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Spoken Communication 

Pronunciation 
Prosody 

Message Construction Message Realisation Message Reception 

Speaker Characteristics 
Environment/Channel  

Spoken communication is a very rich communication medium 



Driving factors for using speech 

•  Voice User Interfaces 

•  Speed – e.g. dictating faster than typing text messages 

•  Hands-free – e.g. driving, cooking, across the room from device 

•  Intuition – everyone knows how to talk, natural replies easy to obtain 

•  Empathy – conveyed through the rich medium of voice 

•  Data Analysis and Retrieval 

•  Quantity of Data – a lot of data is in spoken form e.g. calls, radio, agents 

•  Quality of Data – information about human interactions e.g. Microsoft Xiaoice  



Speech is solved … 

Made possible by Deep Learning 



… but we’re not there yet 
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Unique challenges of spoken language 

•  Very rich communication medium 

•  Content encoded in sound waves, words, tone, and rhythm 

•  Sequence-to-sequence modelling problem  

•  speech synthesis:      word sequence (discrete) è waveform (continuous) 

•  speech recognition:       waveform (continuous) è word sequence (discrete) 

•  machine translation:  word sequence (discrete) è word sequence (discrete) 

•  The sequence lengths on either side can differ 

•  waveform sampled at 5/10ms frame-rate, words, dialogue actions … 



Speech-to-speech systems 
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•  Separate modules allow flexible systems to be constructed 
•  Large gains achieved through applying Deep Learning to modules 
•  Non optimal, module errors propagated through pipeline 
•  Pre-define the sequences and connections between modules 

•    



Integrated end-to-end systems 

•  Optimised together for full system 
•  Use deep learning to model sequence-to-sequence mappings 
•  Don’t have to predefine sequences and connections between modules 
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End-to-end system example 

•  Neural Machine Translation 
•  Encode into fixed length form 
•  Decode into variable sequence 
•  Encode/predict using history 
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End-to-end systems: attention based model 

•  Attention provides focus 
•  Focus on most useful history 
•  Emphasise key data 
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Challenges for AI: Data Overload 

•  Huge amounts of data are being collected e.g. in 2016 
•  3.7bn Google US voice searches, 2bn Siri requests, 5.2m Amazon Echo sold 

•  Problem: 
•  Too much data to use and sample 

•  which data to exploit? 
•  which data to transcribe? 

•  Potential solution: 
1. Combination of Data Mining and Active learning 

•  System learns which data helps give most gains 
2. Continuous Adaptation 

•  Reinforce “winning” strategies 
 



Challenges for AI: Lack of data 

•  For many domains and languages there is a lack of data 

•  Problem: 
•  Insufficient data to build robust models 

•  speech and/or text 

•  Potential solutions: exploit “other” data 
1. Multi-task training 

•  Share network layers across tasks 
2. Cross-language/multilingual training 

•  Share network layers across languages 
•  Multilingual – language independent networks 

•  e.g. IARPA Babel - audio data search in  26 languages 
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New applications: voice as a user interface 

•  Conversational speech systems 
•  Infotainment in e.g. self driving cars (EPSRC Open Domain Statistical SDS) 

•  Language learning and assessment (Cambridge ALTA Institute) 

•  Mental health maintenance (EPSRC Natural Speech Automated Utility for Mental Health)  

•  Robot support of elderly and disabled 

•  Speech-to-speech/text translation for any language 
•  Support business in new areas e.g. Africa  

(IARPA Babel, EPSRC Improving Target Language Fluency in Statistical Machine Translation) 

•  Rapid emergency response (IARPA Babel) 



New applications: exploiting speech data 

•  Cross-language information retrieval 
•  Search 
•  Summarisation 
•  Data Analysis 

•  Data analysis 
•  Learn how humans converse 
•  Health monitoring and early detection 
•  Feedback on performance: education, agents, gaming 



Cambridge University Engineering Speech Group 

•  Speech Group works on many aspects of spoken language processing 
•  automatic speech recognition  
•  statistical machine translation 
•  statistical dialogue systems 
•  statistical speech synthesis 

•  World-wide reputation for research 

•  Hidden Markov Model Toolkit 
•  Used by R&D groups worldwide in academia and industry 
•  Active development for current state-of-the-art approaches 
•  Range of extensions:  HMM Synthesis (HTS), RNN LMs 

 

 



Conclusions 

•  Spoken language is a very rich communciation medium 

•  AI has advanced speech technology significantly in recent years 

•  Challenges still remain to achieve “speech communication” 

•  End-to-end integrated systems 

•  Data – too much, too little 

•  Potential for many new applications 



Spoken Language Versus Written 

okay carl uh do you exercise yeah actually um i belong to a gym down here 
gold’s gym and uh i try to exercise five days a week um and now and then 
i’ll i’ll get it interrupted by work or just full of crazy hours you know 

ASR Output 

Meta-Data Extraction Markup 
Speaker1: / okay carl {F uh} do you exercise / 
Speaker2: / {DM yeah actually} {F um} i belong to a gym down here / 
    / gold’s gym /  / and {F uh} i try to exercise five days a week {F um} /  
    / and now and then [REP i’ll + i’ll] get it interrupted by work or just  
     full of crazy hours {DM you know } / 

Written Text 
Speaker1:  Okay Carl do you exercise? 
Speaker2:  I belong to a gym down here,  Gold’s Gym, and I try to  
                  exercise five days a week and now and then I’ll get it  
                  interrupted by work or just full of crazy hours. 



End-to-end systems: RNN encoder-decoder 
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End-to-end systems: attention based model 
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Convolutional neural network for speech  
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Google ASR System 

understand the CLDNN architecture are presented in Section 4. Re-
sults on the larger data sets are then discussed in Section 5. Finally,
Section 6 concludes the paper and discusses future work.

2. MODEL ARCHITECTURE

This section describes the CLDNN architecture shown in Figure 1.

2.1. CLDNN

Frame xt, surrounded by l contextual vectors to the left and r con-
textual vectors to the right, is passed as input to the network. This
input is denoted as [xt�l, . . . , xt+r]. In our work, each frame xt is
a 40-dimensional log-mel feature.

First, we reduce frequency variance in the input signal by pass-
ing the input through a few convolutional layers. The architecture
used for each CNN layer is similar to that proposed in [2]. Specif-
ically, we use 2 convolutional layers, each with 256 feature maps.
We use a 9x9 frequency-time filter for the first convolutional layer,
followed by a 4x3 filter for the second convolutional layer, and these
filters are shared across the entire time-frequency space. Our pool-
ing strategy is to use non-overlapping max pooling, and pooling in
frequency only is performed [11]. A pooling size of 3 was used for
the first layer, and no pooling was done in the second layer.

The dimension of the last layer of the CNN is large, due to the
number of feature-maps⇥time⇥frequency context. Thus, we add a
linear layer to reduce feature dimension, before passing this to the
LSTM layer, as indicated in Figure 1. In [12] we found that adding
this linear layer after the CNN layers allows for a reduction in pa-
rameters with no loss in accuracy. In our experiments, we found that
reducing the dimensionality, such that we have 256 outputs from the
linear layer, was appropriate.

After frequency modeling is performed, we next pass the CNN
output to LSTM layers, which are appropriate for modeling the sig-
nal in time. Following the strategy proposed in [3], we use 2 LSTM
layers, where each LSTM layer has 832 cells, and a 512 unit projec-
tion layer for dimensionality reduction. Unless otherwise indicated,
the LSTM is unrolled for 20 time steps for training with truncated
backpropagation through time (BPTT). In addition, the output state
label is delayed by 5 frames, as we have observed with DNNs that
information about future frames helps to better predict the current
frame. The input feature into the CNN has l contextual frames to
the left and r to the right, and the CNN output is then passed to the
LSTM. In order to ensure that the LSTM does not see more than 5
frames of future context, which would increase the decoding latency,
we set r = 0 for CLDNNs.

Finally, after performing frequency and temporal modeling, we
pass the output of the LSTM to a few fully connected DNN layers.
As shown in [5], these higher layers are appropriate for producing a
higher-order feature representation that is more easily separable into
the different classes we want to discriminate. Each fully connected
layer has 1,024 hidden units.

2.2. Multi-scale Additions

The CNN takes a long-term feature, seeing a context of t�l to t (i.e.,
r = 0 in the CLDNN), and produces a higher order representation
of this to pass into the LSTM. The LSTM is then unrolled for 20
timesteps, and thus consumes a larger context of 20 + l. However,
we feel there is complementary information in also passing the short-
term xt feature to the LSTM. In fact, the original LSTM work in
[3] looked at modeling a sequence of 20 consecutive short-term xt
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Fig. 1. CLDNN Architecture

features, with no context. In order to model short and long-term
features, we take the original xt and pass this as input, along with
the long-term feature from the CNN, into the LSTM. This is shown
by dashed stream (1) in Figure 1.

The use of short and long-term features in a neural network has
been explored previously (i.e., [13, 14]). The main difference be-
tween previous work and ours is that we are able to do this jointly
in one network, namely because of the power of the LSTM sequen-
tial modeling. In addition, our combination of short and long-term
features results in a negligible increase in the number of network
parameters.

In addition, we explore if there is complementarity between
modeling the output of the CNN temporally with an LSTM, as well
as discriminatively with a DNN. Specifically, motivated by work in
computer vision [10], we explore passing the output of the CNN into
both the LSTM and DNN. This is indicated by the dashed stream
(2) in Figure 1. This idea of combining information from CNN and
DNN layers has been explored before in speech [11, 15], though
previous work added extra DNN layers to do the combination. Our
work differs in that we pass the output of the CNN directly into the
DNN, without extra layers and thus minimal parameter increase.



Language modelling 

•  Model of word sequences 

•  Standard model n-gram 

•  Very efficient 
•  History limited to last 2 words 

The cat sat on the ?   P( mat | on the ) 

猫はマットの上に?      P (座っていた |上に)  

P (w) =
K+1Q
k=1

P (wk|w0, w1, . . . , wk�1) ⇡ P (wk|wk�1, wk�2)



Language model neural network input and outputs 

•  Use neural networks to expand history 
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vocabulary = {cat,sat,on,the,mat}
word at time t is "sat"
"h" is the history (preceeding words)



Recurrent neural network language models 

  

The cat sat on the ? 

 P ( mat | The cat sat on the ) 

猫はマットの上に? 

P (座っていた  | 猫はマットの上に) 

  

•  Improved history modelling 
•  Long-short term memory 
•  Bidirectional 
 

 

Longer history è more accurate prediction 
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