

Challenges for AI in Spoken Communication

Dr Kate Knill kate.knill@eng.cam.ac.uk

March 2017

Department of Engineering

Spoken Communication

Message Construction

Cambridge

Message Realisation

Message Reception

Spoken communication is a very rich communication medium

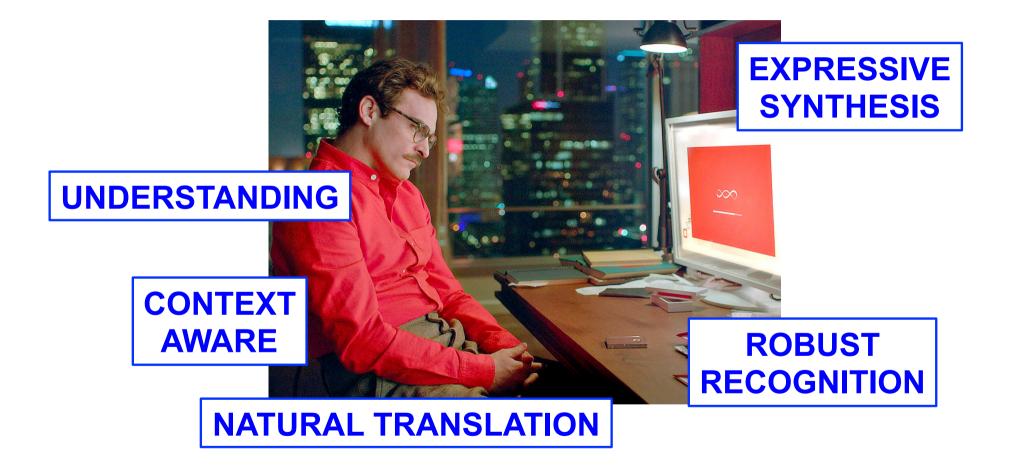
UNIVERSITY OF CAMBRIDGE

Driving factors for using speech

- Voice User Interfaces
 - Speed e.g. dictating faster than typing text messages
 - Hands-free e.g. driving, cooking, across the room from device
 - Intuition everyone knows how to talk, natural replies easy to obtain
 - Empathy conveyed through the rich medium of voice
- Data Analysis and Retrieval
 - Quantity of Data a lot of data is in spoken form e.g. calls, radio, agents
 - Quality of Data information about human interactions e.g. Microsoft Xiaoice

Speech is solved ...

··· but we' re not there yet



Cambridge ALTA

Unique challenges of spoken language

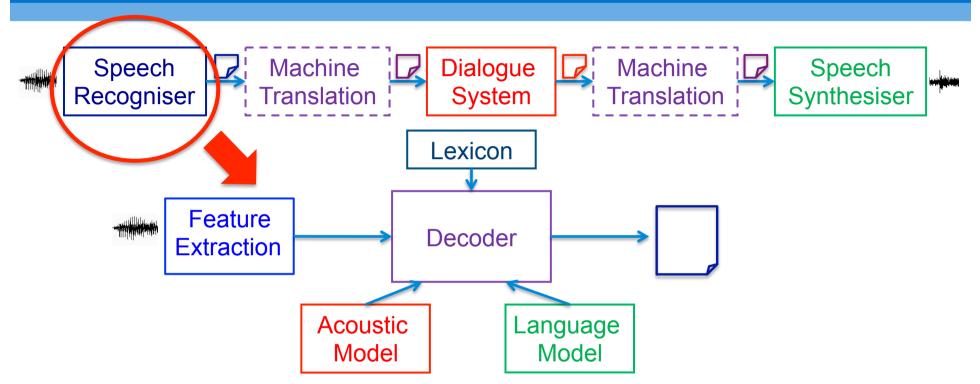
- Very rich communication medium
 - Content encoded in sound waves, words, tone, and rhythm
- Sequence-to-sequence modelling problem
 - speech synthesis: word sequence (discrete) → waveform (continuous)
 - speech recognition: waveform (continuous) → word sequence (discrete)
 - machine translation: word sequence (discrete) → word sequence (discrete)
- The sequence lengths on either side can differ

Cambridge

• waveform sampled at 5/10ms frame-rate, words, dialogue actions ...

Speech-to-speech systems

UNIVERSITY OF CAMBRIDGE

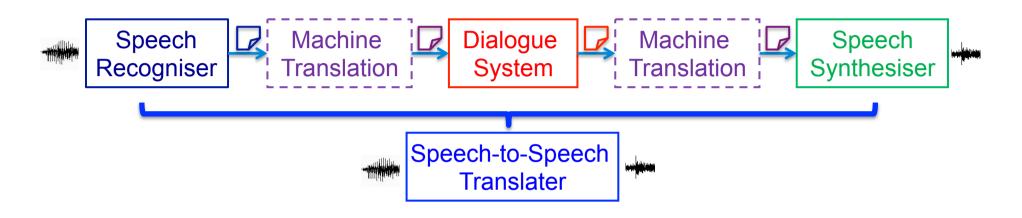


- Separate modules allow flexible systems to be constructed
- Large gains achieved through applying Deep Learning to modules
- Non optimal, module errors propagated through pipeline

Cambridge Al

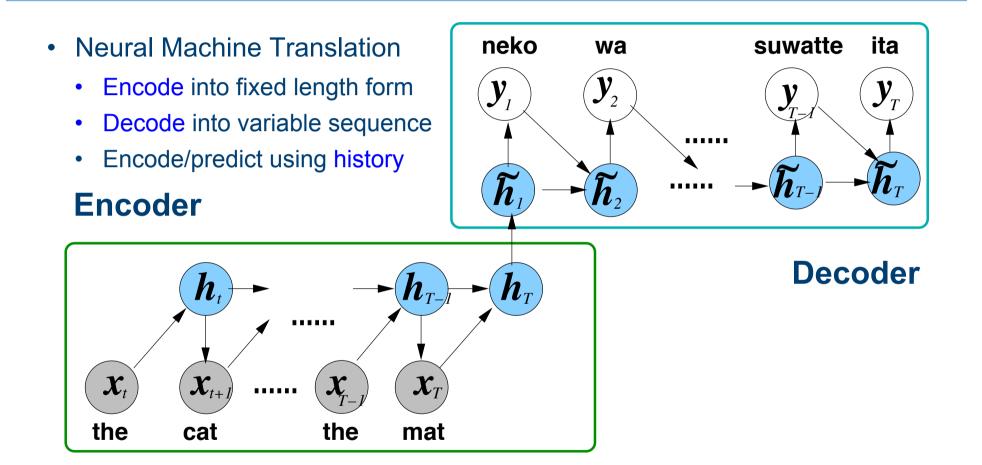
Pre-define the sequences and connections between modules

Integrated end-to-end systems

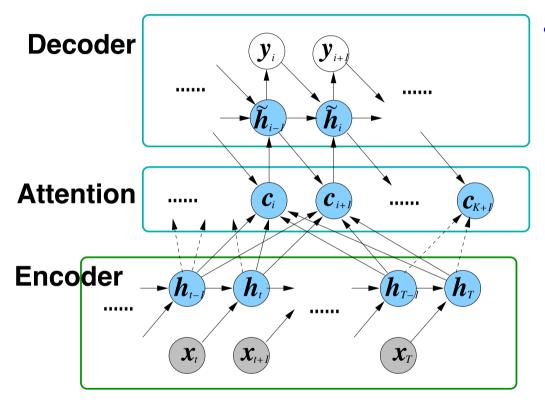


- Optimised together for full system
- Use deep learning to model sequence-to-sequence mappings
- Don't have to predefine sequences and connections between modules

End-to-end system example



End-to-end systems: attention based model



- Attention provides focus
 - Focus on most useful history
 - Emphasise key data

Need annotated training data that may not be available yet

Challenges for AI: Data Overload

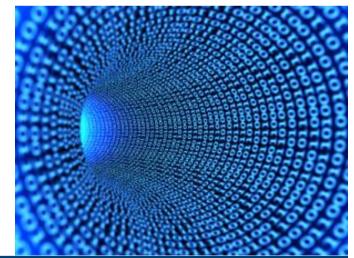
- Huge amounts of data are being collected e.g. in 2016
 - 3.7bn Google US voice searches, 2bn Siri requests, 5.2m Amazon Echo sold
- Problem:
 - Too much data to use and sample
 - which data to exploit?
 - which data to transcribe?
- Potential solution:

NIVERSITY OF

- 1. Combination of Data Mining and Active learning
 - System learns which data helps give most gains

Cambridge

- 2. Continuous Adaptation
 - Reinforce "winning" strategies

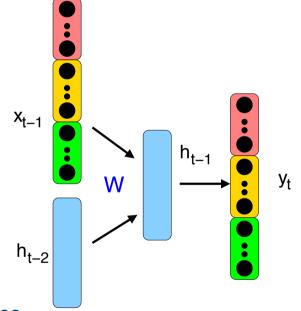


Challenges for AI: Lack of data

- For many domains and languages there is a lack of data
- Problem:
 - Insufficient data to build robust models
 - speech and/or text
- Potential solutions: exploit "other" data
 - 1. Multi-task training
 - Share network layers across tasks
 - 2. Cross-language/multilingual training
 - Share network layers across languages

Cambridge

- Multilingual language independent networks
 - e.g. IARPA Babel audio data search in 26 languages



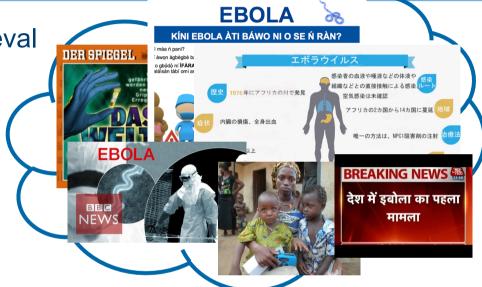
New applications: voice as a user interface

Conversational speech systems

- Infotainment in e.g. self driving cars (EPSRC Open Domain Statistical SDS)
- Language learning and assessment (Cambridge ALTA Institute)
- Mental health maintenance (EPSRC Natural Speech Automated Utility for Mental Health)
- Robot support of elderly and disabled
- Speech-to-speech/text translation for any language
 - Support business in new areas e.g. Africa (IARPA Babel, EPSRC Improving Target Language Fluency in Statistical Machine Translation)
 - Rapid emergency response (IARPA Babel)

New applications: exploiting speech data

- Cross-language information retrieval
 - Search
 - Summarisation
 - Data Analysis



- Data analysis
 - Learn how humans converse
 - Health monitoring and early detection
 - Feedback on performance: education, agents, gaming

Cambridge University Engineering Speech Group

- Speech Group works on many aspects of spoken language processing
 - automatic speech recognition
 - statistical machine translation
 - statistical dialogue systems
 - statistical speech synthesis
- World-wide reputation for research
- Hidden Markov Model Toolkit

- Used by R&D groups worldwide in academia and industry
- Active development for current state-of-the-art approaches
- Range of extensions: HMM Synthesis (HTS), RNN LMs

Cambridge

Conclusions

- Spoken language is a very rich communciation medium
- AI has advanced speech technology significantly in recent years
- Challenges still remain to achieve "speech communication"
 - End-to-end integrated systems
 - Data too much, too little
- Potential for many new applications

Cambridge

Spoken Language Versus Written

ASR Output

okay carl uh do you exercise yeah actually um i belong to a gym down here gold's gym and uh i try to exercise five days a week um and now and then i'll i'll get it interrupted by work or just full of crazy hours you know

Meta-Data Extraction Markup

Speaker1: / okay carl {F uh} do you exercise / Speaker2: / {DM yeah actually} {F um} i belong to a gym down here / / gold's gym / / and {F uh} i try to exercise five days a week {F um} / / and now and then [REP i' II + i' II] get it interrupted by work or just full of crazy hours {DM you know } /

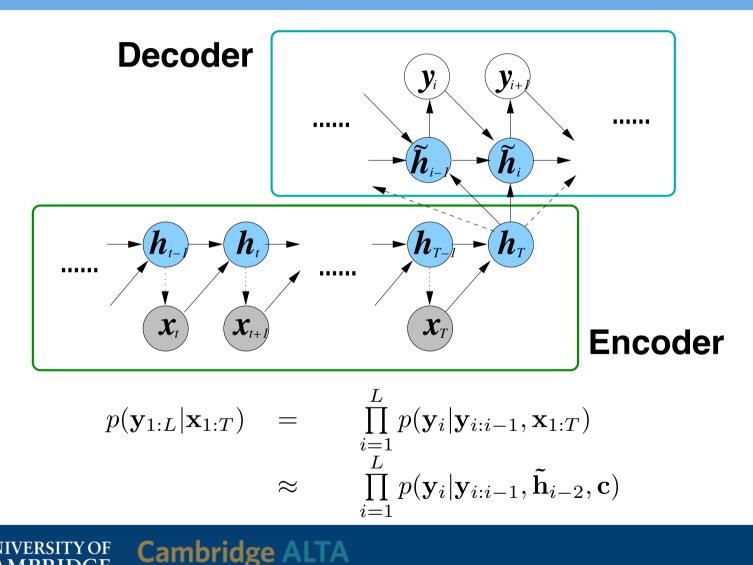
Written Text

Cambridge

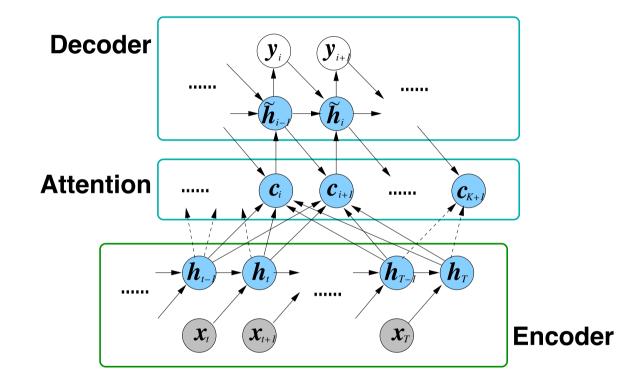
Speaker1: Okay Carl do you exercise?

Speaker2: I belong to a gym down here, Gold's Gym, and I try to exercise five days a week and now and then I'll get it interrupted by work or just full of crazy hours.

End-to-end systems: RNN encoder-decoder



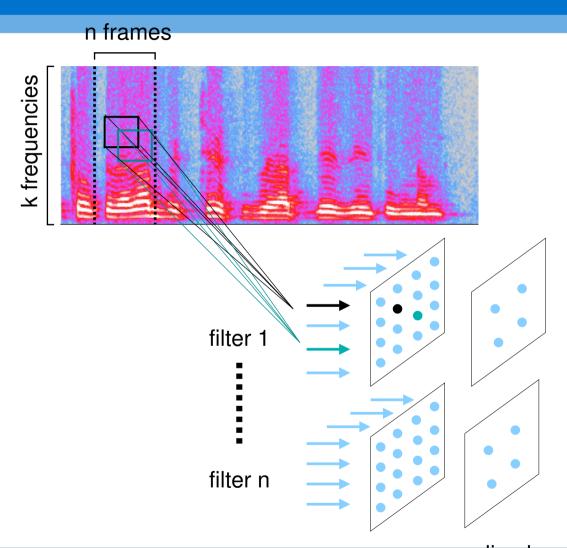
End-to-end systems: attention based model



$$p(\mathbf{y}_{1:L}|\mathbf{x}_{1:T}) \approx \prod_{i=1}^{L} p(\mathbf{y}_i|\mathbf{y}_{i:i-1}, \tilde{\mathbf{h}}_{i-2}, \mathbf{c}_i) \approx \prod_{i=1}^{L} p(\mathbf{y}_i|\tilde{\mathbf{h}}_{i-1})$$

Cambridge A

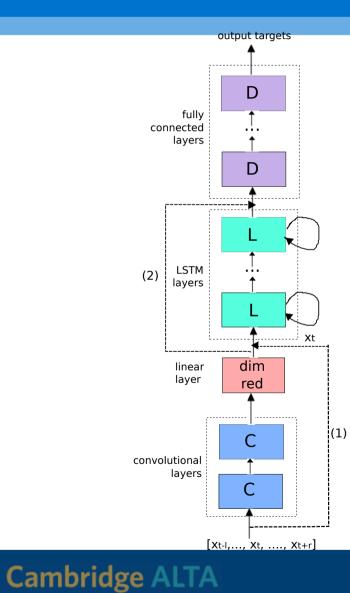
Convolutional neural network for speech



Cambridge A

UNIVERSITY OF CAMBRIDGE pooling layer

Google ASR System



UNIVERSITY OF CAMBRIDGE

Language modelling

- Model of word sequences
- Standard model n-gram

$$P(w) = \prod_{k=1}^{K+1} P(w_k | w_0, w_1, \dots, w_{k-1}) \approx P(w_k | w_{k-1}, w_{k-2})$$

- Very efficient
- History limited to last 2 words

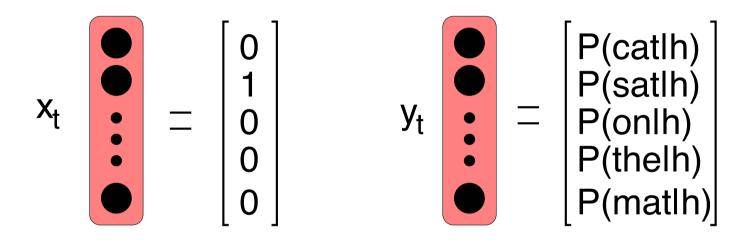
The cat sat on the ? P(mat | on the)

猫はマットの上に? P (座っていた |上に)

Language model neural network input and outputs

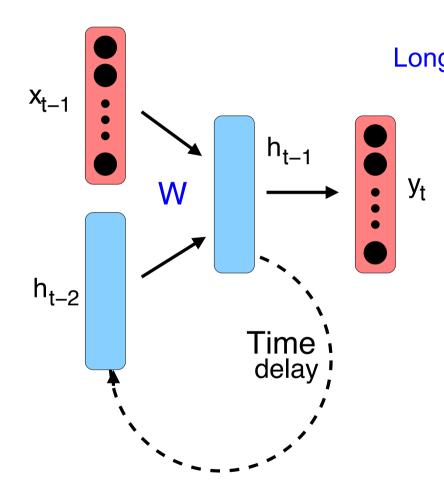
• Use neural networks to expand history

Cambridge A



vocabulary = {cat,sat,on,the,mat}
word at time t is "sat"
"h" is the history (preceeding words)

Recurrent neural network language models



Cambridge

Longer history → more accurate prediction The cat sat on the ? P (mat | The cat sat on the) y_t 猫はマットの上に? P (座っていた | 猫はマットの上に)

- Improved history modelling
 - Long-short term memory
 - Bidirectional