Standalone Training of Context-Dependent Deep Neural Network Acoustic Models

Chao Zhang & Phil Woodland

11 November 2013

Conventional Training of CD-DNN-HMMs

- CD-DNN-HMMs rely on GMM-HMMs in two aspects:
 - Training labels state-to-frame alignments
 - Tied CD state targets GMM-HMM based decision tree state tying
- Is it possible to build CD-DNN-HMMs independently from any GMM-HMMs?
- Standalone training of CD-DNN-HMMs

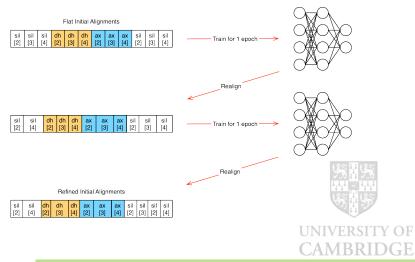
Standalone Training of CD-DNN-HMMs

- The standalone training strategy can be divided into two parts:
 - Alignments by CI- (monophone state) DNN-HMMs trained in a standalone fashion
 - o Targets by DNN-HMM based decision tree target clustering

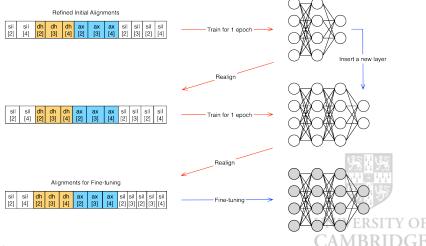
Standalone Training of CI-DNN-HMMs

- The standalone CI-DNN-HMMs are trained with *flat initial alignments* (with averaged CI state duration)
- CI-DNN-HMMs training include:
 - Refine initial alignments in an iterative fashion
 - Train a CI-DNN-HMMs using discriminative pre-training with realignment and standard fine-tuning

Initial Alignment Refinement



Discriminative Pre-training with Realignment



DNN-HMM based Target Clustering

- Assume the output distribution for each target is Gaussian with common covariance matrix, i.e., $p(\mathbf{z} \mid \mathcal{C}_k) = \mathcal{N}(\mathbf{z} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma})$
 - the kth target
 - o sigmoidal activation vector from the last hidden layer
- $\mathcal{N}(\mathbf{z}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma})$ are estimated based on maximum likelihood criterion
 - the features are de-correlated with state-specific rotation
 - o the left clustering process is the same as the original approach
- Next, we investigate the link between the Gaussian distributions and the DNN output layer

UNIVERSITY OF CAMBRIDGE

DNN-HMM based Target Clustering

• From Bayes' theorem,

$$p(C_k|\mathbf{z}) = \frac{p(\mathbf{z}|C_k)P(C_k)}{\sum_{k'} p(\mathbf{z}|C_{k'})P(C_{k'})}$$

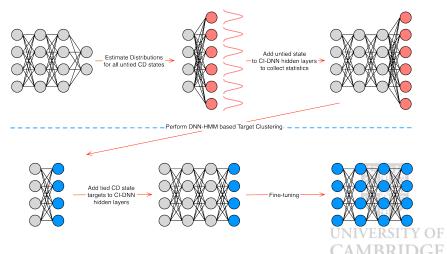
$$= \frac{\exp\{\frac{\boldsymbol{\mu}_k^\mathsf{T} \boldsymbol{\Sigma}^{-1} \mathbf{z}}{\sum_{k'} \exp\{\frac{\boldsymbol{\mu}_k^\mathsf{T} \boldsymbol{\Sigma}^{-1} \mathbf{z}}{\sum_{k'} \sum_{k'} \sum_{$$

According to softmax output activation function,

$$p(C_k|\mathbf{z}) = \frac{\exp\{\mathbf{w}_k^\mathsf{T} \mathbf{z} + \mathbf{b}_k\}}{\sum_{k'} \exp\{\mathbf{w}_{k'}^\mathsf{T} \mathbf{z} + \mathbf{b}_{k'}\}}$$

university of CAMBRIDGE

Procedure of Building CD-DNN-HMMs



Experiments

- Wall Street Journal training set (SI-284), along with 1994 H1-dev (Dev) and Nov'94 H1-eval (Eval) testing sets were used.
 - o utterance level CMN and global CVN
- MPE GMM-HMMs have 5981 tied triphone states and 12 Gaussian components per state
 - MPE GMM-HMMs were with ((13PLP)_{D_A_T_Z})_{HLDA}
- Every DNN had 5 hidden layers with 1000 nodes per layer
 - All DNN-HMMs were with $9 \times (13PLP)_{D_A_Z}$
 - o sigmoid/softmax hidden/output activation function
 - cross-entropy training criterion
- 65k dictionary and trigram language model

Table : Baseline CI-DNN-HMM Results ($351 \times 1000^5 \times 138$).

ID	Туре	DNN	WER%	
		Alignments	Dev	Eval
G2	MPE GMM-HMMs	_	8.0	8.7
l1	CI-DNN-HMMs	G2	10.5	12.0

Table: Different CI-DNN-HMMs trained in a standalone fashion.

ID	Training Route	WER%		
	Training Noute	Dev	Eval	
I3	Realigned	12.2	14.3	
14	Realigned+Conventional	11.7	13.8	
15	Conventional	12.2	15.0	
16	Conventional+Conventional	12.0	14.6	

CD-DNN-HMM Results

- Baseline CD-DNN-HMMs (D1) were trained with G2 alignments. The WER on Dev and Eval are 6.7 and 8.0, respectively.
- CD-DNN-HMMs with different clustered targets were listed in the table. The hidden layer and alignments were from I4.

Table : CD-DNN-HMM based state tying results ($351 \times 1000^5 \times 6000$).

ID	Clustering	BP Layers	WER%		
		DF Layers	Dev	Eval	
G3	GMM-HMM	Final Layer	7.6	9.0	
G4		All Layers	6.8	7.9	Š
D2	DNN-HMM	Final Layer	7.7	8.7	1,1
D3		All Layers	6.8	7.8	े

 The CD-DNN-HMMs (D3) trained without relying on any GMM-HMMs is comparable to baseline D1.

CAMBRIDGE

Conclusions

- We accomplish training CD-DNN-HMMs without relying on any pre-existing system
 - train CI-DNN-HMMs by updating the model parameters and the reference labels in an interleaved fashion
 - adapt decision tree tying to the sigmoidal activation vector space of a CI-DNN
- The experiments on WSJ SI-284 have shown
 - o the proposed training procedure gives state-of-the-art performance
 - o the methods are very efficient

