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ABSTRACT

Automatic spoken language assessment and training systems are
becoming increasingly popular to handle the growing demand to
learn languages. However, current systems often assess only fluency
and pronunciation, with limited content-based features being used.
This paper examines one particular aspect of content-assessment,
off-topic response detection. This is important for deployed sys-
tems as it ensures that candidates understood the prompt, and are
able to generate an appropriate answer. Previously proposed ap-
proaches typically require a set of prompt-response training pairs,
which limits flexibility as example responses are required whenever
a new test prompt is introduced. This paper extends the attention
based neural topic model (ATM) which can assess the relevance of
prompt-response pairs regardless of whether the prompt was seen in
training. This model uses a bidirectional Recurrent Neural Network
(BiRNN) embedding of the prompt to attend over the hidden states
of a BiRNN embedding of the response to compute a fixed-length
embedding used to predict relevance. A hierarchical variant of the
ATM (HATM) is also described, which computes an interpretable
prompt embedding by interpolating all prompts seen in training data
given a prompt of interest via a second attention mechanism. On
spontaneous spoken data, taken from BULATS tests, these systems
are able to assess relevance to both seen and unseen prompts.
Index Terms: Spoken Language Assessment, Relevance Assess-
ment, Deep Learning

1. INTRODUCTION

A key part of learning a language is learning how to speak fluently
and with confidence. This is assessed through spoken language pro-
ficiency tests where candidates are prompted to respond to a series
of open-ended questions, such as ”describe a difficult situation at
work, why was it difficult?”. Human examiners assess the candi-
date’s spontaneous speech replies in terms of pronunciation, hesita-
tions/extent, use of grammar and vocabulary, and how coherent their
discourse is. The increasing demand for language learning and for
practice tests available at any time make the development of auto-
matic systems to undertake this assessment and provide feedback
an attractive proposition [1]. Structured features derived from auto-
matic speech recognition (ASR) generated transcriptions of the can-
didate’s responses are combined with features derived directly from
the audio as input to automatic spoken language assessment systems.
Current automatic assessment is primarily focused on pronunciation
and fluency (both of which are highly correlated with proficiency),
such as ETS’ SpeechRater [2] and Pearson’s AZELLA [3]. It is not
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clear to what extent content is currently assessed. Reliable, robust
assessment requires the evaluation of the semantic content, construc-
tion and relevance of a response to the question prompt. Such a
system should assess if a candidate has given an off-topic response,
either due to misunderstanding the question and/or memorizing a re-
sponse. This is the problem addressed in this paper.

Standard approaches [4, 5] to assessing semantic content topic
relevance, both for essays and speech, are based on measuring the
similarity between vector representations of responses and prompts.
Such systems need to have seen in training prompt-response pairs
for all prompts in a test to assess the relevance of a test response.
This limits the flexibility and increases the cost of deployment of
such systems, as example responses have to be collected for newly
introduced prompts. Re-training the system may be computation-
ally costly. This limitation is overcome in the approach proposed
in [6], called the Attention-based Topic Model (ATM),to assess the
relevance of spontaneous spoken responses to open-ended prompts.
The ATM allows the assessment of relevance to prompts not seen in
the training data. Unfortunately, while the system achieves excel-
lent performance on prompts with responses seen in training, per-
formance on unseen prompts is not as good. Furthermore, the ATM
is not particularly interpretable, does not explicitly exploit the simi-
larity between different prompts and [6] used a fixed set of prompt-
response matchings as negative examples during training.

This paper presents extensions to the ATM. A hierarchical vari-
ant of the ATM (HATM) is proposed in an attempt to improve perfor-
mance on unseen prompts and increase interpretability. The HATM
explicitly leverages similarity between prompts via a second atten-
tion mechanism which interpolates all prompts seen in the training
data given a prompt of interest. This allows the construction of
an prompt ontology. Furthermore, a dynamic sampling mechanism
is added to generate negative examples and the use of ASR confi-
dence scores as additional features is investigated. The ability of
these models to assess the relevance and detect off-topic responses
to prompts which are both seen, and crucially, not seen in the training
data is demonstrated on spoken data from the Cambridge Business
Language (BULATS) exam.

The rest of this paper is structured as follows: section 2 intro-
duces and describes the proposed models, section 3 describes the
data and experimental setup, section 4 contains the experimental re-
sults and analysis, and section 5 is the conclusion.

2. MODEL

This section describes the ATM and HATM models for assessing the
relevance of responses to prompts. The ATM (Fig. 1) consists of a
prompt encoder (red), a response encoder and an attention mech-
anism over responses (blue) and a binary classifier (green). The
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Fig. 1. Attention-based Topic Model

HATM (Fig. 2) additionally has a prompt attention mechanism and
prompt-search embedding (yellow).

The ATM assesses the relevance of responses to prompts by us-
ing the prompt to extract information from the response which is then
used to assign a relevance score. This is accomplished by learning
to dynamically compute a representation (embedding) of the prompt
using the prompt encoder. This prompt embedding is used to attend
over a representation (embedding) of the response via an attention
mechanism, which should highlight the parts of the response most
relevant to the prompt. Based on this information, a binary classifier
assigns the probability a response is relevant to the prompt.

The prompt (eq. 1) and response (eq. 2) encoders are Bidi-
rectional Recurrent Neural Networks (BiRNN) [7] with LSTM
recurrent units [8, 9] which process the word sequences wp =
{wp1 , · · · , w

p
L} and wr = {wr1, · · · , wrT } of the prompt and re-

sponse, respectively. The prompt embedding h̃p is computed by
concatenating the final forward in time

−→
h p
L and backward in time

←−
h p

1 hidden states of the prompt encoder (eq. 3). The forward in
time
−→
h r
t and backward in time

←−
h r
t hidden states of the response

encoder are concatenated at every time step to produce a hidden
state h̃rt (eq. 3), which contains information about how the complete
surrounding context relates to the current word.

hp1:L = LSTM
p(wp; θp)

hr1:T = LSTM
r(wr; θr)
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]
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A fixed-length prompt-conditional embedding cri of the re-
sponse is computed as a weighted sum of the hidden states h̃rt of the
response encoder given a set of attention weights αt via an attention
mechanism (eq. 4). The attention weights for each hidden state are
computed as a softmax (eq. 5), where the logits are given by a sim-
ilarity function (eq. 6) which computes how strongly a hidden state
of the response encoder relates to the embedding of the prompt. The
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Fig. 2. Hierarchical Attention-based Topic Model

parameters of the attention mechanism are θa = {vr,Λ1,Λ2, b}.
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The embedding cri is then fed into a binary classifier f (eq. 7)
which outputs the relevance probability P(rel|wr,wp) of the re-
sponse relating to the question. In this work f is a deep neural net-
work (DNN) with parameters θf .

P(rel|wr,wp) = f(cri ; θ
f ) (7)

2.1. Hierarchical Attention-based Topic Model

The Hierarchical Attention-based Topic Model (HATM) (figure)
extends the ATM to explicitly make use of the similarity between
prompts. This assumes that there is an implicit ontology of prompts
in the data, and the HATM learns it in an unsupervised fashion. This
is done by expressing prompts seen in the training data h̃p as points
on a simplex and interpolating over them using a prompt attention
mechanism (eq. 9-11). A separate ’search’ embedding (eq 8.) of
the prompt ĥp is used compute attention over all prompts h̃p. This
yields a new prompt embedding cp (eq. 9) which is used to attend
over the responses. The prompts seen in the training data never
directly attend over themselves - the attention mechanism is trained
in a ’leave-one-out’ fashion to teach it to reconstruct each prompt
in the training data from all other seen prompt embeddings. Theo-
retically, given a rich, robust and diverse set of prompt embeddings



new and unseen prompts may be expressed as an interpolation of
seen prompts. This potentially allows the HATM to estimate prompt
embeddings for unseen prompts more robustly. Furthermore, the
learned ontology may be useful for determining which prompts are
more and which are less confusable. The parameters of the prompt
attention mechanism are θpa = {vp,Λp

1,Λ
p
2, b

p}, thus two new
sets of parameters are added to the system: {θpa,θs}.
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The models are trained using minibatch stochastic gradient de-
scent with a logistic loss error function (eq. 12) over all parameters
θATM = {θp,θr,θa,θf} or θHATM = {θp,θr,θa,θf θpa,θs}

L(θ) = 1
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3. DATA AND EXPERIMENTAL SETUP

A series of experiments were run to evaluate the ability of the ATM
and HATM to assess the relevance of responses to prompts. Data
from the Business Language Testing Service (BULATS) English
tests was used for training and test. The text for each response was
generated using an ASR system. The 1-best recognition hypothesis
was then passed to a relevance assessment system (ATM/HATM),
which decided whether the candidate had spoken off topic by as-
signing a probability of whether the response was relevant to the
prompt. To avoid a data mismatch, the recognition hypotheses were
used both in training and test.

3.1. BULATS Test Format and Data

The BULATS Online Speaking Test has five sections [10]. This work
focuses on the 3 sections where open ended prompts (which appear
on screen) elicit spontaneously constructed responses. In Section C,
candidates talk about a work related topic (e.g. the perfect office).
Candidates must describe a graph such as a pie or bar chart related
to a business situation (e.g. company sales) in Section D. In Section
E candidates are asked to respond to 5 prompts related to a single
context prompt (e.g. a set of 5 questions about organizing a stall at a
trade fair). There are 7 prompts in total.

Table 1 gives the statistics of the prompt-response data sets
used in this paper. Each prompt corresponds to one topic, mak-
ing the terms interchangeable. The training data set TRN contains
13.4M words in 293.0K responses from 42K candidates. 379 unique
prompts are seen in TRN, with an approximately Zipfian distribution
(Fig. 3). There are an average of 773 example responses per topic
(prompt), with an average response length of 45.8 words. TRN has a
wide range of candidate L1s, with the largest proportion being Gu-
jarati L1. The evaluation data sets, EVAL1-3, ALL, are designed to

Data #Topics #Resp. #Words #Resp./ Avg.Resp.
Topic Length

TRN 379 293.0K 13.4M 773.2 45.8
EVAL1 92 1297 64.4K 14.1 49.7
EVAL2 177 1335 58.5K 7.5 43.8
EVAL3 179 1445 63.1K 8.1 43.7
ALL 219 4077 186.0K 18.6 45.6

Table 1. Topic, response and word statistics of the prompt-response
data sets based on 1-best recognition hypotheses.

have an (approximately) even distribution over CEFR grades levels
[11]. Fig. 3 shows that the topic distribution of the evaluation data
is less skewed than the training data but still roughly zipfian. EVAL1
is composed of only Gujarati L1 speakers, EVAL2 of only Spanish
L1 candidates and EVAL3 is composed of Arabic, Dutch, French,
Polish, Thai and Vietnamese L1 candidates. The evaluation data set
ALL is the combination of EVAL1-3. A subset of very bad responses
which had very poor ASR was removed from the evaluation data,
which causes some discrepancies with previous work [6].

Fig. 3. Topic Distributions

3.2. Training Data Construction

The data is taken from tests run with human examiners so the re-
sponses are virtually all on topic. To produce negative, off-topic
training examples the responses and prompts were shuffled during
training via a dynamic sampling mechanism which samples mis-
matched prompts to a given response. The sampling mechanism can
draw topics from the empirical topic distribution (Fig. 3) by param-
eterizing a distribution using empirical topic counts, or from a uni-
form distribution. Positive examples naturally come from the empir-
ical topic distribution. If more than one negative example is shown
for a particular response, the positive example is over-sampled the
corresponding number of times to maintain a balanced training. As
was shown in [12, 6], prompts from the same section tend to be
more similar, and therefore more confusable. Two topic shuffling
strategies were considered in [12, 6]: Naive, where prompts are
shuffled across all sections; and Directed, where prompts are shuf-
fled only within the same section. This work only considers Naive
topic shuffling, as it represents the more likely scenario - real off-



topic responses are unlikely to come predominantly from the same
section. For multi-part prompts, which contain a main prompt that
describes the overall question, and several (5 here) sub-prompts, all
sub-prompts were pre-appended with the main prompt. These sub-
prompts are considered distinct topics and thus competing negative
examples to each other during shuffling.

3.3. ASR System

In this work a speaker independent hybrid DNN-HMM ASR sys-
tem [13] is used. The acoustic model is trained on 108.6 hours
of BULATS test data (Gujarati L1 speakers) using the HTK v3.5
toolkit [14, 15]. A Kneser-Ney trigram language model is trained
on this data and interpolated with a general English language
model trained on a large broadcast news corpus, using the SRILM
toolkit [16]. The performance on this ASR system is described in
Tables 2 and 3 relative to crowd-sourced transcriptions [17].

EVAL1 EVAL2 EVAL3 ALL
37.3 52.5 48.6 45.7

Table 2. ASR %WER on evaluation data sets

A1 A2 B1 B2 C
60.3 54.0 44.9 41.8 41.4

Table 3. ASR %WER per CEFR grade level on ALL

3.4. Model and Training Hyper-parameters

Both models were implemented in Tensorflow [18] and contain two
400 dimensional BiLSTM encoders with TanH non-linearities, 200
for the forward states and 200 for the backward states. The HATM
also contains an additional 200-dimensional BiLSTM prompt-search
encoder. The ATM was trained for 5 epochs with the Adam op-
timizer [19], an exponentially decaying learning rate with an ini-
tial value of 1e-3 and decay factor 0.85 per epoch. Dropout reg-
ularization [20] was applied to all layers except for the LSTM re-
current connections and word embeddings, with a keep probabil-
ity of 0.8. The binary classifier was a DNN with 2 hidden lay-
ers of 200 rectified linear (ReLU) units and a 1-dimensional logis-
tic output. The word embeddings, shared by all BiLSTMs, were
initialized from an RNNLM language model trained on the TRN
responses and kept fixed during training. The HATM was initial-
ized from a trained ATM. For the first 3 epochs only the newly-
initialized prompt-attention mechanism was trained. Further train-
ing for 1 more epoch is done with an unlocked response attention
mechanism and a learning rate of 1e-4. The prompt and response
encoders, as well as the DNN classifier remain locked. The ATM
takes about 3.3 hours on an nVidia GTX 980M graphics card. Fur-
ther training the HATM takes an extra hour.

3.5. Assessment Criteria

The models are evaluated using the area under a Receiver-Operator
Characteristic (AUC), which plots the True Positive vs. the False
Positive rate at different decision thresholds. To yield this, negative
examples (true negatives) need to be introduced into the evaluation
data sets via shuffling. The negative examples are drawn from the
empirical topic distribution of the evaluation data. It must be noted

that results are based on a particular instance of shuffling the prompts
for evaluation.

4. EXPERIMENTS

This section presents the results of investigations into the proper-
ties of the ATM and HATM. Subsection 4.1 investigates several key
properties of the models when all the prompts are seen. Firstly, the
effect of sampling negative examples from the empirical and uniform
distributions is assessed. Secondly, the effect of CEFR grade level
[11] on relevance assessment performance is investigated. Finally,
the nature of the prompt attention mechanism in the HATM is inves-
tigated. Subsection 4.2 investigates the performance of the model
on unseen topics (prompts), analyses errors which the models make
and compares results to previous work. Finally, subsection refsec:asr
investigates the effect of using ASR confidence scores as extra fea-
tures.

4.1. Baseline Performance

Table 4 shows the effect of different dynamic sampling of negative
examples. For the ATM with empirical distribution samples (ATM-
E) no benefit is seen increasing the number of negative examples,
unlike [6]. In [6] the positive and negative prompt-response pairs
were fixed, and thus using 5 negative samples increased the diver-
sity. This is not necessary when using a sampling mechanism in
training, as different negative prompt-response pairs are generated
at every epoch. Using a uniform topic distribution degrades perfor-
mance (ATM-U). There are likely two effects occurring - firstly there
is a mismatch to the topic distributions in the evaluation data occurs.
Secondly, the mismatch between in the topic distributions of the pos-
itive and negative examples likely skews the model towards treating
rare topics as non-relevant. Models which use a uniform topic distri-
bution for negative examples were not further investigated. Finally,
the performance of the HATM-E and ATM-E models is comparable.

#samples ATM-E ATM-U HATM-E
1 0.97 0.95 0.96
5 0.97 0.95 0.97

Table 4. Comparison of AUC for models with empirical (E) and
uniform (U) negative sampling on ALL

Table 5 shows the baseline performance on ALL evaluation data
corresponding to each CEFR [11] grade level for the ATM model
with empirical distribution samples (ATM-E) evaluated on both ASR
and crowd-sourced transcriptions. The latter are more accurate but
mismatched to the ASR transcriptions used in the ATM training.
Table 3 in section 3.3 shows that ASR error rates are lower on re-
sponses corresponding to higher grade levels, and table 5 shows that
the performance of the ATM is higher on responses corresponding
to higher grade levels. This trend was previously reported in [6].
However, there is very little difference between the performance on
ASR and crowd-sourced transcriptions. This indicates that due to
the low quality nature of the transcriptions which the system was
trained on the system is unable to leverage the better quality of the
crowd-sourced transcriptions. Furthermore, this is suggests the that
differences in performance across grade level are not due to better
transcriptions for higher grade responses, but due to the nature of
the responses themselves.



SYS A1 A2 B1 B2 C ALL
ASR 0.91 0.96 0.98 0.98 0.98 0.97
CWD 0.92 0.96 0.98 0.98 0.99 0.97

Table 5. ATM-E Per grade level breakdown of performance on ALL

It is interesting to investigate what the prompt attention mech-
anism and the prompt encoder have learned in the HATM. Firstly,
a t-SNE [21] projection of the original (ATM) prompt embeddings
(Fig. 4a) is compared to the projection of the interpolated HATM
embeddings (Fig. 4b). Both sets of embeddings form three distinct
clusters, grouped by section. Notably, the interpolated embeddings
reside in the same locations as the originals, though they appear to be
more tightly grouped. The attention mechanism is also able to learn
section distinctions very well and the confusion matrix (not shown)
between prompt sections shows that the the system attends only over
prompts of the corresponding section.

(a) Original ATM (b) Interpolated HATM

Fig. 4. Prompt embeddings

Fig. 5a shows the entropy of the attention mechanism, ordered
first by section and then by increasing entropy. The plot clearly
shows 3 distinct spikes, which correspond to sections C, D and E,
respectively. This shows that there are topics within each section
which the model is able to understand and focus on very well, and
others for which it struggles to confidently find a similar topic. Fur-
thermore, entropy is generally correlated with how common a topic
is. Fig. 5b shows, on the same plot, a cumulative plot of AUC on
subsets of the evaluation data ALL corresponding to adding topics
in order of decreasing entropy, and the entropy of the added topics,
in decreasing order. AUC increases as more low-entropy topics are
added to the model. This suggests that entropy of the prompt at-
tention mechanism can be used as a measure of uncertainty of the
HATM’s ability to accurately assess relevance. Thus, depending
on the prompt, the model could reject all responses to these topics
whose entropy is above a certain threshold to be assessed by humans,
and process the rest automatically. This is an important advantage of
the HATM over the ATM, despite their comparable performance.

4.2. Performance on Unseen Prompts

The proposed models’ ability to generalize to new prompts is inves-
tigated in this section. Since real unseen prompt-response pairs are
unavailable, 10-fold cross validation over prompts (topics) was used
on the training and evaluation data. A fixed block of data, TRN-fixed
(Table 6), is never removed from the training data, as it contains
topics which dominate the training data and topics which do not ap-
pear in the evaluation set ALL. The TRN-xVal data was used in cross
validation. A subset of ALL, called ALL-sub, without the dominant

(a) Prompt Attention Entropy (b) Prompt Attention Entropy AUC

Fig. 5. HATM entropy

Data #Topics #Resp. #Words
TRN-fixed 178 142.8K 6.8M
TRN-xVal 201 150.1K 6.6M
ALL-sub 201 2955 127.7K

Table 6. Topic, response and word statistics of the prompt-response
data sets used for 10-fold cross validation.

topics of TRN, was used for cross validation evaluation. All parts of
related multi-part prompts are held out together.

The prompts presented to the models in the following experi-
ments are always either from subsets which are seen or unseen in the
training data. As in section 4.1, evaluation responses are always new
(not reused from the training data), but can be related to prompts
either seen or unseen in training. Two strategies for shuffling evalu-
ation responses for negative examples are considered: seen, unseen.
The first uses responses to seen prompts as negative examples, the
second uses responses to unseen prompts as negative examples. This
produces four experiments which illustrate different aspects of how
well the models understand what relates to seen prompts and how
well they generalize to new, unseen prompts. Relevance probabili-
ties are combined across all 10 folds to produce one ROC curve and
AUC score for each experiment. These curves, and the associated
AUC scores, represent the ’average’ AUC on the data. To decrease
noise arising from particular shufflings of the evaluation data, 10 dif-
ferent random topic shufflings are used as negative examples and the
positive examples are replicated 10 times for all 10 cross-validations
folds.

Neg. Resp. System Seen Prompts Unseen Prompts

Seen ATM-E 0.949 0.855
HATM-E 0.944 0.856

Unseen ATM-E 0.938 0.751
HATM-E 0.933 0.760

Table 7. Average AUC on ALL-sub

The results in Table 7 show that once prompts have been seen
in training, the model has a clear understanding of what is relevant
to them and is generally not sensitive to the nature of the negative-
example responses. However, on unseen prompts there is a degra-
dation of performance, which ranges from 0.751 to 0.855 for the
ATM-E and from 0.760 to 0.856 for the HATM-E as evaluation re-
sponse topic shuffling changes from seen to unseen. Clearly, the
models are able to generalize well to and assess the relevance of un-
familiar responses to seen prompts, and to a lesser degree, are able to
reasonably perform on new and unseen prompts, even in the extreme
scenario (0.760 AUC). This is expected, as the models are exposed



to a greater variety of responses than prompts. ROC curves for per-
formance on seen and unseen prompts with corresponding response
topic shuffling are shown in Fig. 6a and 6b. The experiments demon-
strate a marginal advantage of the HATM over the ATM on unseen
prompts.

(a) Seen Seen (b) Unseen Unseen

Fig. 6. ROC curves

It is interesting to analyze the mistakes which the system makes.
To do this, the relevance probabilities for positive and negative
examples are plotted as histograms for the scenarios where seen
prompts are combined with seen responses (Fig. 7a) and unseen
prompts with unseen responses (Fig. ??b). The other scenarios yield
similar histograms. When operating on seen data, the model is able
to correctly classify most examples with very high/low relevance
probabilities. However, when operating on unseen prompts it is
able to confidently detect when prompts and responses are mis-
matched, but is unsure about matched prompt-response pairs for
unseen prompts, which is the main failure case of these models.

(a) Seen Seen (b) Unseen Unseen

Fig. 7. Relevance Probability Histograms

This suggests that the models, via the response attention mecha-
nism, learn a ’lock and key’ mechanism, where for a given response,
only summation of the hidden states using weights derived from a
matched prompt result in a high relevance prediction, and all other
summations in a low relevance prediction. In the matched case for
unseen prompts the models correctly do not yield a very low rel-
evance score, but struggle to yield a high relevance score, which
indicates a generalization issue. It should be noted that ’lock and
key’ behavior reflects the way the models are trained - each response
in the training data is used as a positive example only once, when
matched with an appropriate prompt, and many times as a negative
example, when matched with any other prompt.

4.3. Use of ASR confidence Scores

As an initial experiment, word level confidence scores (mapped to
remove biases [22]) from the ASR output were applied to modify
the ATM input. The expectation was that these would help the ATM

focus on words which the system was more confident about. The
systems were evaluated on both ASR and crowd-sourced transcrip-
tions.

Three methods of applying the mapped confidence scores were
investigated: as an extra input into the response attention mechanism
(ATM-E-C1); as direct multiplication of the un-normalized response
attention weights by confidence scores (ATM-E-C2); weighing each
response’s contribution to the batch loss by the mean confidence
scores that response (ATM-E-C3). For ATM-E-C1 the response sim-
ilarity function was modified to use the confidence score γrt as an
extra scaled bias:

s(h̃pi , h̃
r
t , γ

r
t ) = v

T
r tanh(Λ1h̃

p
i + Λ2h̃

r
t + bγγ

r
t + b) (13)

and for ATM-E-C2 the unnormalized attention weights were scaled
by the confidence scores:

s(h̃pi , h̃
r
t , γ

r
t ) = γrt · s(h̃pi , h̃

r
t ) (14)

For the crowd-sourced evaluation transcriptions the confidence
scores were all set to 1.0. From table 8 it can be seen that there is
no benefit and even a slight degradation of performance from using
confidence scores, and neither do they do help the system to use the
better quality of the crowd-sourced transcriptions.

Transcriptions ATM-E ATM-E-C1 ATM-E-C2 ATM-E-C3
ASR 0.97 0.97 0.96 0.96
CWD 0.97 0.97 0.97 0.97

Table 8. AUC performance comparison of effect of using ASR con-
fidence scores in the ATM input.

5. CONCLUSIONS AND FUTURE WORK

This paper presented the Hierarchical Attention-based Topic Model
(HATM), which extends the ATM to explicitly make use of the sim-
ilarity between prompts. The HATM has comparable performance
to the ATM, and on unseen prompts matched with unseen responses
it performs slightly better. The primary advantage of the HATM is
the prompt attention mechanism which learns a topic ontology in an
unsupervised fashion. Crucially, the entropy of the prompt attention
mechanism can be used as a measure of uncertainty in the HATM’s
ability to assess relevance.

This work analyzed the behavior and primary failure modes of
the ATM and HATM, and it was determined that the models fail to
classify unseen prompts with matched unseen responses as relevant
with high probability. An initial study of the use of ASR confidence
scores as additional features was conducted and yielded no positive
results.

Clearly, the proposed models primarily suffer from a lack of
topic balanced training data. Thus, data augmentation strategies
should be investigated in future work to deal with the heavily skewed
topic distribution of the training data. Furthermore, the training of
the ATM and HATM on higher quality ASR transcriptions should
also be investigated.
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