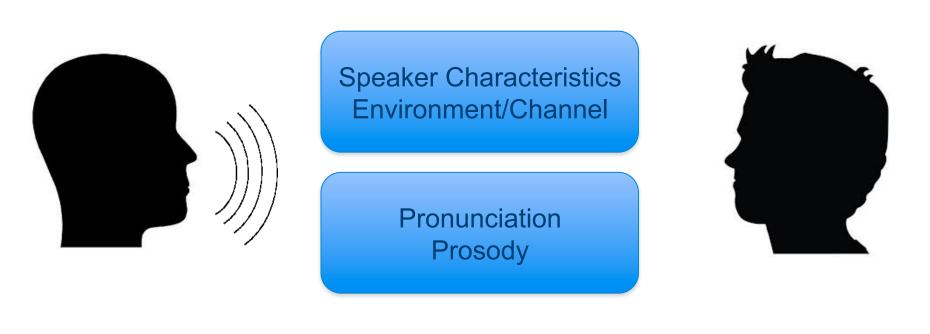


Machine Learning of Level and Progression in Spoken EAL

Kate Knill and Mark Gales Speech Research Group, Machine Intelligence Lab, University of Cambridge

5 February 2016

Spoken Communication



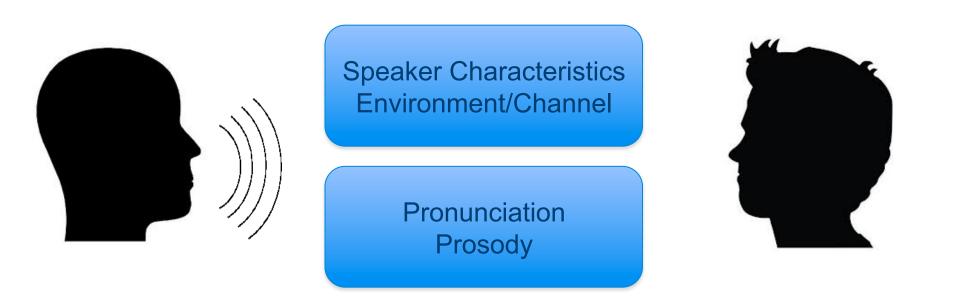
Message Construction

Cambridge ALTA

Message Realisation

Message Reception

Spoken Communication



Message Construction

Message Realisation

Message Reception

Spoken communication is a very rich communication medium

Cambridge ALTA

Spoken Communication Requirements

- Message Construction should consider:
 - Has the speaker generated a coherent message to convey?
 - Is the message appropriate in the context?
 - Is the word sequence appropriate for the message?

Spoken Communication Requirements

- Message Construction should consider:
 - Has the speaker generated a coherent message to convey?
 - Is the message appropriate in the context?
 - Is the word sequence appropriate for the message?
- Message Realisation should consider:
 - Is the pronunciation of the words correct/appropriate?
 - Is the prosody appropriate for the message?
 - Is the prosody appropriate for the environment?

Spoken Communication Requirements

- Message Construction should consider:
 - Has the speaker generated a coherent message to convey?
 - Is the message appropriate in the context?
 - Is the word sequence appropriate for the message?
- Message Realisation should consider:
 - Is the pronunciation of the words correct/appropriate?
 - Is the prosody appropriate for the message?
 - Is the prosody appropriate for the environment?

Spoken Language Versus Written

ASR Output

okay carl uh do you exercise yeah actually um i belong to a gym down here gold's gym and uh i try to exercise five days a week um and now and then i'll i'll get it interrupted by work or just full of crazy hours you know

Spoken Language Versus Written

ASR Output

okay carl uh do you exercise yeah actually um i belong to a gym down here gold's gym and uh i try to exercise five days a week um and now and then i'll i'll get it interrupted by work or just full of crazy hours you know

Meta-Data Extraction (MDE) Markup

Speaker1: / okay carl {F uh} do you exercise /
Speaker2: / {DM yeah actually} {F um} i belong to a gym down here /
/ gold's gym / / and {F uh} i try to exercise five days a week {F um} /
/ and now and then [REP i' II + i' II] get it interrupted by work or just
full of crazy hours {DM you know } /

Spoken Language Versus Written

ASR Output

okay carl uh do you exercise yeah actually um i belong to a gym down here gold's gym and uh i try to exercise five days a week um and now and then i'll i'll get it interrupted by work or just full of crazy hours you know

Meta-Data Extraction (MDE) Markup

Cambridge ALTA

Speaker1: / okay carl {F uh} do you exercise / Speaker2: / {DM yeah actually} {F um} i belong to a gym down here / / gold's gym / / and {F uh} i try to exercise five days a week {F um} / / and now and then [REP i' II + i' II] get it interrupted by work or just full of crazy hours {DM you know } /

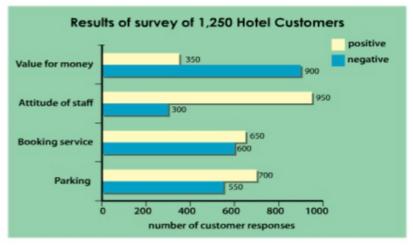
Written Text

Speaker1: Okay Carl do you exercise?

Speaker2: I belong to a gym down here, Gold's Gym, and I try to exercise five days a week and now and then I'll get it interrupted by work or just full of crazy hours.

Business Language Testing Service (BULATS) Spoken Tests

- Example of a test of communication skills
 - A. Introductory Questions: where you are from
 - B. Read Aloud: read specific sentences
 - C. Topic Discussion: discuss a company that you admire



D. Interpret and Discuss Chart/Slide: example above

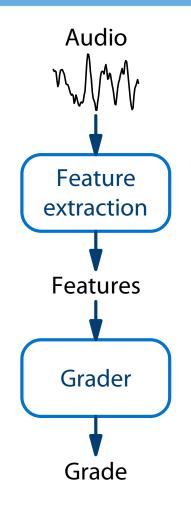
Cambridge ALTA

E. Answer Topic Questions: 5 questions about organising a meeting

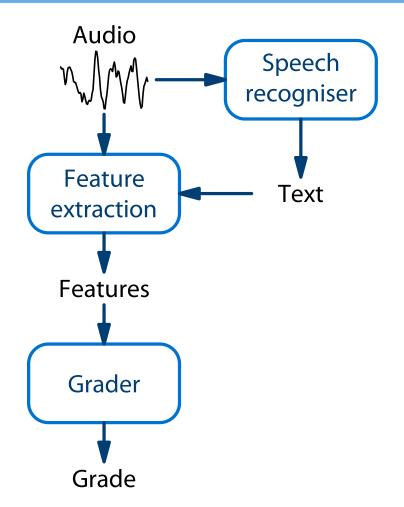
Automated Assessment of One Speaker

Audio Grade

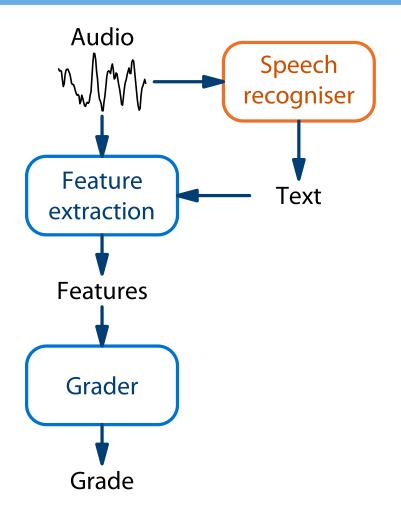
Automated Assessment of One Speaker



Automated Assessment of One Speaker



Outline



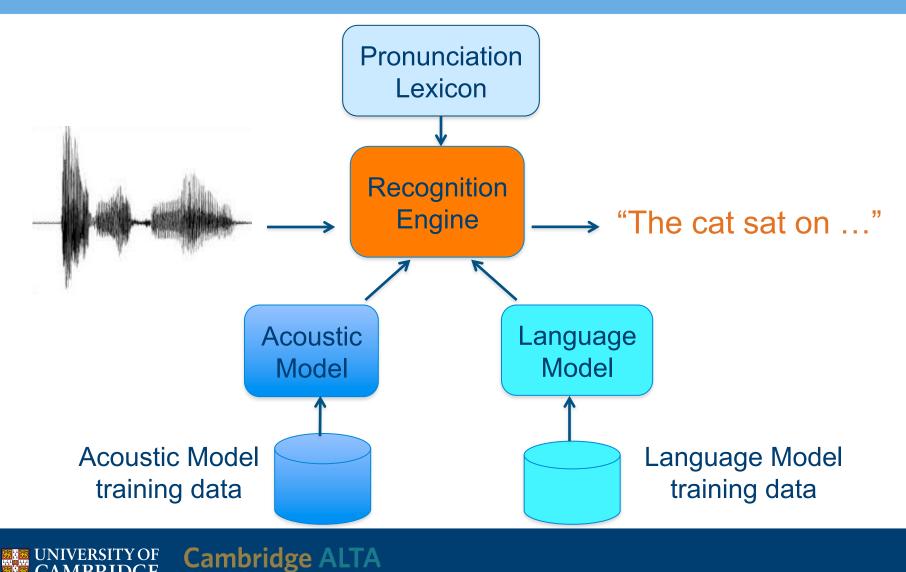
Speech Recognition Challenges

Cambridge ALTA

- Non-native ASR highly challenging
 - Heavily accented
 - Pronunciation dependent on L1
- Commercial systems poor!
- State-of-the-art CUED systems

Training Data	Word error rate
Native & C-level non-native English	54%
BULATS speakers	30%

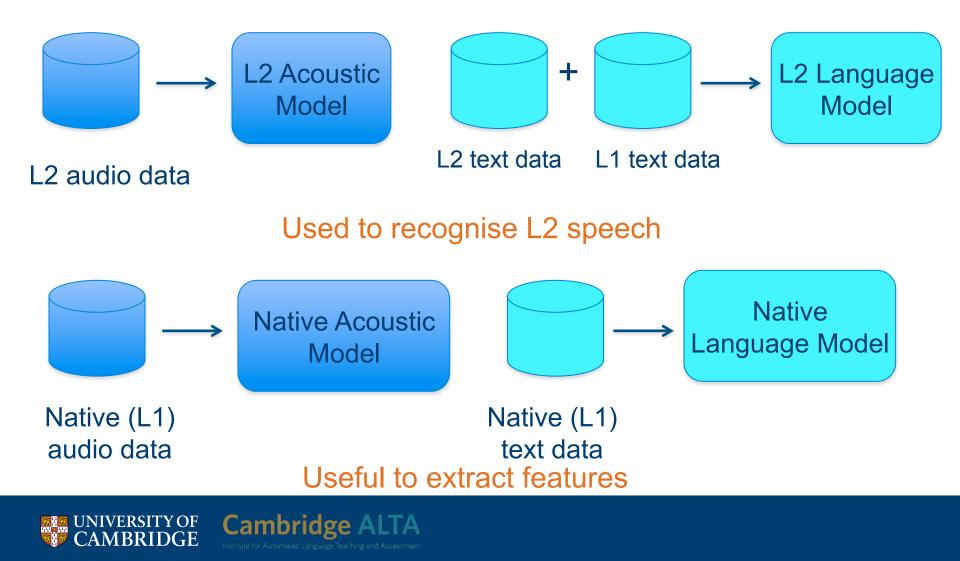
Automatic Speech Recognition Components



Forms of Acoustic and Language Models

Used to recognise L2 speech

Forms of Acoustic and Language Models



Deep Learning for Speech Recognition

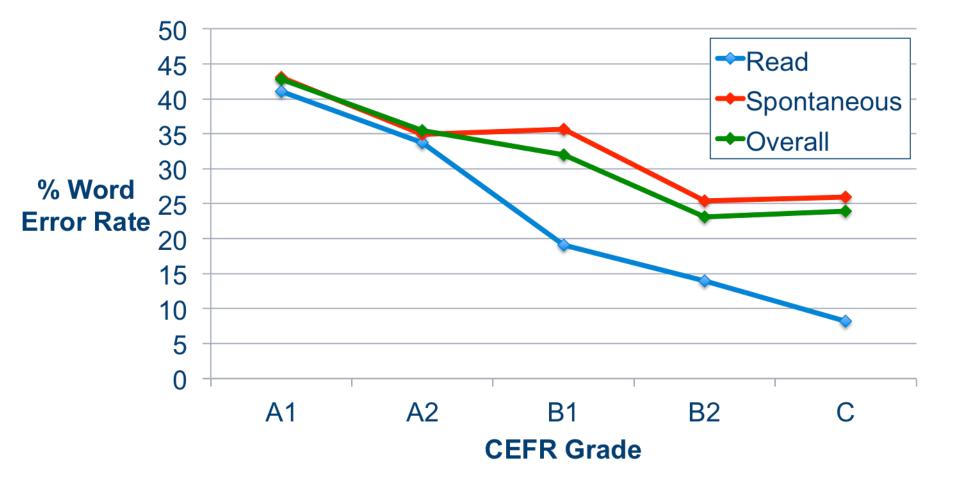


- Fusion of HMM deep neural network and Gaussian mixture models
 - trained on BULATS data

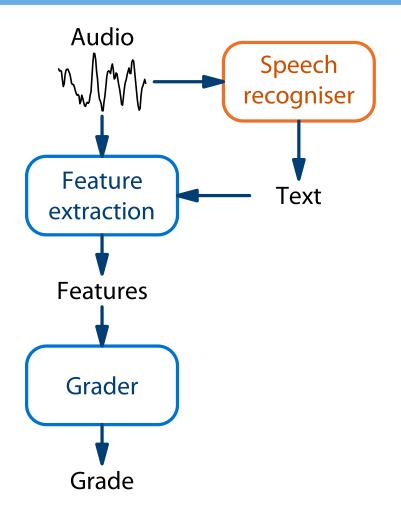
IVERSITY OF

Cambridge ALTA

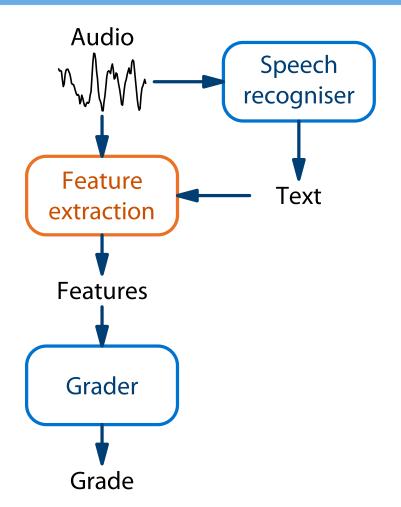
Recognition Error Rate Versus Learner Progression



Outline



Outline

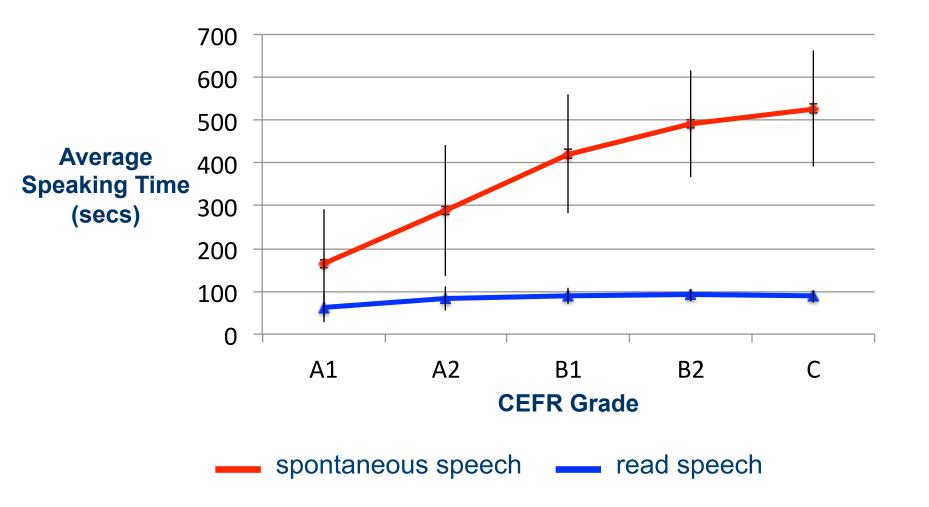


Baseline Features

- Mainly fluency based:
- Audio Features: statistics about
 - fundamental frequency (f0)
 - speech energy and duration
- Aligned Text Features: statistics about
 - silence durations
 - number of disfluencies (um, uh, etc)
 - speaking rate
- Text Identity Features:
 - number of repeated words (per word)
 - number of unique word identities (per word)

Cambridge ALTA

Speaking Time Versus Learner Progression

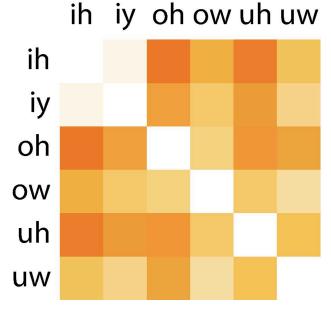


Pronunciation Features

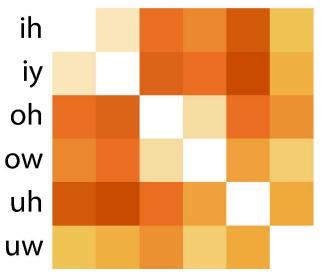
- Hypothesis: poor speakers are weaker at making phonetic distinctions
 - Statistical approach learn phonetic distances from graded data

Pronunciation Features

- Hypothesis: poor speakers are weaker at making phonetic distinctions
 - Statistical approach learn phonetic distances from graded data



ih iy oh ow uh uw



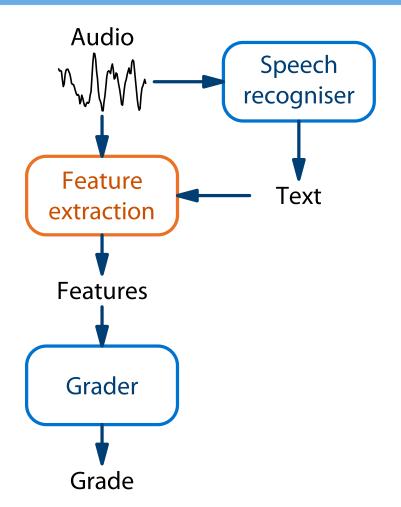
Candidate Grade A1

Cambridge ALTA

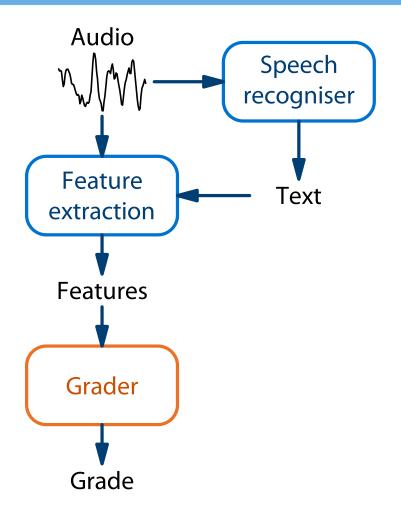
Candidate Grade C1

Pattern of distances different between candidates of different levels

Outline



Outline



Uses of Automatic Assessment

- Human graders
 - ✓ very powerful ability to assess spoken language
 - x vary in quality and not always available
- Automatic graders
 - ✓ more consistent and potentially always available
 - × validity of the grade varies and limited information about context

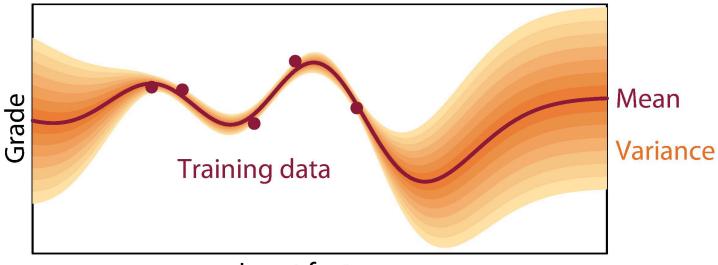
Uses of Automatic Assessment

- Human graders
 - ✓ very powerful ability to assess spoken language
 - vary in quality and not always available
- Automatic graders
 - ✓ more consistent and potentially always available
 - validity of the grade varies and limited information about context
- Use automatic grader
 - for grading practice tests/learning process
 - in combination with human graders
 - combination: use both grades

Cambridge AL

back-off process: detect challenging candidates

Gaussian Process Grader



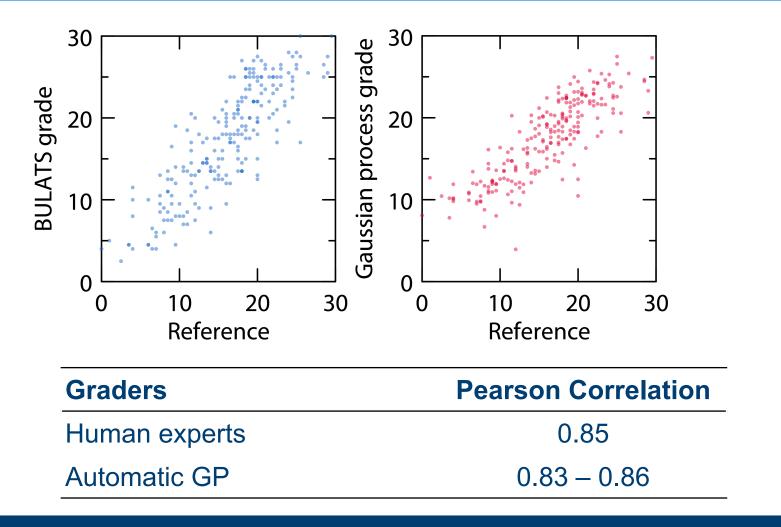
Input features

- Currently have 1000s candidates to train grader
 - limited data compared to ASR frames (100,000s frames)
 - useful to have confidence in prediction

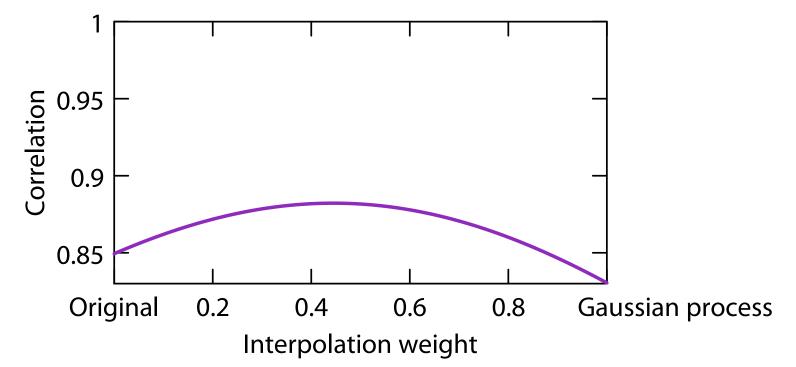
Gaussian Process is a natural choice for this configuration

DGE Cambridge ALTA

Form of Output



Combining Human and Automatic Graders

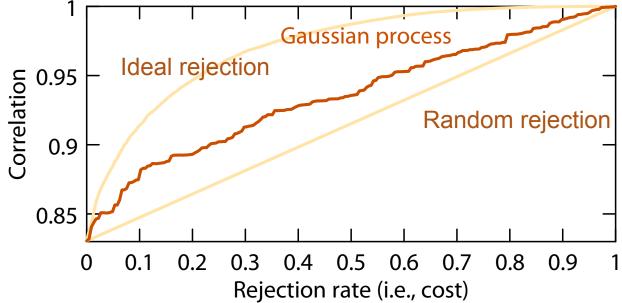


- Interpolate between human and automated grades
 - Higher correlation i.e. more reliable grade produced
- Content checking can be done by the human grader

Cambridge AL

Detecting Outlier Grades

- Standard (BULATS) graders handle standard speakers very well
 - non-standard (outlier) speakers less well handled
 - use Gaussian Process variance to automatically detect outliers



- Back-off to human experts
 - Reject 10%: performance 0.83 → 0.88

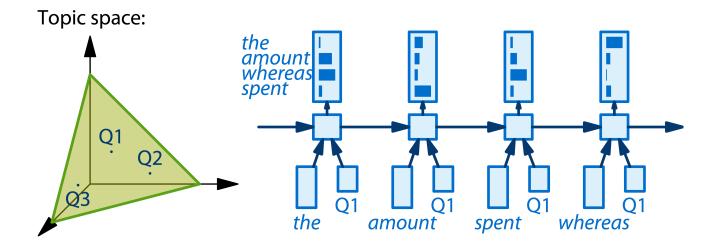
Cambridge ALTA

Assessing Content

• Grader correlates well with expert grades

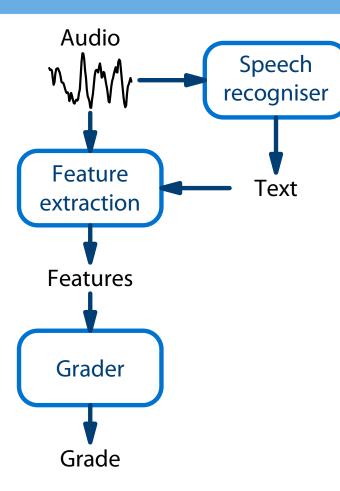
Cambridge AL

• features do not assess content – primarily fluency features



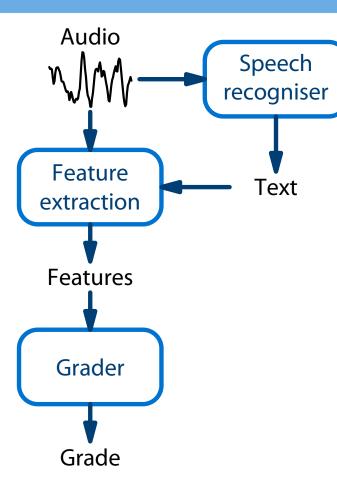
- Train a Recurrent Neural Network Language Model for each question
 - assess whether the response is consistent with example answers

Spoken Language Assessment



- Automatically assess:
 - Message realisation
 - Fluency, pronunciation
 - Message construction
 - Construction & coherence of response
 - Relationship to topic

Spoken Language Assessment



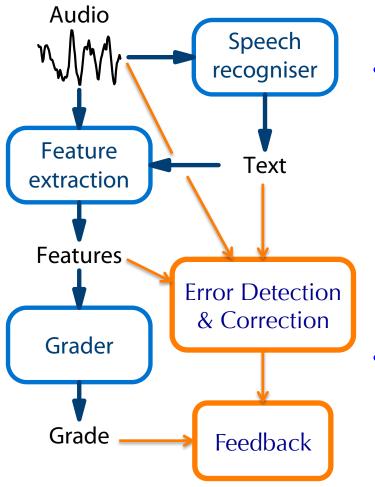
- Automatically assess:
 - Message realisation
 - Fluency, pronunciation

Achieved (with room for improvement)

- Message construction
 - Construction & coherence of response
 - Relationship to topic

Unsolved – active research areas

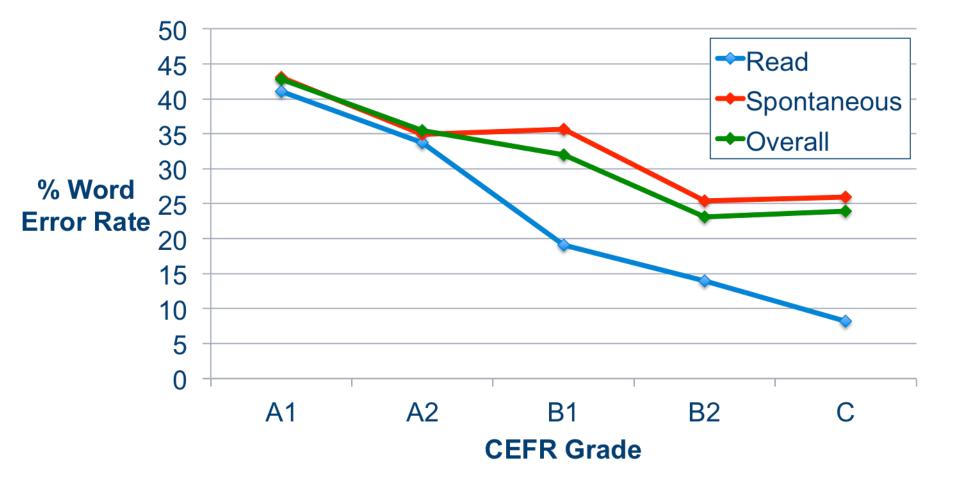
Spoken Language Assessment and Feedback



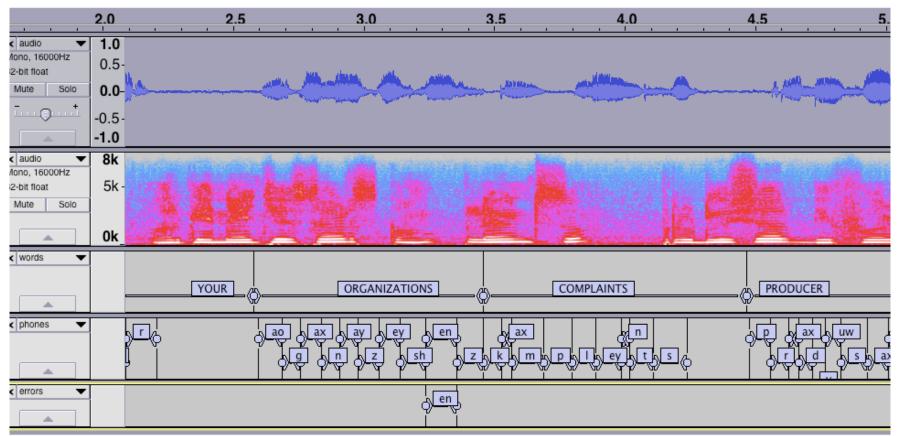
Cambridge ALTA

- Automatically assess:
 - Message realisation
 - Fluency, pronunciation
 - Message construction
 - Construction & coherence of response
 - Relationship to topic
- Provide feedback:
 - Feedback to user: realisation, construction
 - Feedback to system: adjust to level

Recognition Error Rate Versus Learner Progression



Time Alignment and Pronunciation Feedback



- Lightly supervised:
 - No pronunciation labelling required trained just on grades

Cambridge ALTA

Conclusions

- Automated machine-learning for spoken language assessment
 - important to keep costs down
 - able to be integrated into the learning process
- Current level assessment of fluency
 - ongoing research into assessing communication skills:
 - appropriateness and acceptability
- Error detection and feedback is challenging
 - high precision required in detecting where errors have occurred
 - supplying feedback in appropriate form for learner

- Acknowledgement: members of CUED MIL ALTA team:
 - Rogier van Dalen, Kostas Kyriakopoulos, Andrey Malinin, Yu Wang

