

Automatic Grammatical Error Detection of Non-native Spoken Learner English

Kate Knill¹, Mark Gales¹, Potsawee Manakul¹, Andrew Caines²

¹Engineering Department / ALTA Institute ²Computer Science and Technology / ALTA Institute

17 May 2019

Challenge and Advantages of Spoken Language

• Spoken language consists of

Text + Pronunciation + Prosody + Delivery

- Challenge for feedback on "grammatical" errors in spoken language
 Spoken Text ≠ Written Text
 - •We don't speak in sentences, we repeat ourselves, hesitate, mumble etc
 - •There is no defined spoken grammar standard
- Advantages of speech
 - •There are no spelling or punctuation mistakes
 - •We provide additional information within the audio signal

Example of Learner Speech

MANUAL TRANSCRIPTION

flor company is an engineering compa- is is eng- engineering company %hes% %hes% in the in the poland %hes% we do business the ref- refinery business and the chemical business %hes% the job we can offer is a engineering job %hes% basically this is the job in the office

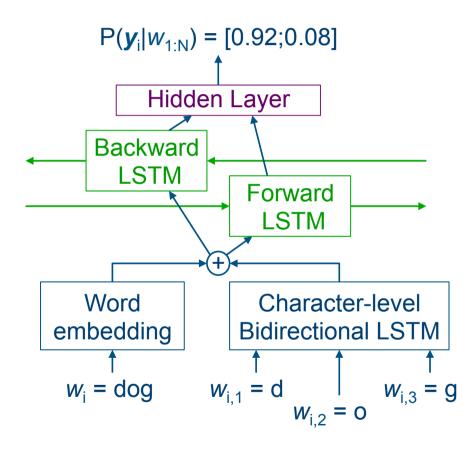
META-DATA EXTRACTION

// flor company is an [FS engineering {P compa-} [REP is is + is] {P eng-} +
engineering company] {F %hes%} {F %hes%} [REP in the + in the} poland // {F
%hes%} we do business the {P ref-} refinery business and the chemical
business {F %hes%} // the job we can offer is a engineering job // {F %hes%}
basically this is the job in the office //

GRAMMATICAL ERRORS

// flor company is an engineering company in the poland
// we [RV do] [RN business] the refinery business and the chemical business
// the job we can offer is [FD a] engineering job
// basically this is [RD the] job in the office

Grammatical Error Detection


- Task: given a sentence automatically label each word with
 - P_{word} (grammar is correct) and P_{word} (grammar is incorrect)
- Example sentence

	Internet	was	something	amazing	for	me	
P(c)	0.02	0.96	0.97	0.97	0.95	0.98	0.99
P(i)	0.98	0.04	0.03	0.03	0.05	0.02	0.01

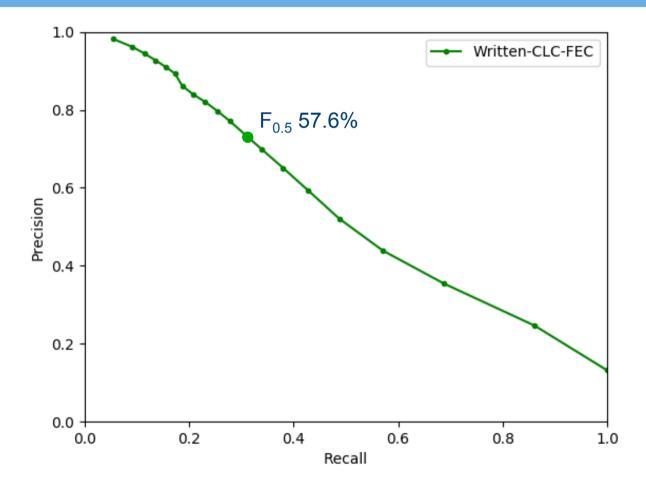
• Predict prob. distribution \mathbf{y}_i for each token $\mathbf{w}_{1:N} = \{w_1, \dots, w_N\}$

Sequence Labeller

Corpora

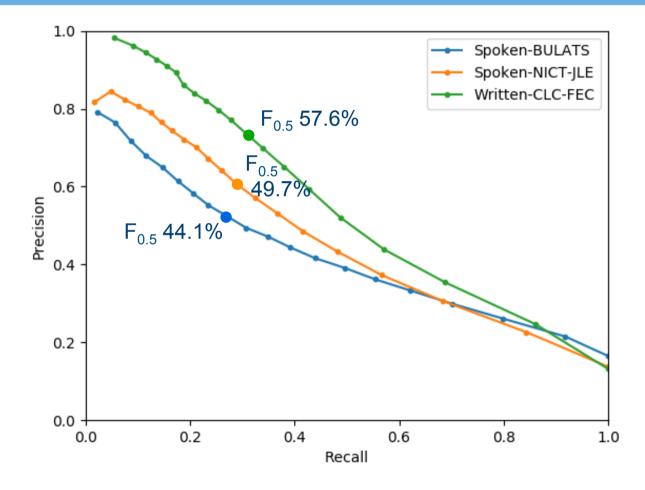
- Non-native English learners with grammatical error annotation
 - BULATS: free speech with up to 1 minute per response
 - NICT-JLE: oral proficiency test interviews
 - CLC: range of written exams at different grade levels

Corpus	Spoken/ Written	# Wds	# Uniq Wds	Audio	L1s	Grades
BULATS	Spoken	61.9K	3.4K	Yes	6	A1-C2
NICTJLE	Spoken	135.3K	5.6K	No	1	A1-B2
CLC	Written	14.1M	79.1K	No	Many	A1-C2


Data Processing for Spoken GED

- Match data processing in training and testing
 - a. Train: Text data correct spelling errors and remove punctuation and casing
 - b. Test: Speech data convert speech transcriptions to be "like" text

// flor company is an engineering company in the poland
// we do business the refinery business and the chemical business
// the job we can offer is a engineering job
// basically this is the job in the office



GED Using CLC Trained Model

GED Using CLC Trained Model

(Small Scale) System Error Analysis

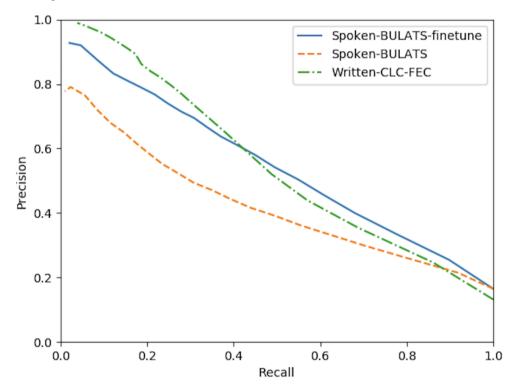
- True precision higher for Spoken BULATS than scores suggest
 - System error (~27%)

.. and i have to practice more because I have ...

• Unmarked error (~40%)

.. so I think you need taxi

• Next to error tagged word(s) (~27%)


.. and continue to inform with customer when we have ..

- To provide feedback we need to boost recall of high precision items
 - Issue: lack of labelled learner speech corpora
 - Adapt/"fine-tune" CLC trained system to subset of target speech data

Boosting GED Performance on Spoken BULATS

• Fine-tune CLC system with 80% data, dev 10%, test 10% x10

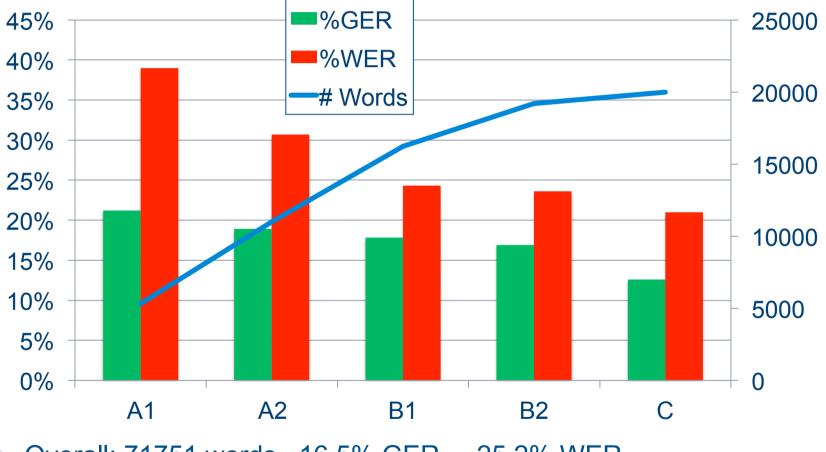
- Fine-tuning produces significant boost in performance
 - has also learnt some annotator bias e.g. "two thousand eight"

Example of Learner Speech: ASR Transcription

MANUAL GRAMMATICAL ERRORS

flor company is an engineering compa- is is eng- engineering company %hes% %hes% in the in the poland %hes% we do business the ref- refinery business and the chemical business %hes% the job we can offer is a engineering job %hes% basically this is the job in the office

ASR TRANSCRIPTION ERRORS

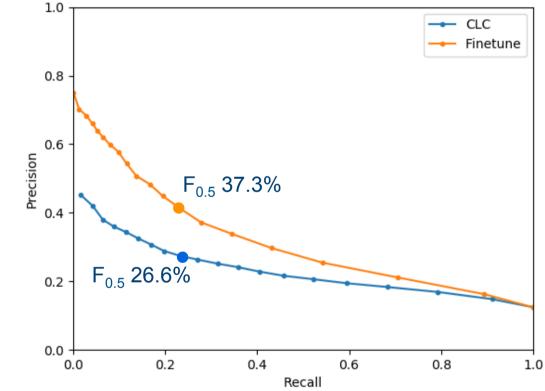

flower companies in joining company is is is engineer engineering company in the in the poll one %hes% we do business there are refinery business in a chemical business %hes% the job we can offer is [del] engineering job %hes% basically this is the job in the office

ASR "GRAMMATICAL ERRORS" - feedback focused

// flower companies in engineering company in the poll one
// we do business there are refinery business in a chemical business
// the job we can offer is engineering job
// basically this is the job in the office

BULATS ASR Annotation Error Rates

• Overall: 71751 words 16.5% GER 25.2% WER


BULATS ASR Word Error Rate

	#	%WER
Overall	71751	25.2
"Fluent"	52698	19.3
Grammatical Error	10348	29.1
Disfluency	2524	36.4

GED on BULATS ASR Transcriptions

• Manual transcriptions used for GE marking and meta-data extraction

• Significantly lower performance than manual transcriptions

Conclusions

- Detecting "grammatical" errors in learner speech is hard!
 - As is annotating the errors
- Focus on high precision region for feedback
 - Testing if regions where errors detected are sufficient to provide useful help
- More research required into:
 - Meta-data extraction
 - Boosting training data by mimicing learner speech errors
 - Detecting portions of ASR transcription the system is confident in

Thanks to Cambridge English Language Assessment for supporting this research and providing access to the BULATS data.

