
Cross-Utterance Language Models

Guangzhi Sun

Supervisor: Prof. Phil Woodland

Dr. Chao Zhang

Department of Engineering
University of Cambridge

This thesis is submitted for the degree of
Master of Engineering

Trinity College June 2019

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this thesis are original and have not been submitted in whole or in part for consideration for
any other degree or qualification in this, or any other university. This dissertation is my own work
and contains nothing which is the outcome of work done in collaboration with others, except
as specified in the text and Acknowledgements. This thesis contains fewer than 12,000 words
including appendices, bibliography, tables and equations and has fewer than 50 figures.

Guangzhi Sun
June 2019

Acknowledgements

First, I would like to thank my supervisor, Prof. Phil Woodland and Dr Chao Zhang, for their
supportive instructions, guidance and patience throughout my master’s project. Weekly meetings
with Prof. Woodland have always been a great pleasure. I was deeply involved and filled with
motivations and inspiring ideas especially when I was obstructed by some difficulties. Dr Chao
has always been reachable, discussing ideas, answering questions and kindly offering effective
suggestions. I would also like to thank Florian Kreyssig and Eric Li in our group who offered
timely help in all aspects of my project and my work-life balance. Finally, I would like to
thank my parents, my girlfriend, and my friends at Cambridge, who made every moment of my
undergraduate life memorable and enjoyable.

Abstract

Language modelling is the task to estimate the probability of a given sequence and is widely used
in many applications such as machine translation and speech recognition systems. For speech
recognition systems, the language model (LM) provides the prior information which allows the
maximum a posteriori decoding to be performed. Traditionally, n-gram LMs have been widely
used for the last few decades as they are easy to implement and can be well generalised to unseen
data. However, there are two major disadvantages for n-gram LMs which are the data sparsity
problem and the n-th order Markov assumption.

Recently, recurrent neural network language models (RNNLMs) have become increasingly
popular, as it mitigates both problems with n-gram LMs. The data sparsity issue is addressed by
representing each word in a low-dimensional, continuous space, and the long-term dependency
is improved via the recurrent connection between the hidden and the input layer which carries
the information of previously seen words. With more efficient GPU training techniques and
optimisation algorithms, RNNLMs can be trained on large scale dataset. Meanwhile, two
of its variants, the GRU and LSTM, have also been broadly used to produce state-of-the-art
results. Nevertheless, due to the limited dimension of the representation space and the error
back-propagation training algorithm, it still suffers from a limited long-term dependency and is
usually used at the single utterance level for speech recognition systems. Therefore, effective
incorporation of the cross-utterance level information remains an open research area to explore.

To better exploit the use of the surrounding context, a cross-utterance LM using a two-level
LSTM-based structure is proposed in this project. The first-level LSTM is used to produce utter-
ance embeddings which are then used to extract the context representation via some extraction
networks. The second-level LSTM adopts an RNNLM adaptation framework where the auxiliary
feature is the context representation which is concatenated with the word embedding and the
hidden state vector to form the input to the recurrent layer. To begin with, different context
extraction networks have been used to extract useful information from a set of fixed utterance
embeddings. Then, in order to mitigate the criterion mismatch between the first and second
level LSTM of the cross-utterance LM, joint-training algorithms are proposed. Different data
arrangements for context representation are also proposed under the joint-training framework.
Last but not least, to better imitate the real context which contains acoustic errors during LM
training, an acoustic error sampling technique is proposed.

v

The first contribution of this project is the two-level cross-utterance LM and a set of context
extraction networks. Experimental results show that the incorporation of context information
with fixed utterance embeddings achieves a relative improvement of 5% in perplexity and 0.2
on word error rate (WER) compared to the vanilla LSTM LM. The second contribution of this
project is the joint-training algorithm of the two LM components. A set of training techniques
are experimented to achieve better optimisation. Besides, three different data arrangements for
context representation are proposed as well whose merits and drawbacks are analysed in the
experiments. Results indicate that a 12% relative reduction in perplexity and 0.3 absolute WER
value reduction compared to the vanilla LSTM model are achieved. The third contribution of
this project is the sampling technique with real acoustic errors which narrows the gap between
the LM training and its application in speech recognition. Finally, future work directions have
been suggested at the end of this thesis.

Table of contents

List of figures viii

List of tables x

1 Introduction 1
1.1 Overview of Language Models . 1
1.2 Motivation and Proposed Approaches . 2
1.3 Outline of the Thesis . 3

2 Language Modelling 4
2.1 Task Formulation . 4
2.2 N-gram Language Models . 5
2.3 Feed-forward Neural Network Language Models 6
2.4 Recurrent Neural Network Language Models 7

2.4.1 Basic RNNLM . 7
2.4.2 Training of RNNLMs . 9
2.4.3 Gated Recurrent Units and LSTM Language Models 10

2.5 Adaptation of RNNLMs . 12
2.6 Language Model Interpolation . 13
2.7 Application of Language Models in ASR . 13

3 Cross-Utterance Language Models 15
3.1 Two-Level Language Model Architecture . 15
3.2 Context Vector Extraction Networks . 16
3.3 Training with Fixed Utterance Embeddings 18
3.4 Experimental Setup . 19

3.4.1 Data . 19
3.4.2 Models . 20
3.4.3 Rescoring Pipeline . 20
3.4.4 Evaluation Metrics . 21

Table of contents vii

3.5 Results and Discussions . 21
3.5.1 LM Perplexity Comparison . 21
3.5.2 WER with N-best Rescore . 25
3.5.3 Summary . 27

4 Joint-training of Cross-Utterance RNNLMs 29
4.1 Joint Training Algorithm and Implementation Details 29
4.2 Context Arrangements . 32

4.2.1 LSTM-based Utterance Embeddings 32
4.2.2 LSTM-based Segment Embeddings 33
4.2.3 Self-attentive Segment Embeddings 34

4.3 Experiments . 34
4.3.1 Utterance Embeddings . 35
4.3.2 LSTM-based Segment Embeddings 36
4.3.3 Self-attentive Segment Embeddings 38
4.3.4 Summary . 39

5 Acoustic Error Sampling 42
5.1 Motivations for Error Sampling . 42
5.2 Training with Acoustic Error Sampling . 43
5.3 Experiments . 44

6 Conclusions and Future Work 45
6.1 Conclusions . 45
6.2 Future Work . 46

References 47

Appendix A Extra Experimental Results 51

Appendix B Risk Assessment Retrospective 52

List of figures

2.1 A 4-gram Feed-forward neural network language model. The inputs are the
previous 3 words represented by 1-of-K encoding, and are projected into a low-
dimension vector with the shared projection layer. The output is a probability
estimation of the current word. 6

2.2 Recurrent neural network language model which models the complete history
with h in a continuous space. Projection layer is omitted. 8

2.3 Parallel processing of 5 sentence streams for efficient GPU training of the RNNLM. 9
2.4 Gated recurrent unit which contains a forget gate and an output gate that provide

gating to both time and features. Figure taken from 4F10 lecture handout,
university of Cambridge, engineering department. 10

2.5 LSTM structure with a memory cell for richer expression of the history. Figure
taken from 4F10 lecture handout, university of Cambridge, engineering department. 11

2.6 RNNLM with additional information features as auxiliary inputs for LM adaptation. 12

3.1 The two-level cross-utterance language model where both levels are RNNLMs . 15
3.2 Hierarchical RNN for context vector extraction 18
3.3 Flowchart illustration of the batch arrangement for the training with fixed utter-

ance embeddings. ui are utterance embeddings extracted using the first-level
LM . 19

3.4 PPL variation against BPTT steps on AMI. The LSTM LM uses 256D hidden
states and 256D word embeddings. The green line represents the LSTM with
sentence boundary resetting, and the blue line represents the one without resetting. 23

3.5 PPL variation against LSTM size on AMI. Also comparison of the vanilla LSTM
and the cross-utterance LM. Sizes on the x-coordinate refers to both the hidden
states and the word embeddings. Context ranges from -3 to +3 utterances. . . . 23

3.6 Negative log-probability from different LM predictions for example utterances. 25
3.7 PPL variation against context coverage on AMI. 0 represents no context which

is the baseline vanilla LSTM LM. -3 +3 represents previous 3 and future 3
utterances are used. 27

List of figures ix

4.1 Context representation using the utterance embeddings where the utterance
structure is retained. Here previous 3 utternaces and future 3 utterances are used. 32

4.2 Context representation using the segment embeddings where the sentence struc-
ture is ignored. Context coverage ranges from the previous 100 words to future
100 words, with each segment of 20 words and 10 words overlap. 33

4.3 Context representation using the self-attentive segment embeddings where the
sentence structure is ignored. Context coverage ranges from the previous 30
words to future 30 words, with each segment of 30 words and no overlap. . . . 34

4.4 Two annotation vectors covering the previous 20 words 38
4.5 Two annotation vectors covering the future 20 words 39

List of tables

3.1 Sizes and durations of each set in the AMI meeting data 20
3.2 Sizes of each set in the penn-treebank data . 20
3.3 PPL for different kinds of LMs on penn-treebank. All LMs are trained on

in-domain data only. The vanilla RNN, GRU and LSTM all have 512D word
embeddings and 512D hidden states. both single (1L) and double layer (2L)
LSTMs are tested. 22

3.4 PPL for different kinds of LMs on AMI dataset. The vanilla RNN, GRU and
LSTM all have 256D word embeddings and 256D hidden states. λ is the
interpolation weight in Eq. 2.18. The training speeds are all recorded on air202
machine. 22

3.5 PPL for different kinds of context extractors on AMI. Average training speed is
measured on air202 machine. Each mini-batch contains 64 data streams with 12
BPTT steps. 24

3.6 WER break-down comparison between different RNNLMs on dev set. Acoustic
model trained using CE-criterion. (True) means utterance embeddings are
obtained using the true context. FC represents the fully-connected layer for
context extractor. 25

3.7 WER break-down comparison between different RNNLMs on AMI dev set.
Acoustic model trained using MPE-criterion. FC represents the fully-connected
layer for extractor. 26

3.8 WER break-down comparison between different extractors on dev set. Acoustic
model trained using MPE-criterion. FC represents the fully-connected layer
for extractor. Atten. refers to self-attentive strucutre and Hier. refers to the
hierachical LSTM structure. 26

4.1 Different training techniques and facts applied to the joint-training algorithm. . 35
4.2 PPL for joint-training with different techniques on AMI. Average training speed

is measured on air202 machine. Hyphen represents the same value as above.
Each mini-batch contains 64 data streams with 12 BPTT steps. 35

List of tables xi

4.3 PPL for joint-training with previous and future 5 utterances on AMI. Speed
measured on air202. Each mini-batch contains 64 data streams with 12 BPTT
steps. 36

4.4 WER comparison between different LMs on AMI dev set. Acoustic model
trained using CE-criterion. Joint training uses the best techniques. 36

4.5 PPL for joint-training with segments on AMI. Same mini-batch size and same
machine as before. segment length = context/segments+ overlap. e.g. ± 72
words with 8 segments and 18 overlap has length 144/8+18 = 36 words. . . . 37

4.6 WER comparison between different LMs on AMI. 37
4.7 PPL for joint-training with self-attentive segment embeddings on AMI. Same

mini-batch size and same machine as before. Penalty term scaling µ = 0.0001. 38
4.8 WER comparison between different LMs on AMI set. 39
4.9 PPL for different LMs on AMI dev set. Small refers to 256D LMs and large

refers to 512D LMs. Context coverage uses the best in the previous experiments. 40
4.10 WER for different LMs. Acoustic model trained with MPE criterion. +trigram

means interpolating with the trigram used in the first-pass decoding. 40
4.11 WER for different LMs. Acoustic model trained with CE criterion. 41

5.1 WER for LMs with or without error sampling on AMI dev set. 44

A.1 WER break-down comparison between different extractors on eval set. Acoustic
model trained using MPE-criterion. FC represents the fully-connected layer
for extractor. Atten. refers to self-attentive strucutre and Hier. refers to the
hierachical LSTM structure. 51

Chapter 1

Introduction

1.1 Overview of Language Models

Language modelling is one of the most critical components in various artificial intelligent systems
such as automatic speech recognition (ASR) systems, translation systems, and dialogue systems.
In particular, modern ASR systems calculate the posterior distribution of a word sequence
W = {w1,w2, ...,wn} given a sequence of acoustic observations O = {o1,o2, ...,oN} which can
be expanded using Bayes’ theorem as shown in Eq. 1.1.

Ŵ = argmax
W

P(W|O) = argmax
W

P(O|W)P(W), (1.1)

where P(O|W) is the likelihood of the observation which can be modelled using the acoustic
model, and P(W) is the prior distribution of the word sequence which is estimated using the
language model. The acoustic model is usually trained on audio data where the speech and
its word sequence labels are given, and the language model is trained on text data where a
large number of word sequences are available. Combining the acoustic and the language model
probabilities, the posterior probability of a word sequence can be calculated. The word sequence
with the highest posterior probability is chosen as the recognition result.

The language model (LM) computes the probability of a specific word sequence which can
be decomposed into word prediction probabilities. Traditionally, n-gram LMs which condition
the probability of the current word on a fixed number of previous words, have been widely used
over the decades. N-gram LMs can be constructed using counting-based methods which are
usually very fast. Hence these LMs are often used in the first-pass decoding stage, and is suitable
for lattice rescoring algorithm. However, n-grams suffer from both inefficient use of available
data known as the data sparsity problem, and very limited context dependency as it only takes
previous n−1 words into account.

1.2 Motivation and Proposed Approaches 2

More recently, recurrent neural network language model (RNNLM) is widely used to rescore
the hypothesis provided by the acoustic models. This type of LMs represents the history for
prediction using a fixed-length vector in a continuous space which will be updated recurrently
and used for each prediction step. Two common forms of variations of the RNNLM, the gated
recurrent units (GRU) and the long-short term memory (LSTM) structure are developed to
provide better long-term dependencies. With efficient training algorithms, RNNLM outperforms
the n-gram in both perplexities, a measurement of the LM on its own, and word error rates
(WER), a measurement of the ASR systems.

1.2 Motivation and Proposed Approaches

Although the introduction of RNNLMs improved performance over n-gram LMs via the
continuous-space representation, problems such as the error back-propagation algorithm and the
fixed dimensionality of hidden states still limit its long-term dependency. The back-propagation
algorithm still causes the gradient estimation to be vanishing or inaccurate after being propa-
gated for many steps. Besides, as the data is processed in proceeding order, the model tends
to memorise the nearer context much better than the further. Moreover, the fixed-length his-
tory representation inherently has limited expressiveness. Consequently, when combined with
acoustic models, these language models are usually used at a level of a single utterance or a
couple of utterances. On the other hand, the information across different utterances, such as topic
coherency and phrase repetitions in conversations, is also useful for estimating the probability
of the next-word. This information is either missed out by the RNNLM or globally captured
as auxiliary input features to the RNN through word frequency based methods, such as topic
and genre vectors in [6] and the adapted uni-gram cache model in [7]. Therefore, a flexible,
versatile and effective representation of the context across surrounding utterances is needed, and
is of particular interest for conversational transcription systems. Throughout this thesis, an
"utterance" refers to a "sentence" in a conversational transcription system.

In order to capture local context information and to further improve the efficiency of context
incorporation, a cross-utterance language model is proposed in this project. First, the information
of each surrounding utterance is encapsulated into a fixed-length vector known as the utterance
embedding. It is extracted using a standalone LM referred to as the first-level LM. A context
representation vector is extracted from those utterance embeddings. This context vector is then
used to adapt the main RNNLM which is referred to as the second-level LM, so that it helps the
prediction of the next word. Incorporation of such vectors provides local context information
which changes as the LM proceeds to the next utterance. Different utterance embeddings and
context vector extraction networks are proposed. Meanwhile, it is also believed that the joint-
training of the two-level LMs alleviates the criteria mismatch, hence different joint-training

1.3 Outline of the Thesis 3

schemes are implemented. Furthermore, to mitigate the dependency on the true context data, and
to incorporate the future context properly for ASR tasks, acoustic error sampling is introduced.

1.3 Outline of the Thesis

This thesis contains 6 chapters and is structured as follows.

• Chapter 2 provides the background knowledge of the language modelling task in detail, and
introduces RNNLM, its variants, its training algorithms, its adaptation and its application
in ASR systems.

• Chapter 3 focuses on the context vector extraction methods and the training algorithms
with fixed utterance embeddings.

• Chapter 4 introduces the joint-training algorithm for the cross-utterance language models
under 3 different data arrangements.

• Chapter 5 provides an error sampling technique during training.

• Chapter 6 concludes this thesis with future directions of the project.

Chapter 2

Language Modelling

This chapter contains an introduction to language modelling. It begins with the formulation of the
language modelling task and how language models (LMs) are evaluated. Then two commonly
used types of LMs will be described which are the n-gram language model and the neural
network-based language model (NNLM). In particular, the feed-forward NNLM, the basic form
of RNNLM and its variants, the gated recurrent unit (GRU) and the long-short term memory
(LSTM) will be explained. Attentions will also be paid to the training algorithms of RNNLMs.
Furthermore, the adaptation of LMs with auxiliary features and conditions will be explained,
followed by the description of LM interpolation methods. Finally, the application of LMs in
ASR tasks will be accounted.

2.1 Task Formulation

Language modelling is to compute the probability of occurrence for a given word sequence,
P(W). It is core to a wide range of speech and language tasks such as speech recognition,
machine translation and dialogue systems. Especially for speech recognition, it provides the
prior for the possible word sequences without observing acoustic features.

The joint probability of all the words in the sequence can be decomposed into cascading
conditional probabilities using the chain rule as shown in Eq. 2.1.

P(W) = P(w0,w1, ...,wN) =
N

∏
i=1

P(wi|wi−1, ...,w1,w0), (2.1)

where N is the total length of the word sequence, and w0 is always the symbol representing the
start of the sequence. Therefore, the task of computing the joint-probability can be transformed
into computing the word prediction probability given other words that the model has seen in this
sequence which is referred to as the history information. Different LMs have different ways to

2.2 N-gram Language Models 5

represent the history information, and the quality of the representation for the history information
significantly affects the performance of LMs.

The performance of LMs are usually evaluated by the perplexity. Given a word sequence of
length N, the perplexity (PPL) of the LM is shown in Eq. 2.2.

PPL = 2−
1
N log2(p(W)) = 2−

1
N ∑

N
i=1 log2(P(wi|wi−1,...,w1,w0)). (2.2)

A language model with lower perplexity is considered to provide more accurate word prediction
probabilities than the one with higher perplexity. Hence, PPL provides an important metric to
evaluate the quality of a language model on its own.

2.2 N-gram Language Models

Eq. 2.1 requires a full-history representation for the joint probability to be calculated, however,
the word prediction has much stronger dependencies in preceding words than in those in the
further history. Therefore, n-gram LM adopts the Markov assumption to truncate the number of
words in the history to n−1 words as shown in Eq. 2.3.

P(wi|wi−1, ,w1)≈ P(wi|wi−1, ,wi−n+1) (2.3)

Thus, each conditional probability can be estimated by counting the number of occurrences
of such n-word sequence normalised by the number of occurrences of such (n-1)-word history
sequence in the training corpus. Maximum likelihood estimation is used to train the LM.

The data sparsity problem and the n-th order Markov assumption are considered the two
major issues associated with n-gram LMs. Because the estimation is based on the count of
occurrences of partial word sequences in the training data, we need to have sufficiently large
counts to estimate the probability with a small variance. As the order n increases, the number
of possible partial sequences increases exponentially, so the occurrences become more sparse,
with some sequences not present in the training data assigned zero probability by the model. To
mitigate this problem, various smoothing methods have been applied to the probability estimation
such as Katz Smoothing [26] and Kneser-Ney Smoothing [27]. Smoothing of an n-gram LM
usually takes the discounting and back-off procedure. In particular for Kneser-Ney smoothing,
if an n-gram appears in the training data, it will be discounted by subtracting a value C < 1
known as absolute discounting. Otherwise, a smoothed maximum-likelihood estimation for a
lower order n-gram will be used to back-off the prediction. More details can be found at [30].
Kneser-Ney Smoothing will be used throughout this project.

In addition to the inefficient use of the history information in the data sparsity problem, the
n-th order Markov assumption by ignoring words prior to the (n-1)-th preceding also reflects its
limitations in capturing long-term dependencies within the sequence. The data sparsity issue is

2.3 Feed-forward Neural Network Language Models 6

mitigated by using the feed-forward NNLM, it is not until the introduction of the RNNLM has
the Markov assumption limitation been effectively addressed.

2.3 Feed-forward Neural Network Language Models

A feed-forward neural network, also known as multi-layer perceptron, is introduced in the context
of word-based language modelling. It retains the n-gram language model structure as only n-1
words are considered for prediction. The network architecture is shown in Fig. 2.1.

Softmax

wi-2

wi-1

wi-3

input layer
projection layer

hidden layer

shared weights

PFNN (wi |wi-3, wi-2, wi-1)

Fig. 2.1 A 4-gram Feed-forward neural network language model. The inputs are the previous 3
words represented by 1-of-K encoding, and are projected into a low-dimension vector with the
shared projection layer. The output is a probability estimation of the current word.

Each input word is encoded as a 1-of-K vector where K is the number of word in the
vocabulary (a list that contains all possible words), with 1 at the position of the word in the
vocabulary and 0 otherwise. This vector is projected down to a trainable lower dimensional
representation x j with the relationship in Eq. 2.4, known as the word embedding.

x j =Cw j, (2.4)

where C is the shared weight matrix. The 3 word embeddings are then concatenated into a single
vector x which is sent to the hidden layer shown in the following equation.

h = f (Wxx+b), (2.5)

where h is the output of the hidden layer, b and Wx are trainable parameters of this layer and f is
the non-linear activation function. Finally, the output layer transforms the hidden layer output

2.4 Recurrent Neural Network Language Models 7

into a vector of dimension K, the same size as the input, and convert it into a valid probability
distribution over the vocabulary V via the Softmax function shown in Eq. 2.6.

PFNN(wi|wi−1, ...,w0)≈ Softmax(zφ(wi)) =
exp(zφ(wi))

∑w∈V exp(zφ(w))
, (2.6)

where zφ(wi) is the i-th node of the final layer output. The parameters of the FNN including the
projection matrix can be trained efficiently by the error back-propagation algorithm which will
be described in detail in Sec. 2.4.2. One of the advantage of FNNLM is that the continuous-space
representation of the words addresses the data-sparsity problem to some extent. These word
embeddings allow the syntactic and semantic information of the words to be implicitly learned,
which is not in the n-gram case. However, the FNNLM does not increase the dependency on a
further history than a certain number of preceeding words.

2.4 Recurrent Neural Network Language Models

In order to address the dependency issue, RNNLM has been developed and widely used in
recent years, and has demonstrated its ability to incorporate the information from the complete
history in the sequence to predict the next word. RNNLM was first proposed in [1] where
a single layer RNN was used whose superiority over a 5-gram LM with KN-smoothing was
demonstrated. The work in [4] extended RNNLMs to use a Long-short term memory (LSTM)
architecture that enriched the history representation. Meanwhile, it was discovered in [3] that
further improvements could be achieved by linearly interpolating the RNNLM with n-gram LMs.
Moreover, the work in [5] enabled efficient GPU training of RNNLMs with sentence bunches,
and the toolkit in [8], in addition, supported faster training criteria such as noise contrastive
estimation and variance regularisation. These methods allow RNNLMs to be trained on much
larger corpora, and hence improve the performance evaluated by perplexity and also word error
rate (WER) in ASR tasks.

The following sub-sections will first analyse the structure and functionality of the basic
RNNLM. Then, the efficient training algorithm using spliced sentence bunches which exploits
the use of the GPU will be described. Next, two variants of the RNN: GRU and LSTM structures
will be introduced and their advantages will be discussed.

2.4.1 Basic RNNLM

The vanilla RNNLM model structure is illustrated in Fig. 2.2.

2.4 Recurrent Neural Network Language Models 8

RNN

Softmax

1-of-K
Encoding

wi-1 xi-1

hi-2

hi-1
PRNN (wi |wi-1, hi-2)

Fig. 2.2 Recurrent neural network language model which models the complete history with h in
a continuous space. Projection layer is omitted.

Same as in the FNNLM, the 1-of-K encoding of each word wi is converted into the word
embedding before it is involved in the recurrent structure. RNNLM models the conditional prob-
ability distribution using the complete backward history which is represented with a continuous-
space hidden state vector ht−1 of a fixed dimension. This history representation will be updated
and used recurrently when every next word is being predicted, with the updating equation for the
history representation (a.k.a. hidden state) shown in Eq. 2.7.

hi−1 = f (Wxxi−1 +Whhi−2 +bh), (2.7)

which is simply a fully-connected layer with two weight matrices for the word embedding and
the hidden state respectively, and with a non-linear activation function f . Thereafter, the updated
hidden state hi−1 containing the information of wi−1 is carried forward to the next prediction
step. The output layer is the same as FNNLM which produces an estimation of the probability
distribution using the Softmax function.

By using the history representation, the history for prediction is not limited to a fixed number
of words anymore, but depends on the expressiveness of the hidden state vector. However, the
fixed length of the history representation and the vanishing gradient problem caused by the
training algorithm in Sec. 2.4.2 limit the ability of the RNNLM to memorise more than a few
words. Therefore, variations of RNNLMs were developed to produce longer term dependencies
which will be discussed in Sec. 2.4.3.

2.4 Recurrent Neural Network Language Models 9

2.4.2 Training of RNNLMs

Because at each step the output of the network is a probability distribution over all words in the
vocabulary, the cross-entropy between the predicted distribution and the target distribution which
is 1 at the correct word and zeros otherwise, is used as the criterion for training. The form of the
loss function is shown in Eq. 2.8.

L(θ) =− 1
N

N

∑
j=1

∑
v∈V

Iv(w j)log(P(w j|w j−1,h j−2), (2.8)

where N is the size of the training set, and I is the indicator function. In order to use the first
order optimisation methods, the gradients of the RNNLMs are calculated using an extended
version of the error back-propagation algorithm, the back-propagation through time (BPTT) [32].
The essential idea of this approach is to treat the recurrent connection as a feed-forward one
by unfolding the computational graph by a certain number of steps. As the use of activation
functions such as sigmoid will produce a gradient less than 1, (e.g. less than 0.25 for sigmoid), and
multiplying many times due to unfolding will cause the gradient value to decrease exponentially.
This is known as the vanishing gradient problem. As the longer the gradient is being back
propagated, the smaller the value is, hence the long-term dependencies are limited by the
vanishing gradient problem. A vanished gradient is not only a waste of computational power, but
will also cause inaccurate estimation due to finite precision. Therefore, when using the BPTT
algorithm, it is a common practice to truncate to a fixed number of steps. The effect of BPTT
steps will be further discussed in the experiments.

<eos> word word word <eos> word word <eos> word word
word <eos> word word word word word <eos> word word

word <eos> word word word word word <eos> word word
word <eos> word word word word <eos> word word word

<eos> word word word <eos> word word <eos> word word

Fig. 2.3 Parallel processing of 5 sentence streams for efficient GPU training of the RNNLM.

For the first-order optimisation to be performed on large data sets, mini-batch update needs
to be used. In order to exploit the use of GPU parallel processing to achieve an efficient training
scheme, the whole corpus is split into streams to be processed at the same time. The data
arrangement is illustrated in Fig. 2.3.

2.4 Recurrent Neural Network Language Models 10

The training method above is referred to as the spliced sentence bunch method [5]. The
sentence boundaries are marked using <eos> which is treated as a word symbol and included
in the vocabulary. As illustrated above, 5 streams of sentences are processed in parallel with a
BPTT step of 6. For each mini-batch, a chunk in the red block (words at column 1 to 6) will be
fed into the RNNLM to generate the prediction, and by using the target which is in the block
shifted by one word to the right, gradients of the parameters are estimated. Then for the next
mini-batch, words at column 7 to 12 will be processed.

2.4.3 Gated Recurrent Units and LSTM Language Models

In order to provide long-term dependencies to the RNNLM, the adoption of the gated recurrent
units (GRU) [33] instead of vanilla RNN hidden layer alleviates the vanishing gradient problem
by adding multiple gating connections to form a more complicated network component structure.
A network gating is a vector, often output by a Sigmoid activation function, that acts as a
probabilistic gate on the network values. It is a widely used method to provide direct connections.
The commonly used GRU structure is illustrated in Fig. 2.4.

Gated Recurrent Unit [4]

xt

ht

h

f
t−1

ht−1xt

if

ht

io

ht−1

σ σ

+

x

f

t ht−1

xt

Recurrent unit Gated Recurrent Unit

14/38

Fig. 2.4 Gated recurrent unit which contains a forget gate and an output gate that provide gating
to both time and features. Figure taken from 4F10 lecture handout, university of Cambridge,
engineering department.

In the figure above, xt is the word embedding and ht is the hidden state. io is the output gate
and i f is the forget gate. The forward path equations are shown below.

i f = σ(W f
f xt +Wr

f ht−1 +b f), (2.9)

io = σ(W f
oxt +Wr

oht−1 +bo), (2.10)

h̃t = f(W f
hxt +Wr

h(i f ⊙ht−1)+bh), (2.11)

ht = io ⊙ht−1 +(1− io)⊙ h̃t , (2.12)

2.4 Recurrent Neural Network Language Models 11

where ⊙ denotes the element-wise product. All the weights and biases can be updated during
optimisation. The gating allows the model to preserve information through time by having the
forget gate activation close to 1. Therefore, the gradients can be kept at a reasonable level during
back-propagation, which empowers the model to learn longer-term dependencies.

Long-Short Term Memory Networks [9, 7]

t

xt

ht−1

ht

xt ht−1

ct f
h

f
m

xt ht−1

σ σ

σ

i

time delay

f

ii
io

ht−1x

16/38

Fig. 2.5 LSTM structure with a memory cell for richer expression of the history. Figure taken
from 4F10 lecture handout, university of Cambridge, engineering department.

In addition to adding gating to address the vanishing gradient problem, the long-short term
memory (LSTM) structure [34] further enriches the expressiveness of the history by adding a
memory cell. One of the commonly used LSTM structure is shown in Fig. 2.5. The memory
cell is represented by ct which will also be used recurrently as a part of the hidden states. The
equations for the gating units are shown below.

i f = σ(W f
f xt +Wr

f ht−1 +Wm
f ct−1 +b f), (2.13)

ii = σ(W f
i xt +Wr

i ht−1 +Wm
i ct−1 +bi), (2.14)

io = σ(W f
oxt +Wr

oht−1 +Wm
o ct +bo), (2.15)

where ii is the input gate with the same functionality as the other two gates. Then the updating
equations for the hidden states are shown in Eq. 2.16 and Eq. 2.17.

ct = i f ⊙ ct−1 + ii ⊙ fm(W f
c xt +Wr

cht−1), (2.16)

ht = io ⊙ fh(ct). (2.17)

By inspecting the form of the memory cell which contains a gated connection to the memory cell
of the last step, and another gated connection to the information of the current step, i.e. xt and
ht−1, the longer dependencies are thus established via those gate connections. The equation for
ht which is used to produce the predictive probabilities is effectively fetching information that

2.5 Adaptation of RNNLMs 12

are useful for the current prediction from the memory cell via the output gate and a non-linear
activation function.

Though LSTM structure contains much more parameters than the normal RNN structure, it
performs better in many cases such as language modelling. With proper software implementation
and training algorithms, it achieves a reasonable training speed on modern GPUs, and hence will
be used as one of the building block for the cross-utterance language models.

2.5 Adaptation of RNNLMs

Normally the training corpus for a language model is collected from a variety of sources with
different content, written or speaking form, genre or topic. The style of corpus and the context
can heavily influence words to be used as well as the meaning of the word. When applied to
unseen test data, mismatch arises in various aspects including speaking style and topic, which
degrades performance as a result. Therefore, RNNLM adaptation is an important technique to
mitigate the variation in genre, topic and speaker etc, and is very useful for practical application.

RNN

PRNN (wi |wi-1, hi-2)xi-1

hi-2

hi-1

vi-1

Fig. 2.6 RNNLM with additional information features as auxiliary inputs for LM adaptation.

One important method to perform RNNLM adaptation is to incorporate the informative
features as an auxiliary input. These features are usually concatenated with the word embeddings
to be fed into the hidden layer, and they will be fed into the output layer in some occasions as
well [31]. Fig. 2.6 illustrates the incorporation of the auxiliary input, v.

A range of auxiliary features have been investigated for RNNLM adaptation in some earlier
researches. For instance, morphological and lexical features in factored RNNLMs [15]; topic
information derived from latent Dirichlet allocation (LDA) models in [16]; personalized user

2.6 Language Model Interpolation 13

information such as demographic features exploited in [17]; utterance length information and
lexical features were used in [18].

More recently, genre information such as talk show or sci-fi program has been incorporated
for multi-genre broadcast data [6]. More sophisticated topic modelling has also be introduced
to model specific documents, including probabilistic latent semantic analysis (PLSA)[35], the
aforementioned LDA [36] and hierarchical Dirichlet processes (HDP) [37]. Furthermore, uni-
gram and fully-connected context modeling has also been proposed which biases estimation
probabilities and which various more locally with the change of context [7]. Furthermore,
DNN-based embedding features representing the surrounding context is proposed which adapts
the RNN layer as well as the bias of the Softmax layer [2].

2.6 Language Model Interpolation

Language model interpolation is widely used to combine multiple language models. Individual
language model is trained on corpus from different domains, hence may have advantages in
different aspects. These language models can be combined in test time. One commonly used
combination method is the linear combination shown in Eq. 2.18.

P(w|h) =
K

∑
k=1

λkPk(w|h), (2.18)

where K is the number of LMs to be combined and λk is the combination weight for system k.
The set of combination weights can be obtained using the EM algorithm on a held-out validation
set. This can be viewed as the update for a mixture model where the expectation step estimate the
mixture weights, λ ’s and the maximisation step optimises the auxiliary function which provides
a lower bound for the likelihood.

In this thesis, the interpolation is always between an RNNLM trained on in-domain data and
an n-gram LM trained on much larger data corpus, the interpolation is shown below.

P(w|h) = λPRNNLM(w|h)+(1−λ)Pngram(w|h). (2.19)

Hence instead of using the complicated EM algorithm, λ could be tuned as a hyper-parameter
on the held-out validation set manually to achieve the best performance on certain metric.

2.7 Application of Language Models in ASR

LMs are incorporated into speech recognition tasks via the rescoring process which combines
the score for each sequence from the acoustic model with the score from the language model.
The combination is performed by a weighted summation of the two scores which are both

2.7 Application of Language Models in ASR 14

log-probabilities, and hence it reflects the posterior probability in Eq. 1.1. Normally the language
model scale factor is tuned to find the best fit on the validation set. There are two ways to perform
this combination: the lattice rescore and the n-best rescore algorithms.

A word lattice is a compact graph containing possible paths during recognition where each
node in the graph is associated with time, word, acoustic score and language model score
information. Lattice rescoring is to find the best path in the graph. As the history representation
of the graph is complicated and hence RNNLM hidden state requires a lot of approximations,
lattice rescoring is more often used for n-gram LMs. On the other hand, n-best rescore is more
often used with RNNLMs. N-best rescoring re-ranks the shortlist of n most likely utterances
based on the combination of language model score and acoustic model score for each utterance.
The standard n-gram LMs are often used in the decoding to generate the lattices, and the n-best
shortlist is extracted from the lattices. Then, the RNNLM, often linearly interpolated with an
n-gram LM trained using much larger corpus, provides the LM score for the utterance which is
the log-probability of the sequence, P(W). The total score for re-ranking is shwon below.

TotalScore = AcousticScore+ γ ×LMScore, (2.20)

where γ is the hyper-parameter that can be tuned for each language model. The best utterances
are then selected from the n-best list according to the total score to form the final hypothesis
which will be scored by the Levenshtein distance.

Chapter 3

Cross-Utterance Language Models

In order to capture the context information and use it to achieve the adaptation of the RNNLM,
the cross-utterance LM is proposed. The cross-utterance LM uses a two-level architecture where
each level contains an individual RNNLM. Utterance embeddings are extracted using the first-
level LM for all the surrounding utterances, and these embeddings are then used to extract the
context representation. The second-level LM resembles the structure for LM adaptation where
the context representation is used as an auxiliary input feature to the hidden layer only. In this
chapter, the two-level model architecture will be described and analysed in detail, together with
context vector extraction mechanisms. Training algorithms with fixed utterance embeddings will
be provided. Thereafter, experimental setup which will be applied to all experiments throughout
the thesis will be given, followed by results and discussions on the strength and weaknesses of
different model architectures.

3.1 Two-Level Language Model Architecture

RNN

uj+m

uj�n

Context
Extractor

1st Level
RNNLM

hi-2

hi-1
wi-1

vj

PRNN (wi |wi-1, hi-2)

Fig. 3.1 The two-level cross-utterance language model where both levels are RNNLMs

3.2 Context Vector Extraction Networks 16

The structure of the cross-utterance language model is shown in 3.1 where both levels employ
the RNNLM with an LSTM structure. The first-level LM extracts the utterance embeddings
u j+k where the subscript j is the index of the current utterance and m, n are the index shift from
the current utterance. In order to avoid knowing the true label before prediction, the current
utterance embedding is excluded (i.e. m,n =+1,+2, ...). Then these utterance embeddings are
fed into a context extractor which produces the context vector v j. There are different network
structures of the extractor such as feed-forward, recurrent or with attention mechanism, which
will be discussed in the next section. The second-level RNNLM is then adapted to the context
vector, and is trained using normal RNNLM training algorithms.

The context representation varies as it moves to the next utterance, but this variation is
local and relatively smooth as most of the utterance embeddings still remain as the input to
the extractor. Therefore, this architecture is able to capture continuously varying local context
information. Besides, the neural networks use the local context data in a more efficient way
than the unigram adaptation method. It also provides a more direct access to the surrounding
utterances which ameliorates the degradation of gradient estimation for long back-propagation
steps. Furthermore, the context representation enriches the expressiveness of the history as it
increases the dimension of the representation space.

3.2 Context Vector Extraction Networks

Generally, the concatenation of all utterance embeddings is often too long to be efficiently used
for language model adaptation, especially when it is trying to cover a wider range of context.
Therefore, context extraction mechanism is adopted which integrates the utterance embeddings
into a compact representation. The integration method here leverages the universal function
approximator nature of neural networks to achieve a trainable and flexible transformation. The
most straight forward way for such extractor is to use a fully-connected layer which directly
maps the concatenated utterance embeddings to a lower dimensional representation space.
Moreover, self-attention mechanism which provides dynamic combinations over all the utterance
embeddings is also an alternative for the context extractor, similar to the one in [14]. In order
to incorporate the sequential information, a hierarchical RNN can be applied by feeding the
utterance embeddings to another RNN in their original order.

To begin with, the fully-connected layer context extraction takes the form in Eq. 3.1.

v j = f (Wvc j +bv), (3.1)

where cT
j = [uT

j−n, ...,uT
j−1,u

T
j+1, ...,u

T
j+m] is the concatenation of the utterance embeddings. The

fully-connected layer is a fast, simple and effective way to extract the context vector.

3.2 Context Vector Extraction Networks 17

Instead of the fixed transform layer, the multi-head self-attentive linear combination of the
utterance embeddings is also adopted. As different utterances may have different influence to the
context vector, which mainly depends on the content of these utterances, the self-attentive layer
is introduced to achieve a input-dependent dynamic linear combination. The annotation matrix A,
computed from the input vectors, provides the combination weights. Each column of the annota-
tion matrix is an annotation vector which gives a set of scaling factors that weights the importance
of each input before summing them. Specifically, if the input context covers a range of m+n = T
utterances, the utterance embeddings form a T ×n matrix C j = [u j−n, ...,u j−1,u j+1, ...,u j+m]

T

where n is the dimension of each embedding, the annotation matrix can be calculated using
Eq. (3.2) and applied to the inputs as in Eq. (3.3)

A j = Softmax(tanh(C jW1)W2), (3.2)

E j = AT
j C j, (3.3)

where E j (h×n) is the output and A j (T ×h) is the h-head annotation matrix for utterance j. A j

is generated by passing the input matrix through two fully-connected layers with weight matrices
W1 and W2 respectively, and the Softmax is performed column-wise to ensure each annotation
vector sums to one. Moreover, when a multi-head self-attentive layer is used (i.e. h > 1), to
encourage different heads to extract dissimilar information, a penalty term in Eq. (3.4) is added
to the cross-entropy loss function during training [13].

P = µ||AT
j A j − I||2F = µ

(h

∑
i
(aT

i ai −1)2 +
h

∑
i,k,i̸=k

(aT
i ak)

2
)
, (3.4)

where ai are the annotation vectors for, I is the identity matrix and || · ||F denotes the Frobenius
norm. The degree of influence of this term is adjusted by µ . As all terms in Eq. (3.4) are
non-negative, minimising the cross terms, (aT

i ak)
2, encourages the annotation vectors to be

orthogonal, while minimising the diagonal terms (aT
i ak −1)2 encourages the annotation vectors

to have fewer non-zero terms, ideally being one-hot vectors. Therefore, the effect of the penalty
term will give high weights on different but few terms in the annotation vectors.

The multi-head output matrix E j will then be reshaped into a vector, E j,reshape = [eT
1 ,e

T
2 , ...,e

T
h],

where ei denotes each column of the output matrix. Then again transformed using a fully-
connected layer to get a more compact representation as in 3.5.

v j = f (WvE j.reshape +bv), (3.5)

To further exploits the flexibility of the attention mechanism, the generation of the annotation
vectors could also take the current word embedding into account. This is implemented by
appending the current word embedding to each of the utterance embeddings to be combined.

3.3 Training with Fixed Utterance Embeddings 18

After combination, the word embedding part will be removed from each output head and the
rest will be transformed to the context vector. Furthermore, this network structure was originally
proposed in [10] for utterance embeddings extraction, hence it will also be used for utterance
embedding extraction methods in the later sections.

Unless positional information is explicitly added into the embeddings, two extraction methods
mentioned above are not exploiting the sequential order of the utterances. Though it still remains
disputable whether the positional information is better captured using attention or recurrent
structure, hierarchical RNN structure has been proposed recently in many systems such as the
document modelling system in [11] and in end-to-end ASR systems in [12]. The context extractor
RNN is shown in Fig. 3.2 where two separate RNNs (LSTMs in this project) are used for the
previous and the future utterances respectively.

uj-n uj-n+1 uj-1

vj-

uj+1 uj+2 uj+m

vj+
vj

h+0 h+1 h+m-1

h-0 h-1 h-n-1

Fig. 3.2 Hierarchical RNN for context vector extraction

The sequential information could also be incorporated in the attention mechanism by using
several extra bits representing the relative position. The three different extractor structures could
also be combined. For example, self-attentive combination could also be used to combine the
hierarchical RNN output at each step. Last but not least, the extraction networks will be jointly
optimised with the second-level RNNLM.

3.3 Training with Fixed Utterance Embeddings

As joint-training of the two-level LM requires more complicated data arrangements, algorithms
as well as optimisation strategies, the next chapter is dedicated to the description of the joint-
training. As a starting point, training of this cross-utterance LM follows a two-stage pipeline

3.4 Experimental Setup 19

where the first-level LM parameters which are trained in advance, are fixed while the second-level
LM is being optimised.

In the first stage, a standalone LSTM-LM is trained on the text data until convergence.
utterance embeddings are then obtained by forward propagating each utterance through this
trained model, and store the memory cell at the end of each utterance since the memory cell
provides richer information of the history as analysed in Sec. 2.4.3. In the second stage, the
LSTM-LM is trained on the same text using the training data arrangement mentioned in 2.4.2.
Besides, each word in the text is associated with an utterance index. Therefore in addition to
the word index data chunk, a chunk of the same size is created which contains the index of
the utterance each word belongs to. Next, the context associated to each word is obtained by
applying the context shift which is a set configured manually (e.g. {-2, +2}). The utterance
embeddings are then fetched and arranged according to the utterance indices, and will be sent
to the context extractor. Fig. 3.3 illustrates this process. With this arrangement, the utterance
embeddings can be easily processed under tensor operations, and it is also convenient to interact
with the chunk of word embeddings.

<eos> word word word <eos> word word <eos> word word
word <eos> word word word word word <eos> word word

12 12 12 12 13 13 13 14 14 14
 25 26 26 26 26 26 26 27 27 27

[u10 u14] [u10 u14] [u10 u14] [u10 u14] [u11 u15] [u11 u15] [u11 u15] [u12 u16] [u12 u16] [u12 u16]

sentence indices

{-2 +2} context shift

 [u23 u27] [u24 u28] [u24 u28] [u24 u28] [u24 u28] [u24 u28] [u24 u28] [u25 u29] [u25 u29] [u25 u29]

v12 v12 v12 v12 v13 v13 v13 v14 v14 v14

v25 v26 v26 v26 v26 v26 v26 v27 v27 v27

context extractor

Fig. 3.3 Flowchart illustration of the batch arrangement for the training with fixed utterance
embeddings. ui are utterance embeddings extracted using the first-level LM

3.4 Experimental Setup

3.4.1 Data

Different language models are tested on penn-treebank (PTB) and the Augmented Multiparty
Interaction (AMI) corpus. The AMI corpus is also used to test the performance for LM rescore.

3.4 Experimental Setup 20

PTB which is one of the standard dataset for LM test only, contains paragraphs taken from the
Wall street journal. The vocabulary size of this dataset is 10000. The AMI dataset contains 100
hours of recorded meetings where there are typically 4 to 5 speakers in each meeting. The text
source is the manual transcription from these meetings, which has a vocabulary size 13077. The
sizes of AMI and PTB are shown in Table. 3.1 and Table. 3.2.

set name train dev eval

number of words 911K 108K 102K
duration 80hrs 10hrs 10hrs

Table 3.1 Sizes and durations of each set in the AMI meeting data

set name train validation test

number of words 930K 73K 82K

Table 3.2 Sizes of each set in the penn-treebank data

3.4.2 Models

N-gram LM, different RNNLMs and the cross-utterance LM will be compared in the following
experiments, where the n-gram LM and the RNNLMs will be used as baselines. In particular,
a counting based 4-gram LM is constructed using only the in-domain data with Kneser-Ney
smoothing [19]. Different types of RNNLMs are implemented using PyTorch which is an open
source python library designed for deep learning. Then, a single-layer vanilla LSTM LM is
chosen as the baseline LM to compare with the cross-utterance LM. The first-level LM in the
cross-utterance LM is configured in the same way as the standalone LSTM, with an equal
or smaller size. The embeddings and hidden states of the second-level LM are of the same
dimension as the standalone LSTM LM for fair comparison. All RNNLMs are trained using
spliced sentence bunch scheme, with stochastic gradient descent (SGD) optimisation algorithm.
Moreover, in order to be consistent between training and rescore which processes utterances
separately, hidden states are reset to 0 (i.e. the all-zero vector) at the sentence boundaries which
are marked with the "<eos>" symbol.

3.4.3 Rescoring Pipeline

In order to compare the performance in ASR tasks, n-best rescore is implemented. The acoustic
model uses the ResNet-TDNN [20] with 4 ResNet blocks implemented in HTK 3.5.1 and PyHTK

3.5 Results and Discussions 21

[22]. The cross-entropy (CE) criterion and the minimum phone error (MPE) [21] criterion are
used to train the acoustic model. After the word lattice generated, the lattice is rescored using a
tri-gram to produce a 50-best list where n-best rescore is performed.

For vanilla LSTM LM, the LM score is obtained by forwarding each utterance in the list
through the model and sum up the cross-entropy for each word in the sentence. Then, after
summing up the acoustic model score and the LM score, utterances with the best combined
score are written out to form a 1-best list. For the cross-utterance LM, the 1-best list generated
using the vanilla LSTM is processed again to obtain the utterance embeddings based on the
hypotheses, and then the second-level LM is run on the 50-best list with these embeddings. As
before, utterances with highest combined score will be used to form the 1-best list.

3.4.4 Evaluation Metrics

The evaluation metric for LMs on their own is the perplexity (PPL) introduced in 2.1. Specifically
for RNNLM, if the cross-entropy is calculated with base 2, then the PPL for the test set can be
expressed as follows.

PPL = 2−
1
N ∑

N
i=1 CEi, (3.6)

where CEi is the cross-entropy loss of the i-th word prediction. Hence it can be easily obtained
by averaging the negative cross-entropy over the entire test set.

The performance of the LM in ASR tasks is measured using the word error rate (WER).
WER is calculated by comparing the reference (correct sentence) and the hypothesis (predicted
sentence). Two sentences can be aligned with dynamic programming for string alignment to
minimise the Levenshtein distance which is shown in Eq. 3.7.

WER =
S+D+ I

N
×100%, (3.7)

where S, D and I are the substitution, deletion and insertion error respectively. Specifically,
1-best hypotheses obtained using the LMs are scored against the reference transcription using
the NIST Sclite scoring tool. In addition to the WER, sentence error rate (SER) (No. of incorrect
hyp-ref pair divided by total number of hyp-ref pairs) is also provided by this tool.

3.5 Results and Discussions

3.5.1 LM Perplexity Comparison

To begin with, individual LM performances measured using PPL on PTB dataset for 4-gram LM,
basic RNNLM, GRU and LSTM LM are compared in Table. 3.3.

3.5 Results and Discussions 22

LMs 4-gram LM basic RNN GRU LSTM (1L) LSTM (2L)

dev 156.4 142.9 126.3 103.8 96.7
eval 148.9 133.4 126.3 97.5 91.2

Table 3.3 PPL for different kinds of LMs on penn-treebank. All LMs are trained on in-domain
data only. The vanilla RNN, GRU and LSTM all have 512D word embeddings and 512D hidden
states. both single (1L) and double layer (2L) LSTMs are tested.

Spliced sentence bunches with 12 BPTT steps and 64 batch sizes are used to train these neural
networks. Shown from the table above, basic RNNLM provides a relative 9% improvement
over the 4-gram LM. GRU LM which has much slightly more parameters gives another 10%
relative improvement over the basic RNNLM. Finally, LSTM LM gives the best performance
over different types of language models which is 30% better in perplexity relative to GRU LM.
To further corroborate that the improvements are consistent, these LMs are also tested on the
AMI dataset shown in Table. 3.4.

LMs Dev Eval Average Training Speed

4-gram LM 102.8 88.4 N/A
basic RNN 98.8 83.4 17ms/batch

GRU 81.9 69.1 20ms/batch
LSTM (1L) 71.4 63.3 21ms/batch

LSTM (1L)+4-gram (λ = 0.8) 70.1 62.1 N/A

Table 3.4 PPL for different kinds of LMs on AMI dataset. The vanilla RNN, GRU and LSTM all
have 256D word embeddings and 256D hidden states. λ is the interpolation weight in Eq. 2.18.
The training speeds are all recorded on air202 machine.

Consistent improvements are found by using LSTM LM, and the training speed of the LSTM
model is reasonable, with only 18% relatively slower than the basic RNN model. However,
as it uses much more space on the GPU than the RNN, and when the size of LSTM becomes
larger, training speed decreases more significantly than the RNN model. Additionally, further
improvements are found by interpolating the LSTM LM with the 4-gram LM. The interpolation
weight λ is tuned manually and the best value is found at 0.8.

One of the important factor that influences the long-term dependency is the number of BPTT
steps. In order to determine the best BPTT step for future expriments, the PPL against BPTT
steps for LSTM LM is plotted in Fig. 3.4.

3.5 Results and Discussions 23

Fig. 3.4 PPL variation against BPTT steps on AMI. The LSTM LM uses 256D hidden states and
256D word embeddings. The green line represents the LSTM with sentence boundary resetting,
and the blue line represents the one without resetting.

Under non-resetting scheme where the hidden state is carried on to the next utterance at each
sentence boundary, a decrease in PPL is found until around 60 steps. This indicates that the
gradient calculated through LSTM itself has the ability to influence around 60 words, and within
60, the longer the BPTT is, the better the long-term dependencies are. However, this reaches a
plateau after 60 words and increasing the number of BPTT steps only marginally improve the
PPL. Finally for very large BPTT step, PPL becomes worse as gradient estimation is inaccurate
and the SGD algorithm is also hard to be effective on AMI corpus. On the other hand, with reset
the plateau is reached at a much smaller BPTT step number as it is also affected by the average
length of utterances. Therefore, for the resetting scheme, 12 BPTT step is used while for the
non-resetting scheme. 64 BPTT step is used.

PP
L

60.00

65.00

70.00

75.00

80.00

LSTM Dimensions
256 512 1024

66.5
6868.6 68.6068.60

71.20

Vanilla LSTM
Cross-Utterance LSTM

PP
L

50

55

60

65

70

LSTM Dimensions
256 512 1024

59
60.461.3 61.261

63

Vanilla LSTM
Cross-Utterance LSTM

Fig. 3.5 PPL variation against LSTM size on AMI. Also comparison of the vanilla LSTM and
the cross-utterance LM. Sizes on the x-coordinate refers to both the hidden states and the word
embeddings. Context ranges from -3 to +3 utterances.

3.5 Results and Discussions 24

The first experiment with the cross-utterance LM uses the fully-connected layer as the context
extractor. The context covers a range from previous 3 utterances to the future 3 utterances, and
by varying the size of the LSTMs, PPL variations is shown in Fig. 3.5. The context vector is
always kept the same size as the word embedding in this experiment. Similar to the effect of
increasing the number of layers, by widening the layer of the LSTM, improvements are found in
PPL. These improvements are consistent with different network sizes. For faster experiments
and suitability of the size to the size of the training corpus, 256D LSTM will be used.

Next, different extractors are compared. As the fully-connected layer can not be too wide to
cover many utterances, only previous and future 3 utterances are used to perform this experiment.
The context coverage for the other two extractors ranges from previous 7 and future 7 utterances.
The same first-level LM is used which is the 256D LSTM, and the final context vector is
128-dimensional for all three extractors. PPL results for cross-utterance LMs with these three
extractors are shown in Table. 3.5

LMs Dev Eval Average Training Speed

LSTM (1L) 71.4 63.3 21ms/batch
fully-connected 68.6 61.3 35ms/batch
Self-attention 68.3 60.9 51ms/batch

hierarchical LSTM 68.0 60.6 48ms/batch

Table 3.5 PPL for different kinds of context extractors on AMI. Average training speed is
measured on air202 machine. Each mini-batch contains 64 data streams with 12 BPTT steps.

Note the training speed does not include the processing time for data arrangements which
will take another 3 minutes to load the utterance embeddings at the start of training. Taking that
into account, there are 1200 mini-batches in the AMI meeting corpus, hence the total time for
training one epoch is around one minute for the cross-utterance LM.

On LM performance only, all cross-utterance LMs demonstrated improvements over the
vanilla LSTM. The hierarchical LSTM extractor performs marginally better (rel. 5%) than the
other two extractors (rel. 4% and 4.5% respectively), and the fully-connected layer extractor has
the fastest training speed. It is also worthwhile to mention that, the fully-connected layer used
for extraction, as well as to map the other extractor outputs to a lower dimensional space, use
rectified linear unit (ReLU) activation function. Other activation functions have been tested such
as Sigmoid and Tanh, but ReLU offers a much better result than the others.

Before moving on to the comparison of WER, the negative log-probability is plotted for
several example utterances to demonstrate the discrepancy between different LM predictions
in Fig. 3.6. The vanilla LSTM, vanilla LSTM with utterance-level shuffling before the start of

3.5 Results and Discussions 25

each epoch, and the cross-utterance LSTM with fully-connected extractor are used. The vanilla
LSTM gives similar performance in PPL with and without data shuffling.

Fig. 3.6 Negative log-probability from different LM predictions for example utterances.

In general, higher probabilities (lower height in the figure shown) appears at more frequent
words such as "TO" or "<eos>", and LM gives lower probabilities for less frequent words. Also
for short utterances, vanilla LSTM and cross-utterance LM give very similar predictions, while
for longer utterances, the cross-utterances gives higher probabilities.

3.5.2 WER with N-best Rescore

In order to see if the performance improvements in PPL can be transferred to the reduction
in WER, a 50-best list for the dev set obtained from the first-pass decoding with a tri-gram is
rescored with different LMs. The WERs using acoustic model trained with CE criterion are
shown in Table. 3.6 and WERs using MPE criterion are shown in Table. 3.7.

RNNLMs Substitution Deletion Insertion Sentence Error WER

tri-gram 14.9 7.0 5.0 61.0 26.9
vanilla LSTM 12.5 6.5 4.5 56.7 23.5

cross-utt. FC 12.4 6.6 4.4 56.6 23.4
cross-utt. FC (True) 12.4 6.4 4.5 56.5 23.3
oracle (HResults) 8.3 3.5 2.4 35.6 14.2

Table 3.6 WER break-down comparison between different RNNLMs on dev set. Acoustic model
trained using CE-criterion. (True) means utterance embeddings are obtained using the true
context. FC represents the fully-connected layer for context extractor.

3.5 Results and Discussions 26

RNNLMs Substitution Deletion Insertion Sentence Error WER

tri-gram 13.5 8.0 4.1 59.2 25.7
vanilla LSTM 11.1 8.0 3.7 55.6 22.8

cross-utt. FC 11.0 8.0 3.6 55.5 22.6
cross-utt. FC (True) 11.0 7.9 3.6 55.5 22.5

CUED-RNNLM 11.6 8.0 3.8 56.9 23.4
Kaldi* N/A N/A N/A N/A 22.8

Table 3.7 WER break-down comparison between different RNNLMs on AMI dev set. Acoustic
model trained using MPE-criterion. FC represents the fully-connected layer for extractor.

Note in Table 3.6, the oracle value is obtained using HResult instead of Sclite which refers
the best result that can be achieved with this 50-best list. Also in Table 3.7, CUED-RNNLM
uses the same size as the vanilla LSTM, and rescores on the same 50-best list. Kaldi numbers
are taken from [23] which is rescored based on a different acoustic model. The language model
scale factor µ is tuned and fixed to be 16 which is proved to be the most suitable value for
all different RNNLMs in PyTorch implementation. Comparing the numbers across the two
tables, using sequence discriminative training criterion reduces the error rate by 0.6 to 0.7 in
absolute value. Consistent improvements have been found in WER for cross-utterances LMs
with fully-connected layer as the context extractor.

In Table. 3.6, using cross-utterance LM with hypothetical utterances as context reduces the
WER by 0.1 in absolute value, and using the true context gives a further 0.1 absolute reduction.
The true context slightly affects the WER, but as the difference is not very large, the utterance
embeddings are relatively robust to the acoustic errors if the utterance embeddings are not jointly
trained with the second-level LM. In Table. 3.7, similar improvements are also found, and the
PyTorch implementation of LSTM LM outperforms the CUED-RNNLM results, and achieves a
similar WER as that achieved by Kaldi.

RNNLMs Substitution Deletion Insertion Sentence Error WER

vanilla LSTM 11.1 8.0 3.7 55.6 22.8
cross-utt. FC 11.0 8.0 3.6 55.5 22.6

cross-utt. atten. 11.2 7.8 3.7 55.4 22.7
cross-utt. hier. 11.3 8.0 3.6 55.7 22.9

Table 3.8 WER break-down comparison between different extractors on dev set. Acoustic model
trained using MPE-criterion. FC represents the fully-connected layer for extractor. Atten. refers
to self-attentive strucutre and Hier. refers to the hierachical LSTM structure.

3.5 Results and Discussions 27

Furthermore, experiments are performed on different extraction networks as well which is
shown in Table. 3.8. Inferred from the results, the best WER is achieved by the fully-connected
layer even though the hierarchical LSTM has the best PPL. The hierarchical LSTM has the
highest WER which does not match its low perplexity. This is probably because it over-fits
on the true context, and hence experiments should be done on rescoring with the true context,
which will be left for future investigations. However, the sentence error rate is higher for the
fully-connected extractor than that for the self-attentive extractor. Results on the eval set are
shown in Table A.1 in Appendix A.

The final experiment with fixed utterance embeddings is to investigate the influence of context
coverage on PPL and WER, and hence to choose a suitable range of context. As the WER only
changes at 0.1 level, the PPL is plotted against different context coverage. The self-attentive
extractor and the fully-connected extractor are plotted as shown in Fig. 3.7.

Fig. 3.7 PPL variation against context coverage on AMI. 0 represents no context which is the
baseline vanilla LSTM LM. -3 +3 represents previous 3 and future 3 utterances are used.

Inferred from the plot below, the best performance is achieved when 5 utterances from the
past and the future are used for both extractors. The fully-connected layer is limited by the width
of that layer when the context coverage becomes large. It can mitigated using TDNN structure
[38] which uses fully-connected layers in a dilated way.

3.5.3 Summary

The main findings from the experiments can be summarised as follows.

• Consistent improvements in PPL are found by using the basic RNNLM instead of the
n-gram model. Further improvements are obtained using LSTM structure.

• Interpolation of the LSTM LM with a 4-gram LM produces better PPL than using LSTM
alone. The interpolation weight can be manually adjusted.

• The cross-utterance LMs with different context vector extraction networks outperforms
the vanilla LSTM model in PPL.

3.5 Results and Discussions 28

• The hierarchical LSTM structure achieves the lowest PPL.

• Improvements are also achieved in WER when RNNLM is introduced to replace the
n-gram LM. WER is also improved by using the context vector extracted from either a
fully-connected layer, a self-attentive layer and a hierarchical LSTM structure.

• The hierarchical LSTM with the best PPL obtains the worst WER among different extrac-
tors. Fully-connected layer performs the best in WER.

• Suitable context coverage is obtained for fully-connected and self-attentive extractor.

Chapter 4

Joint-training of Cross-Utterance
RNNLMs

Joint-training refers to the process of optimising different components in a deep neural network
system under the same criterion. It requires all parameters in different components to be updated
during training instead of the two-stage implementation in the previous chapter. Joint-training
is usually used to mitigate the criteria mismatch when a task is split into many stages. In
this case, the training of the first-level LM is to predict the next word rather than extracting a
better utterance representation. However it is the utterance representation that is used in the
second-level LM. While the second-level LM is trying to learn how to extract useful information
from the context, the first-level LM is also desired to learn how to provide such information.
Therefore, joint-training algorithm design is necessary to the two-level cross-utterance LM in
order to get further improvements.

The joint-training algorithm design is detailed in this chapter. To begin with, the joint-training
algorithm is described with particular attention to implementation details and training tricks.
Then, under the joint-training framework, 3 different types of context arrangements are used
to extract context information with different context extraction networks. Experiments are
performed on the AMI meeting dataset.

4.1 Joint Training Algorithm and Implementation Details

The training data arrangement for the second level still follows the spliced sentence bunch
arrangement. As before, for each chunk of data, a copy that contains the utterance indices
associated with each word in the chunk is produced. During the data preparation stage, an
utterance hash table is constructed for each data file which can be indexed very fast. Then, when
processing a specific chunk, all utterances that will be used for context vector will be collected
from the utterance hash table, and will be forwarded using the first-level LM to get the utterance

4.1 Joint Training Algorithm and Implementation Details 30

embeddings. These utterance embeddings are used for the second-level LM as before. Because
gradients from the second-level LM will accumulate for each utterance embedding every time
this embedding is used, gradients can be back-propagated to the first-level LM via the gradient
tensor of each utterance embedding.

Algorithm 1 Joint Training Algorithm
Load pre-trained first-level LM and randomly initialise second-level LM
Initialise learning rate, gradient clip, dropout rate for both LMs separately
for file in training data files do

Read file in and convert to a word index tensor: training data
Fill in the hash table of utterances: utterances
Assign utterance index to each word
Expand utterance index to get context set for each word
Split the training data into chunks (mini-batches)
for chunk in training data do

Collect indices of utterance embeddings needed in chunk
Clear the first level LM parameter gradients
Initialise the hash table of embeddings: embeddings
for index in indices do

Initialise the first-level LM hidden states
Forward the first-level LM with utterances[index]
Store final hidden state into embeddings[index]

end
Initialise auxiliary_input tensor
for word in chunk do

Get utterance indices associated to word
Fill the auxiliary_input[word] with embeddings[indices]

end
Clear the second level-LM parameter gradients
Forward the sencond-level LM with chunk and auxiliary_input
Calculate the cross-entropy loss
Calculate gradients for both LMs
Update the second level LM parameters
Update the first level LM parameters

end
end

As it is not an off-the-shelf algorithm, a lot of adjustments and optimisation tricks have been
tried and incorporated into this training algorithm. There are alternatives in three parts in the

4.1 Joint Training Algorithm and Implementation Details 31

above algorithm that will be discussed in this section: the choice of utterance embeddings, the
updating scheme and the pre-training for the first-level LM.

There are two choices of utterance embeddings in general if the first-level LM uses the LSTM
structure. One is the memory cell which acts like the memory in a computer, and another is
the output hidden vector which decide what to fetch from the memory and what to write to
the memory cell to make the prediction. In fixed embedding training algorithm, the memory
cell is used as the utterance embedding since it captures the most history information. The
extractor takes over the responsibility to learn how to extract useful information. However, if
the two LMs are jointly trained and hence the output hidden vector can be jointly optimised,
it is better to leverage the design of the LSTM structure and to train the output hidden vector
to get utterance representations from the memory. Then, if the concatenation of all the output
hidden vectors is too large, a simple linear transformation could be used to map them down to a
compact representation which is used as the context vector. To further avoid the bias of these
output hidden vectors towards nearer words, not only the final but also the middle output hidden
vector in an utterance could be used.

This system contains two parts that are used for different tasks, and the first-level LM has
much more samples per update than the second-level LM. Therefore, in order to better optimise
both networks, two networks use different set of hyper-parameters such as learning rate, dropout
and weight decay. Furthermore, the number of samples seen by the first-level LM might be
different from batch to batch as the number of utterances and utterance lengths may be different.
The gradient is thus accumulated for several epochs and then update so that the number of
samples per update is roughly constant. Last but not least, interleaved training which has been
used for multi-task learning is also adopted in this task for the first several epochs. This means
one LM parameters are fixed while the other one is being updated. This is necessary when
pre-training of the first-level LM is applied.

Pre-training of neural network is widely used for better model initialisation, and the pre-
training followed by fine-tuning pipeline has been gradually popular in LM related researches
such as the word embeddings in BERT [24]. It refers to the process of training the model on some
tasks, and then take the parameters from the trained model as the initialisation for another task.
In this case, the first-level LM can be trained for 1 or 2 epochs on language modeling task, and
take its parameters to initialise the cross-utterance LM. When joint-training the two-level LM,
the pre-trained parameters are firstly fixed for one or two epoch for the second-level LM to be
reasonably good to use the information provided by the first-level. This interleaved training will
last for 3 to 4 epochs until both networks are reasonably good, and then they will be optimised
(fine-tuned) simultaneously.

4.2 Context Arrangements 32

4.2 Context Arrangements

The algorithm described in the previous section is implemented with the sentence structure
retained, but it can be generalised to many context arrangements. This section will discuss 3
different context arrangement methods that this training algorithm with hash tables can adopt.
The first one retains the sentence structure, and the other two ignores the sentence structure but
looking at a number of words surrounding the current utterance.

4.2.1 LSTM-based Utterance Embeddings

This data arrangement, referred to as the utterance embeddings, and its training strategies have
been discussed in previous section. The illustration of generating the context vector using these
utterance embeddings is shown in Fig. 4.1.

Sentence {-3}
Sentence {-2}
Sentence {-1}
Sentence {+1}
Sentence {+2}
Sentence {+3}

First-level LSTM

output hidden vector(s)

Context
Extractor

Context vector

Fig. 4.1 Context representation using the utterance embeddings where the utterance structure is
retained. Here previous 3 utternaces and future 3 utterances are used.

The context extractor could be a simple linear layer or a self-attentive layer. The most
significant advantage of this setting is that it retains the sentence structure. Each embedding
contains the information of one single complete utterance without mixed meanings from other
utterances such as the one introduced next. On the other hand, the biggest problem with this
training scheme is the data processing time and training speed. The context used for each chunk
could be temporarily stored during the first epoch, and then used for the rest of the epochs. This
speed up the processing time by 50% for the later epochs. However, because of the variable
length of different utterances, it is hard to exploit the GPU parallel processing. It is possible to
used pad_packed_sequence and pack_padded_sequence in PyTorch which helps to exploit
better usage of GPU, but these methods require the utterances to be sorted, which adds onerous
processes to the data preparation stage. Another drawback for this arrangement is that the number
of samples in each mini-batch for the first-level LM may vary significantly. Accumulation of
gradients is used to mitigate this problem.

4.2 Context Arrangements 33

4.2.2 LSTM-based Segment Embeddings

In order to exploit the GPU parallelisation and to further address the variable sample size problem,
the context vector could also generate from segment embeddings extracted for a fixed number of
words surrounding the current utterance, as illustrated in Fig. 4.2.

previous words -100 to -81

future words +1 to +20

Context
Extractor

Context
Extractor

FC layer

Context vector

First-level LSTM

final output hidden vectors

previous words -90 to -71

previous words -20 to -1

future words +10 to +30

future words +81 to +100

Fig. 4.2 Context representation using the segment embeddings where the sentence structure is
ignored. Context coverage ranges from the previous 100 words to future 100 words, with each
segment of 20 words and 10 words overlap.

This arrangement takes the advantage of the fact that useful information in our task is often
some key words or phrases in the surrounding utterances. These could be extracted via the
output hidden vector from the memory cell if jointly trained as discussed before. Therefore, the
boundaries are treated as normal words, or can even be ignored. Hence, instead of getting a
number of surrounding utterances, this modified version tries to get a fixed number of surrounding
words for the current utterance, split them into segments and feed them into the first-level LSTM
LM. The parameters are shared among all first-level LSTMs for all segments, and the hidden
states are reset to zero at the start of each segment. Furthermore, there can be a fixed number of
overlapping words between two adjacent segments.

This arrangement is able to be processed in parallel easily since all segments have the same
length, and the number of samples processed by the first-level LM is also the same for each mini-
batch. However, it does not retain the sentence structure, and it only relies on the output hidden
vector to find useful information from the memory rather than explicitly express the relative
importance of different words. The embeddings might contain mixed information and have a
bias towards the words closer to the current utterance. Increasing the number of overlapping
words might mitigate this problem, but this requires more segments to cover the same range of
context, hence makes the extractor computationally more expensive.

4.3 Experiments 34

4.2.3 Self-attentive Segment Embeddings

In order to better exploits the segment structure and to explicitly express the importance of
important words and phrases in each segments, a multi-head self-attentive layer taking the same
form as described in Sec. 3.2 is used. The arrangement is shown in Fig. 4.3.

previous words -1 to -30

future words +1 to +30

Multihead
Self-attention

Multihead
Self-attention

FC layer

Context vector

First-level LSTM

First-level LSTM

output hidden vectors
for each word

Fig. 4.3 Context representation using the self-attentive segment embeddings where the sentence
structure is ignored. Context coverage ranges from the previous 30 words to future 30 words,
with each segment of 30 words and no overlap.

The segment is passed through an LSTM and instead of using only the final output hidden
vector as before, output hidden vectors are collected and fed into the self-attentive layer. The
multi-head output of the attention layer are then concatenated and sent to a fully-connected layer
to get a compact representation. The first-level LSTM shown in the dashed box is to encapsulate
the positional information among the words, but some recent researches established methods
for positional encoding [25]. Through the multi-head self-attentive layer structure, the relative
importance of different words in each utterance can be directly reflected by the values in each
annotation vector. By forcing the annotation vectors to be dissimilar using the penalty term,
diverse information for each segment could be extracted, and hence it handles longer segments.

4.3 Experiments

Experiments are performed based on the fully-connected layer or self-attentive layer context
extraction. Hierarchical LSTM becomes extremely deep if jointly trained with the first-level LM
being another LSTM, hence the appropriate and efficient joint-training algorithms for hierarchical
LSTM structures will be left for future investigation. It mainly compares the improvements
obtained by jointly train cross-utterance LMs. The presentation of the result will be divided into

4.3 Experiments 35

three parts according to the data arrangements in the previous section, and with a summary of
the best results obtained from these arrangements.

4.3.1 Utterance Embeddings

This section first shows the effect of different training techniques and hyper-parameters on PPL,
which describes how the gain in PPL is obtained. The techniques are tabulated below.

1 Utterance embedding: Use final memory cell
2 Utterance embedding: Use final output hidden vector
3 Utterance embedding: Use final and middle output hidden vectors
4 Updating Scheme: Simultaneously update both LMs
5 Updating Scheme: Interleaved training
6 Updating Scheme: Accumulate 10 mini-batches then update
7 Hyper-parameters: Same learning rate for both levels
8 Hyper-parameters: Smaller learning rate for the first-level LM

Table 4.1 Different training techniques and facts applied to the joint-training algorithm.

The vanilla LSTM and the cross-utterance LM with fixed embeddings will be used as baseline
systems. Previous 3 utterances are incorporated for quick experiment. Because the training
speed for the utterance embedding joint-training algorithm takes much longer to train, it is not
feasible to try every combination of the techniques shown above. However, the results shown
in Table. 4.2 are still enough to reflect how the system should be jointly trained. Note that if
the accumulation across mini-batches is used, the learning rate needs to be further adjusted.
Therefore, 6 implies 8 is also used.

LMs Dev Eval Average Training Speed

LSTM (1L) 71.4 63.3 21ms/batch
fully-connected cross-utterance LM 68.6 61.3 35ms/batch

1 + 4 + 7 69.7 62.2 680 ms/batch
1 + 5 + 7 68.6 61.5 -
1 + 5 + 6 67.9 61.0 -
2 + 5 + 6 68.8 62.3 -
3 + 5 + 6 67.3 60.6 -

Table 4.2 PPL for joint-training with different techniques on AMI. Average training speed is
measured on air202 machine. Hyphen represents the same value as above. Each mini-batch
contains 64 data streams with 12 BPTT steps.

4.3 Experiments 36

The size of the network used here is the same as before with single layer LSTM which has
256D word embeddings, 256D hidden states and 128D context vector. Each utterance embedding
is of 256D as well. The average processing time for each mini-batch is 680 ms, hence for 1200
mini-batches, it requires 13.6 minutes to process one epoch. Next, using final and middle output
cell, interleaved training and gradient accumulation over mini-batches, wider context coverage is
explored and better results have been obtained shown in Table. 4.3.

LMs Dev Eval Average Training Speed

vanilla LSTM 71.4 63.3 21ms/batch
fully-connected cross-utterance LM 68.6 61.3 35ms/batch

Joint-trained cross-utterance LM 65.3 58.3 1500 ms/batch

Table 4.3 PPL for joint-training with previous and future 5 utterances on AMI. Speed measured
on air202. Each mini-batch contains 64 data streams with 12 BPTT steps.

Though 9% relative improvement and 6% relative improvement in PPL compared to the
vanilla model and the fixed embedding model have been achieved respectively, this training
speed is not suitable for large scale data set because the processing time for one epoch is 30
minutes. For medium scale data sets such as Switchboard and Fisher which contains 27 million
words, it requires a whole day to train this rather small model.

Finally, the joint-trained LM is used for 50-best rescoring with acoustic model trained using
CE criterion. The result is shown in Table. 4.4 where another 0.1 absolute reduction in WER
and 0.2 absolute reduction in sentence error have been found.

RNNLMs Sent. Error (dev) WER (dev)

vanilla LSTM 56.7 23.5
cross-utt. FC 56.6 23.4

joint-trained cross-utt. 56.4 23.2

Table 4.4 WER comparison between different LMs on AMI dev set. Acoustic model trained
using CE-criterion. Joint training uses the best techniques.

4.3.2 LSTM-based Segment Embeddings

Experiments on segment embeddings focus on the training speed and the effect of context
coverage. PPLs for different context coverage and overlappings are shown in Table 4.7.

4.3 Experiments 37

Context Segments Overlap Dev Eval Average Training Speed

± 36 words 2 0 64.3 57.3 215 ms/batch
± 36 words 4 0 65.5 59.1 297 ms/batch
± 72 words 4 0 64.8 58.0 263 ms/batch
± 72 words 8 18 63.6 57.5 300 ms/batch
± 108 words 12 18 64.5 58.6 326 ms/batch

vanilla LSTM 71.4 63.3 21ms/batch
FC. cross-utt. LM 68.6 61.3 35ms/batch

Table 4.5 PPL for joint-training with segments on AMI. Same mini-batch size and same machine
as before. segment length = context/segments+overlap. e.g. ± 72 words with 8 segments and
18 overlap has length 144/8+18 = 36 words.

Note that because the number of samples processed by the first-level LM for each mini-batch
is now fixed and is more than the second-level LM, a small learning rate for the first-level LM
and the gradient accumulation is not necessary anymore. The same network size is used for
these experiments. A lot more experiments on different context coverage have been conducted
but only the ones showing valuable results are presented here. Under the best context coverage
and overlap settings, the LSTM-based segment embeddings outperformed the vanilla LSTM
by a relative 11% reduction in PPL. The total 1200 mini-batches requires 6 minutes to process
one epoch, which is much faster than the utterance embedding arrangement since all segments
are processed in parallel by the GPU. Then the best setting is used to rescore 50-best lists on
AMI dev set as before, and the WER results for CE training and MPE training are shown in
Table 4.6. Best performances are achieved by the joint-trained cross-utterance LM with segment
embedding for both CE (0.2 improvement) and MPE (0.1 improvement) acoustic models.

RNNLMs Sent. Error (dev) WER (dev) Sent. Error (eval) WER (eval)

vanilla LSTM CE 56.7 23.5 55.6 24.2
fixed cross-utt. CE 56.6 23.4 55.5 24.1
seg. embeeding CE 56.4 23.2 55.3 24.0

vanilla LSTM MPE 55.6 22.8 54.8 23.5
fixed cross-utt. MPE 55.5 22.6 54.6 23.4
seg. embedding MPE 55.3 22.5 54.3 23.3

Table 4.6 WER comparison between different LMs on AMI.

4.3 Experiments 38

4.3.3 Self-attentive Segment Embeddings

Finally, experimental results on the self-attentive segment embeddings are presented in this
section. There are always two attention layers applied to the past and future context separately,
and hence there are always two segments to perform attention on. PPL for context coverage with
±50 and ±100 words are shown in Table, where experiments have also been performed on the
number of heads (i.e. the number of annotation vectors in Eq. 3.2).

Context No. of heads Dev Eval Average Training Speed

±50 1 64.0 57.8 312 ms/batch
±50 3 63.8 57.9 334 ms/batch

±100 1 63.0 57.3 356 ms/batch
±100 3 62.6 56.8 362 ms/batch
±100 5 62.7 57.0 370 ms/batch

vanilla LSTM 71.4 63.3 21ms/batch
FC. cross-utt. LM 68.6 61.3 35ms/batch

Table 4.7 PPL for joint-training with self-attentive segment embeddings on AMI. Same mini-
batch size and same machine as before. Penalty term scaling µ = 0.0001.

Again small network size with 256D word embeddings and 256D hidden states are used.
12% relative improvements have been found by using the self-attentive layer compared to the
baseline vanilla LSTM LM. Not much improvements have been found by including more heads,
hence it is also interesting to plot some annotation vectors against the words it covers to see
what information the model focuses on. The current text for these annotation vector is: SO THAT
MEANS BASICALLY NEXT TUESDAY.

Fig. 4.4 Two annotation vectors covering the previous 20 words

4.3 Experiments 39

Fig. 4.5 Two annotation vectors covering the future 20 words

As this utterance basically talks about a time to do something, the annotation vector pays
attention to words like "today", or "November". It also gives attention to connecting words such
as "and" and "since". However, the two annotation vector do not differ much in their major
focuses. The minor difference is that the second vector tends to get other words incorporated
as well. Therefore, the scale for the penalty term is increased, but the perplexity becomes even
worse as the main loss function influence is relatively attenuated. Therefore 3-head self-attentive
layer is used to extract the context information from the segments. This cross-utterance LM is
also used to rescore the 50-best list, and results are shown in Table 4.8.

RNNLMs Sent. Error (dev) WER (dev) Sent. Error (eval) WER (eval)

vanilla LSTM CE 56.7 23.5 55.6 24.2
fixed cross-utt. CE 56.6 23.4 55.5 24.1

self-atten. CE 56.5 23.3 55.4 24.1

vanilla LSTM MPE 55.6 22.8 54.8 23.5
fixed cross-utt. MPE 55.5 22.6 54.6 23.4

self-atten. MPE 55.5 22.5 54.5 23.3

Table 4.8 WER comparison between different LMs on AMI set.

4.3.4 Summary

All results obtained from different data arrangements are summarised in this section for AMI
dev set. In addition to the small LMs (256D), PPL and WER are also tested for a larger network
(512D). Furthermore, interpolation with the tri-gram LM which was used for the first-pass
decoding is also implemented for the second-pass decoding. The PPL results for the systems
used for rescoring are shown in Table 4.9. WER results for CE acoustic models are shown in
Table 4.11, while that for MPR acoustic models are shown in Table 4.10.

4.3 Experiments 40

System Network Size Context Coverage PPL
(word emb:hidden:context)

vanilla LSTM small 256:256:N/A N/A 70.5
FC cross-utt. small 256:256:128 ±3 utterances 68.5

utterance emb. small 256:256:128 ±5 utterances 65.2
segment emb. small 256:256:128 ±72 words 64.3

attention-based small 256:256:128 ±100 words 62.6

vanilla LSTM large 256:512:N/A N/A 69.5

utterance emb. large 256:512:256 ±5 utterances 64.1
segment emb. large 256:512:256 ±72 words 63.6

attention-based large 256:512:256 ±100 words 61.8

Table 4.9 PPL for different LMs on AMI dev set. Small refers to 256D LMs and large refers to
512D LMs. Context coverage uses the best in the previous experiments.

System Sentence Error WER

vanilla LSTM small 55.6 22.8
FC cross-utt. small 55.5 22.6

LSTM-based segment emb. small 55.3 22.5

vanilla LSTM large 55.6 22.6
utterance emb. large 55.1 22.3

LSTM-based segment emb. large 54.9 22.3
attention-based large 55.3 22.4

vanilla LSTM + trigram 55.0 22.3
LSTM-based segment emb. large + trigram 54.5 22.0

Table 4.10 WER for different LMs. Acoustic model trained with MPE criterion. +trigram means
interpolating with the trigram used in the first-pass decoding.

4.3 Experiments 41

System Sentence Error WER

vanilla LSTM small 56.7 23.5
FC cross-utt. small 56.6 23.3

utterance emb. small 56.4 23.2
LSTM-based segment emb. small 56.2 23.2

attention-based emb. small 56.3 23.3

Table 4.11 WER for different LMs. Acoustic model trained with CE criterion.

To summarise, consistent improvements have been found using different sizes of LSTM and
using interpolation. However, self-attentive layer segment embedding extraction which gives
the lowest PPL does not give the lowest WER. One possible explanation is that the prediction
using the self-attentive segment embeddings are too sharp on certain words, hence when acoustic
errors are added to not only the context but also the current utterance. One possible way to
mitigate this is to use acoustic error sampling.

Chapter 5

Acoustic Error Sampling

Error sampling is a broadly used technique in language modelling which substitutes the true
word with other words according to a certain probability distribution. Acoustic error sampling
here refers to the sampling technique that samples from some possible acoustic error distributions
in order to mitigate the mismatch between training and application of the LM. In this chapter, the
motivation for the error sampling algorithm will be discussed where recent researches in error
sampling techniques are briefly accounted, followed by the implementation. Due to the limited
amount of time, only some preliminary experiments will be described in this chapter.

5.1 Motivations for Error Sampling

As the language modelling task is performed on text only, the true history or context is always
available. However in the downstream tasks such as ASR, neither true history within the utterance
nor the true context in the auxiliary input is guaranteed. Therefore, in order to mitigate this
discrepancy, an acoustic error sampling method is proposed which incorporates the possible
acoustic errors that might occur in the first-pass decoding hypotheses.

There are mainly two advantages to perform the error sampling: First, the error sampling
prevents the language model from being over fit to the true context, and hence the language
model generalises better on the rescoring task. Second, it augments the data as each utterance
now yields multiple versions. Hence more epochs can be run and larger models can be used.

Many forms of error sampling has been proposed by recent researches in language modelling.
One of the most successful methods is the scheduled sampling [28] which, during training,
samples the Softmax output layer to substitute the true label. This error sampling technique
provides the model-generated token for the next step prediction instead of the true one. It also
controls whether the model uses the true one or the generated one hence controls the proportion
of the erroneous labels. The distribution itself is conditioned on the previous observations, and
this technique is useful for text generation tasks.

5.2 Training with Acoustic Error Sampling 43

However, the distribution of the Softmax layer covers the whole vocabulary, while acoustic
errors have a constrained shortlist of words which have either close pronunciations or meanings
from the first-pass decoding. Therefore, [29] uses some distance measurements of pronunciation
similarity to decide the distribution to be sampled from. However, this method is still based on
theoretical values instead of the real acoustic errors.

As the aim of the language modelling is to give accurate prediction for the true utterance
even if the context contains acoustic errors, sampling of acoustic errors will be performed on the
context before each epoch. A method that uses the unigram model of the real acoustic errors
obtained from first-pass decoding on the training set is proposed in the following section, where
the training with sampling pipeline is described.

5.2 Training with Acoustic Error Sampling

After being scored with the Sclite toolkit, an error summary file will be given which has the count
of each type of substitution, insertion and deletion. The preliminary implementation of the error
sampling algorithm focuses on the substitution error. By parsing the error summary file, for each
word a set of confusion pairs could be obtained. The error distribution is calculated by dividing
each pair with the total number of occurrences of that word. For example for word "THEY"
which occurs 1000 times in the training set, two confusion pairs ("THEY", "HE") and ("THEY",
"SHE") are provided by the summary with counts 30 and 50 respectively, the probability of
getting such replacements will be 0.03 and 0.05 respectively.

As the substitution error is already very rare for frequent words, the probability distribution
of errors will be biased towards generating more errors by discounting on the frequency of the
correct word. Then after one or two training epochs on the original data as before, the training
set is first randomly sampled using the biased error distribution. Then the model is trained on the
sampled train set. Besides, after each epoch the dev set is sampled and PPLs with and without
error sampling will be calculated for the dev set.

It is also worthwhile to mention that with this sampling technique, it also allows the training
without resetting at the sentence boundaries for cross-utterance LMs. As before, training the
cross-utterance LM without resetting will bring the future utterance information to the model
and hence will be memorised. However with the error sampling, the future utterance does not
contain exactly the same words at all, but the meaning may not change much. Not resetting the
hidden states accelerates the training speed and fixes the number of BPTT steps. Non-resetting
rescoring can also be implemented as another kind of cross-utterance LM such as the one used
in Microsoft transcription system [39], but it is out of the scope of this thesis.

The first insufficiency of this method is that it only uses uni-gram (confusion pair) models to
obtain the error distribution, but a better distribution should also condition on the context. Conse-

5.3 Experiments 44

quently it is hard to incorporate insertions or deletions if the distribution is not conditioned on
the context. This is the second drawback which may result in the self-attentive layer memorising
the position of the words that are never changed, and giving high weights.

5.3 Experiments

The experiments are only performed on the jointly trained cross-utterance LM with segment
embedding. The comparison in WER is shown in Table 5.1 where another 0.1 reduction is found
compared to the jointly-trained one without error sampling.

RNNLMs Sent. Error (dev) WER (dev)

vanilla LSTM 55.6 22.6
cross-utt. FC 55.3 22.5

joint-trained cross-utt. 55.1 22.3

joint-trained + error sampling 54.9 22.2

Table 5.1 WER for LMs with or without error sampling on AMI dev set.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Recurrent neural network language models have been widely used for language understanding,
translation, dialogue and speech recognition tasks. It provides a continuous-space representation
for the history in a sequence that is used to predict the next word. Therefore RNNLMs achieve
more accurate word prediction and outperform traditional n-gram LMs. However, the context
the model can memorise and make use of is still limited because of the fixed dimensionality and
error back-propagation through time algorithm. In particular, LM is combined with the acoustic
model in ASR tasks usually at single utterance level.

In order to improve the long-term dependency of LMs and to make use of cross-utterance
information in speech recognition tasks, a two-level cross-utterance LM is proposed. Different
data arrangements, context extractor networks as well as joint-training algorithms are proposed.
By comparing different types of LMs for their individual performances and performances in
ASR systems, the conclusions of this work are drawn.

• Basic RNNLM outperforms the n-gram LM by a large margin in PPL as it releases the
Markov assumption to get long-term dependency. It is also better in that it mitigates the
data sparsity issue which occurs in the counting-based n-gram model.

• GRU and LSTM structures as two variations of the basic RNNLM are also experimented
where the LSTM has the most number of parameters with the lowest PPL. LSTM structure
is also shown to outperform the KN-smoothed 4-gram LM in WER.

• Cross-utterance LMs using fixed utterance embeddings with a fully-connected layer, a
self-attentive layer and a hierarchical LSTM layer all achieves better PPL than the vanilla
LSTM, with the hierarchical LSTM having the lowest PPL.

6.2 Future Work 46

• Cross-utterance LMs with fully-connected layer and self-attentive layer for context vector
extraction outperformed the vanilla LSTM in WER, while the hierarchical LSTM gives
worse result.

• Joint-training of the two-level cross-utterance LM further improves the results in PPL and
WER because both networks are being optimised under the same criterion.

• The best PPL is achieved by using the self-attentive segment embeddings for context
representation, while the best WER is achieved by the LSTM-based segment embeddings.
The fastest training speed is achieved by the LSTM-based segment embeddings which is 4
times slower tha the vanilla LSTM.

• Acoustic error sampling which acts as not only a regularisation method but also a data
augmentation method can be applied before the start of each epoch, which releases the
dependency of the cross-utterance LMs on the true context.

6.2 Future Work

• Investigations into the hierarchical LSTM and other extraction structures need to be
explored, and the constraints on RNN-type LM can be released to include transformer
architectures [25]. Besides, it is also an interesting research to implement the lattice
rescoring for more complicated LMs such as this cross-utterance LM and the transformer
LM. Furthermore, it is also desired to look into how the reduction in PPL can be transferred
to the reduction in WER. One solution might be to incorporate the LM at an earlier stage
to narrow the gap between the target which is the WER and the training criterion for LM.

• Another direction is to incorporate more efficient error sampling techniques especially for
insertion and deletion so that the relative position between words can also be changed. This
should be done using sequential sampling algorithms rather than unigram models. One
possible way is to have another neural network to learn the error patterns in an recurrent
fashion, and sample from that network. With error sampling, the cross-utterance LM can
be trained without sentence boundary resetting to achieve a even lower PPL and WER.

References

[1] T. Mikolov, M. Karafiat, L. Burget, J.H. Cernocky, & S. Khudanpur, “Recurrent neural
network based language model", Proc. Interspeech, Makuhari, 2010.

[2] A. Jaech, & M. Ostendorf, “Low-rank RNN adaptation for context-aware language
modeling", Proc. ACL, Melbourne, 2018.

[3] I. Oparin, M. Sundermeyer, H. Ney, & J. Gauvain, “Performance analysis of neural
networks in combination with n-gram language models", Proc. ICASSP, Kyoto, 2012.

[4] M. Sundermeyer, R. Schluter, & H. Ney, “LSTM neural networks for language modeling",
Proc. Interspeech, Portland, 2012.

[5] X. Chen, Y. Wang, X. Liu, M.J.F. Gales & P.C. Woodland “Efficient GPU-based training of
recurrent neural network language models using spliced sentence bunch", Proc. Interspeech,
Singapore, 2014.

[6] X. Chen, T. Tan, X. Liu, P. Lanchantin, M. Wan, M.J.F. Gales, & P.C. Woodland, “Recurrent
neural network language model adaptation for multi-genre broadcast speech recognition",
Proc. Interspeech, Dresden, 2015.

[7] K. Li, H. Xu, Y. Wang, D. Povey, & S. Khudanpur, “Recurrent neural network language
model adaptation for conversational speech recognition", Proc. Interspeech, Hyderabad,
2018.

[8] X. Chen, X. Liu, Y. Qian, M.J.F. Gales, & P.C. Woodland, “Cued-rnnlman open-source
toolkit for efficient training and evaluation of recurrent neural network language models",
Proc. ICASSP, Shanghai, 2016.

[9] J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot, T. Hain, J. Kadlec, V. Karaiskos,
W. Kraaij, M. Kronenthal, G. Lathoud, M. Lincoln, A. Lisowska, I. McCowan, W. Post,
D. Reidsma, & P. Wellner, “The AMI meeting corpus: A pre-announcement", Proc. MLMI,
Bethesda, 2006.

6.2 Future Work 48

[10] Z. Lin, M. Feng, C.N. dos Santos, M. Yu, B. Xiang, B. Zhou, & Y. Bengio, “A structured
self-attentive sentence embedding", Proc. ICLR, Toulon, 2017.

[11] R. Lin, S. Liu, M. Yang, M. Li, M. Zhou, & S. Li, “Hierarchical Recurrent Neural Network
for Document Modeling", Proc. EMNLP, Lisbon, 2015.

[12] R. Masumura, T. Tanaka, T. Moriya, Y. Shinohara, T. Oba, & Y. Aono, “Large Context End-
to-end Automatic Speech Recognition via Extension of Hierarchical Recurrent Encoder-
decoder Models", Proc. ICASSP, Brighton, 2019.

[13] G. Sun, C. Zhang, & P. C. Woodland “Speaker diarisation using 2D self-attentive combina-
tion of embeddings", Proc. ICASSP, Brighton, 2019.

[14] O. Chen, A. Ragni, M.J.F. Gales, & X. Chen “Active Memory Networks for Language
Modeling", Proc. ICASSP, Calgary, 2018.

[15] Y. Wu, H. Yamamoto, X. Lu, S. Matsuda, C. Hori, & H. Kashioka. “Factored recurrent
neural network language model in ted lecture transcription", Proc. IWSLT, pages 222–228,
2012.

[16] T. Mikolov & G. Zweig. “Context dependent recurrent neural network language model",
Proc. SLT, pages 222–228, 2012.

[17] T.H. Wen, A. Heidel, H.Y. Lee, Y. Tsao, & L.S. Lee. “Recurrent neural network based
personalized language modeling by social network crowd-sourcing", Proc. Interspeech,
Florence, 2011.

[18] Y. Shi. “Language models with meta-information.", PhD thesis, Delft University of
Technology, 2014.

[19] H. Ney, U. Essen, & R. Kneser “On structuring probabilistic dependences in stochastic
language modelling", Computer Speech & Language,8 (1): 1–38, 1994.

[20] F. L. Kreyssig, C. Zhang, & P. C. Woodland “Improved TDNNs using deep kernels and
frequency-dependent grid-RNNs", Proc. ICASSP, Calgary, 2018.

[21] D. Povey, & P. C. Woodland “Minimum phone error and I-smoothing for improved
descriminative training.", Proc. ICASSP, Orlando, 2002.

[22] C. Zhang, F. L. Kreyssig, Q. Li, & P. C. Woodland “PyHTK: python library and ASR
pipelines for HTK.", Proc. ICASSP, Brighton, 2019.

6.2 Future Work 49

[23] H. Xu, K. Li, Y. Wang, J. Wang, S. Kang, X. Chen, D. Povey, & S. Khudanpur “Neural
network language modeling with letter-based features and importance sampling", Proc.
ICASSP, Calgary, 2018.

[24] J. Devlin, M. Chang, K. Lee, & K. Toutanova “BERT: Pre-training of deep bidirectional
transformers for language understanding", arXiv:1810.04805.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, &
I. Polosukhin “Attention is all you need", Proc. NIPS, Long Beach, 2017.

[26] S. Katz “Estimation of probabilities from sparse data for the language model component
of a speech recognizer.", IEEE Transactions on Acoustics, Speech, and Signal Processing,
35(3):400–401.

[27] R. Kneser & H. Ney “Improved backing-off for n-gram language modeling", Proc. ICASSP,
pages 181–184, 1995.

[28] S. Bengio, O. Vinyals, N. Jaitly, & N. Shazeer “Scheduled sampling for sequence prediction
with recurrent neural networks", Proc. NIPS, Montreal, 2015.

[29] R. Voleti, J. M. Liss, & V. Berisha “Investigating the effects of word substitution errors on
sentence embeddings", Proc. ICASSP, Brighton, 2019.

[30] X. Chen. “Scalable recurrent neural network language models for speech recognition",
PhD thesis, University of Cambridge, 2017.

[31] T. Mikolov & G. Zweig “Context dependent recurrent neural network language model",
Proc. SLT, Miami, 2012.

[32] P. Werbos “Backpropagation through time: what it does and how to do it", Proc. IEEE,
78(10):1550–1560, 1990.

[33] J. Chung, C. Gulcehre, K. Cho & Y. Bengio “Empirical evaluation of gated recurrent
neural networks on sequence modeling", Proc. NIPS, Montreal, 2014.

[34] S. Hochreiter & J. Schmidhuber “Long-short term memory", Neural Computation
9(8):1735 1780, 1997.

[35] T. Hoffman “Probabilistic latent semantic analysis", Proc. ACM SIGIR, Berkeley, 1999.

[36] D. Blei, A. Ng & M. I. Jordan “Latent dirichlet allocation", Journal of Machine Learning
Research, pages 993-1022, 2003.

6.2 Future Work 50

[37] Y. Teh, M. I. Jordan, M. Beal & D. Blei “Hierarchical dirichlet processes", Journal of the
American Statistical Association, pages 1566-1581, 2012.

[38] V. Peddinti, D. Povey, S. Khudanpur “A time delay neural network architecture for efficient
modeling of long temporal contexts", Proc. Interspeech, Dresden, 2015.

[39] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, & A. Stolcke “The Microsoft 2017
conversational speech recognition system", arXiv 1708.06073, 2017.

Appendix A

Extra Experimental Results

Experiments on Eval Set

Experiments with Fixed Sentence Embeddings

RNNLMs Substitution Deletion Insertion Sentence Error WER

Vanilla LSTM 13.0 7.0 3.5 54.8 23.5
Cross-utt. FC 12.9 7.0 3.5 54.6 23.4

Cross-utt. Atten. 12.9 7.1 3.6 54.6 23.5
Cross-utt. Hier. 13.0 7.2 3.7 56.2 23.9
CUED-RNNLM 13.2 7.3 3.7 56.9 24.3

Kaldi* N/A N/A N/A N/A 23.9

Table A.1 WER break-down comparison between different extractors on eval set. Acoustic
model trained using MPE-criterion. FC represents the fully-connected layer for extractor. Atten.
refers to self-attentive strucutre and Hier. refers to the hierachical LSTM structure.

Appendix B

Risk Assessment Retrospective

This project is completely computer-based. Therefore, potential hazards include arranging the
working environment such as seating, monitor, keyboard suitably. The risk assessment form
submitted in the Michaelmas term summarised the risks well which were encountered during the
project (ergonomic issues). If I start the project again now, I will carry out the risk assessment in
the same way I did in Michaelmas term.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Overview of Language Models
	1.2 Motivation and Proposed Approaches
	1.3 Outline of the Thesis

	2 Language Modelling
	2.1 Task Formulation
	2.2 N-gram Language Models
	2.3 Feed-forward Neural Network Language Models
	2.4 Recurrent Neural Network Language Models
	2.4.1 Basic RNNLM
	2.4.2 Training of RNNLMs
	2.4.3 Gated Recurrent Units and LSTM Language Models

	2.5 Adaptation of RNNLMs
	2.6 Language Model Interpolation
	2.7 Application of Language Models in ASR

	3 Cross-Utterance Language Models
	3.1 Two-Level Language Model Architecture
	3.2 Context Vector Extraction Networks
	3.3 Training with Fixed Utterance Embeddings
	3.4 Experimental Setup
	3.4.1 Data
	3.4.2 Models
	3.4.3 Rescoring Pipeline
	3.4.4 Evaluation Metrics

	3.5 Results and Discussions
	3.5.1 LM Perplexity Comparison
	3.5.2 WER with N-best Rescore
	3.5.3 Summary

	4 Joint-training of Cross-Utterance RNNLMs
	4.1 Joint Training Algorithm and Implementation Details
	4.2 Context Arrangements
	4.2.1 LSTM-based Utterance Embeddings
	4.2.2 LSTM-based Segment Embeddings
	4.2.3 Self-attentive Segment Embeddings

	4.3 Experiments
	4.3.1 Utterance Embeddings
	4.3.2 LSTM-based Segment Embeddings
	4.3.3 Self-attentive Segment Embeddings
	4.3.4 Summary

	5 Acoustic Error Sampling
	5.1 Motivations for Error Sampling
	5.2 Training with Acoustic Error Sampling
	5.3 Experiments

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References
	Appendix A Extra Experimental Results
	Appendix B Risk Assessment Retrospective

