

## Machine Learning of Level and Progression in Second/Additional Language Spoken English

Kate Knill Speech Research Group, Machine Intelligence Lab Cambridge University Engineering Dept

11 May 2016



## **Cambridge ALTA Institute**

# **Cambridge ALTA**

Institute for Automated Language Teaching and Assessment

- Virtual institute at University of Cambridge
  - Computing, Linguistics, Engineering, Language Assessment
  - Sponsorship from Cambridge English Language Assessment
- Work presented was done at CUED thanks to:
  - Mark Gales, Rogier van Dalen, Kostas Kyriakopoulos, Andrey Malinin, Mohammad Rashid, Yu Wang



## **Spoken Communication**



Message Construction

**Cambridge ALTA** 

Message Realisation

**Message Reception** 



## **Spoken Communication**



Message Construction

Message Realisation

**Message Reception** 

Spoken communication is a very rich communication medium

**Cambridge ALTA** 



## **Spoken Communication Requirements**

- Message Construction should consider:
  - Has the speaker generated a coherent message to convey?
  - Is the message appropriate in the context?
  - Is the word sequence appropriate for the message?



## **Spoken Communication Requirements**

- Message Construction should consider:
  - Has the speaker generated a coherent message to convey?
  - Is the message appropriate in the context?
  - Is the word sequence appropriate for the message?
- Message Realisation should consider:
  - Is the pronunciation of the words correct/appropriate?
  - Is the prosody appropriate for the message?
  - Is the prosody appropriate for the environment?



## **Spoken Communication Requirements**

- Message Construction should consider:
  - Has the speaker generated a coherent message to convey?
  - Is the message appropriate in the context?
  - Is the word sequence appropriate for the message?
- Message Realisation should consider:
  - Is the pronunciation of the words correct/appropriate?
  - Is the prosody appropriate for the message?
  - Is the prosody appropriate for the environment?



## **Spoken Language Versus Written**

#### **ASR Output**

okay carl uh do you exercise yeah actually um i belong to a gym down here gold's gym and uh i try to exercise five days a week um and now and then i'll i'll get it interrupted by work or just full of crazy hours you know



## **Spoken Language Versus Written**

#### **ASR Output**

okay carl uh do you exercise yeah actually um i belong to a gym down here gold's gym and uh i try to exercise five days a week um and now and then i'll i'll get it interrupted by work or just full of crazy hours you know

#### **Meta-Data Extraction Markup**

Speaker1: / okay carl {F uh} do you exercise / Speaker2: / {DM yeah actually} {F um} i belong to a gym down here / / gold's gym / / and {F uh} i try to exercise five days a week {F um} / / and now and then [REP i' II + i' II] get it interrupted by work or just full of crazy hours {DM you know } /



## **Spoken Language Versus Written**

#### **ASR Output**

okay carl uh do you exercise yeah actually um i belong to a gym down here gold's gym and uh i try to exercise five days a week um and now and then i'll i'll get it interrupted by work or just full of crazy hours you know

#### **Meta-Data Extraction Markup**

Speaker1: / okay carl {F uh} do you exercise / Speaker2: / {DM yeah actually} {F um} i belong to a gym down here / / gold's gym / / and {F uh} i try to exercise five days a week {F um} / / and now and then [REP i' II + i' II] get it interrupted by work or just full of crazy hours {DM you know } /

#### **Written Text**

**Cambridge** ALTA

Speaker1: Okay Carl do you exercise?

Speaker2: I belong to a gym down here, Gold's Gym, and I try to exercise five days a week and now and then I'll get it interrupted by work or just full of crazy hours.



#### **Business Language Testing Service (BULATS) Spoken Tests**

- Example of a test of communication skills
  - A. Introductory Questions: where you are from
  - B. Read Aloud: read specific sentences
  - C. Topic Discussion: discuss a company that you admire



D. Interpret and Discuss Chart/Slide: example above

**Cambridge ALTA** 

E. Answer Topic Questions: 5 questions about organising a meeting

## **Common European Framework of Reference (CEFR)**

| Level | Global Descriptor                                    |
|-------|------------------------------------------------------|
| C2    | Fully operational command of the spoken language     |
| C1    | Good operational command of the spoken language      |
| B2    | Generally effective command of the spoken language   |
| B1    | Limited but effective command of the spoken language |
| A2    | Basic command of the spoken language                 |
| A1    | Minimal command of the spoken language               |

UNIVERSITY OF CAMBRIDGE Cambridge ALTA

#### Automated assessment of one speaker





#### Automated assessment of one speaker





#### Automated assessment of one speaker





#### Outline





### **Speech Recognition Challenges**



**Cambridge ALTA** 

- Non-native ASR highly challenging
  - Heavily accented
  - Pronunciation dependent on L1
- Commercial systems poor!
- State-of-the-art CUED systems

| Training Data                       | Word error rate |
|-------------------------------------|-----------------|
| Native & C-level non-native English | 54%             |
| BULATS speakers                     | 30%             |



#### **Automatic Speech Recognition Components**





#### Forms of Acoustic and Language Models



#### Used to recognise L2 speech



#### Forms of Acoustic and Language Models



## **Speech Recognition System**



• Joint decoding - frame-level combination

$$L(o_t \mid s_i) = \lambda_T L_T(o_t \mid s_i) + \lambda_H L_H(o_t \mid s_i)$$



### **Recognition Rate vs L1**

Acoustic models trained on English data from Gujarati L1



scored against crowd-sourced references

**Cambridge ALTA** 



#### **Recognition Error Rate vs Learner Progression**





#### Outline





#### Outline





### **Baseline Features**

- Mainly fluency based:
- Audio Features: statistics about
  - fundamental frequency (f0)
  - speech energy and duration
- Aligned Text Features: statistics about
  - silence durations
  - number of disfluencies (um, uh, etc)
  - speaking rate
- Text Identity Features:
  - number of repeated words (per word)
  - number of unique word identities (per word)

**Cambridge ALTA** 



#### **Speaking Time vs Learner Progression**





#### **Pronunciation Features**

- Hypothesis: poor speakers are weaker at making phonetic distinctions
  - less proficient phone realisation closer to L2
  - more proficient phone realisation closer to L1
- Statistical approach learn phonetic distances from graded data
  - single multivariate Gaussian of K-L divergence per phoneme pair
  - 1081 phoneme pairs

$$JSD(p_1(x), p_2(x)) = \frac{1}{2} \left[ KL(p_1(x) \parallel p_2(x)) + KL(p_2(x) \parallel p_1(x)) \right]$$

$$KL(p_1(x) \parallel p_2(x)) = \frac{1}{2} \left( tr(\Sigma_2^{-1}\Sigma_1 - \mathbf{I}) + (\mu_1 - \mu_2)^T \Sigma_2^{-1} \right) \left( \mu_1 - \mu_2 \right) + \log \left( \frac{|\Sigma_2^{-1}|}{|\Sigma_1^{-1}|} \right)$$

11



#### **Pronunciation Features vs Learner Progression**



#### Candidate Grade A1

**Cambridge ALTA** 

#### Candidate Grade C2

- Pattern of distances different between candidates of different levels
- Correlation with score: mis-pronounced phones higher K-L distance
  - opposite of expectation that poor speakers have more overlap

#### **Statistical Parser Features**

- Parser features from RASP system improve grades for written tests
- Problem: speech recognition accuracy



Smaller subtrees and leaves are fairly robust

**Cambridge ALTA** 

#### Outline





#### Outline





#### **Uses of Automatic Assessment**

- Human graders
  - ✓ very powerful ability to assess spoken language
  - x vary in quality and not always available
- Automatic graders
  - ✓ more consistent and potentially always available
  - × validity of the grade varies and limited information about context



#### **Uses of Automatic Assessment**

- Human graders
  - ✓ very powerful ability to assess spoken language
  - vary in quality and not always available
- Automatic graders
  - ✓ more consistent and potentially always available
  - validity of the grade varies and limited information about context
- Use automatic grader
  - for grading practice tests/learning process
  - in combination with human graders
    - combination: use both grades

Cambridge AL

back-off process: detect challenging candidates

#### **Gaussian Process Grader**



#### Input features

- Currently have 1000s candidates to train grader
  - limited data compared to ASR frames (100,000s frames)
  - useful to have confidence in prediction

Gaussian Process is a natural choice for this configuration

DGE Cambridge ALTA

#### Form of Output




#### **Effect of Grader Features**

| Grader                 | Pearson Correlation<br>with Expert Graders |  |
|------------------------|--------------------------------------------|--|
| Standard examiners     | 0.85                                       |  |
| Automatic baseline     | 0.83                                       |  |
| + Pronunciation        | 0.84                                       |  |
| + RASP                 | 0.85                                       |  |
| + Confidence           | 0.83                                       |  |
| + RASP + Confidence    | 0.86                                       |  |
| Pronunciation features | 0.82                                       |  |



## **Combining Human and Automatic Graders**



- Interpolate between human and automated grades
  - higher correlation i.e. more reliable grade produced
- Content checking can be done by the human grader

## **Detecting Outlier Grades**

- Standard (BULATS) graders handle standard speakers very well
  - non-standard (outlier) speakers less well handled
  - use Gaussian Process variance to automatically detect outliers



Back-off to human experts - reject 10%: performance 0.83 → 0.88

# **Assessing Communication Level**

Ignore high-level content and communication skills currently"



■ A1 ■ A2 ■ B1 ■ B2

Language complexity is related to proficiency ۲

- Future work look into e.g.
  - McCarthy's use of chunks "I would say", "and then"
  - Abdulmajeed and Hunston's "correctness analysis"



# **Assessing Content**

• Grader correlates well with expert grades

Cambridge AL

• features do not assess content – primarily fluency features



- Train a Recurrent Neural Network Language Model for each question
  - assess whether the response is consistent with example answers

# **Topic Classification**

| System | HL-dim | Training<br>Data | % Error |
|--------|--------|------------------|---------|
| KNN    | -      | SUP              | 20.8    |
| RNNLM  | 100    |                  | 17.5    |
| RNNLM  | 200    | Semi-SUP         | 9.3     |

- Experiment details
  - 280-D LSA topic space
  - Supervised (SUP): 490 speakers, 2x crowd-sourced transcriptions
  - Semi-supervised (Semi-SUP): + 10005 speakers, ASR transcriptions
- Increasing quantity of data helps even though high %WER

**Cambridge ALTA** 

• RNNLM can handle large data sets unlike K-Nearest Neighbour (KNN)

## **Off-Topic Response Detection**



• Synthesised pool of off-topic responses

- Naïve select incorrect response from any section
- Directed select incorrect response from same section

## **Spoken Language Assessment**



- Automatically assess:
  - Message realisation
    - Fluency, pronunciation
  - Message construction
    - Construction & coherence of response
    - Relationship to topic



## **Spoken Language Assessment**



- Automatically assess:
  - Message realisation
    - Fluency, pronunciation

Achieved (with room for improvement)

- Message construction
  - Construction & coherence of response
  - Relationship to topic

Unsolved – active research areas



# **Spoken Language Assessment and Feedback**



- Automatically assess:
  - Message realisation
    - Fluency, pronunciation
  - Message construction
    - Construction & coherence of response
    - Relationship to topic
- Provide feedback:
  - Feedback to user: realisation, construction
  - Feedback to system: adjust to level

#### **Recognition Error Rate Versus Learner Progression**





## **Time Alignment and Pronunciation Feedback**





## Conclusions

- Automated machine-learning for spoken language assessment
  - important to keep costs down
  - able to be integrated into the learning process
- Current level assessment of fluency
  - ongoing research into assessing communication skills:
    - appropriateness and acceptability
- Error detection and feedback is challenging
  - high precision required in detecting where errors have occurred
  - supplying feedback in appropriate form for learner



#### **Questions?**

