\mu}_{k'} + \ln P(\mathcal{C}_{k'}) \right]$

Experimental Results

Baseline System Performance:

I1 performed better than I2 since system G2 had HLDA and $\Delta\Delta\Delta$ features.

ID	Туре	Alignments	Dev WER%	Eval WER%
G2	MPE GMM-HMMs		8.0	8.7
11	CI-DNN-HMMs	G2	10.5	12.0
12	CI-DNN-HMMs	1	10.7	13.7
D1	CD-DNN-HMMs	G2	6.7	8.0

CI-DNN-HMM Standalone Training:

Discriminative pre-training with realignment (I3 and I4) reduced WERs.

ID	Training Route	Dev WER%	Eval WER%
13	Realigned	12.2	14.3
14	Realigned+Conventional	11.7	13.8
15	Conventional	12.2	15.0
16	Conventional+Conventional	12.0	14.6

DNN-HMM based Target Clustering:

ID	Clustering	Updated Layers	Dev WER%	Eval WER%
G3	GMM-HMM	Final Layer	7.6	9.0
G4	GMM-HMM	All Layers	6.8	7.9
D2	DNN-HMM	Final Layer	7.7	8.7
D3	DNN-HMM	All Layers	6.8	7.8

Conclusion

- layers.

Acknowledgements

Chao Zhang is supported by Cambridge International Scholarship from the Cambridge Commonwealth, European & International Trust and by the EPSRC Programme Grant EP/I031022/1 (Natural Speech Technology).

UNIVERSITYOF UNIVERSITYOF CANBRIDGE

▶ D2 outperformed G3 \rightarrow clustering in Ω_z^{CI} (of I4) matches I4 hidden layers better. Fine-tuning reduced the WER difference between different clustering methods. ► The standalone CD-DNN-HMM system, D3, is comparable to D1, in terms of WER.

► We accomplished training CD-DNN-HMMs without relying on any existing system. Training CI-DNNs interleaves reference state alignment and adding new hidden

Modified decision tree state tying to cluster Gaussian distributions with a common covariance matrix for every untied CD state based on z of the CI-DNN. The proposed training procedure gives state-of-the-art hybrid system performance on the standard SI-284 training setup for the Wall Street Journal corpus.