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ABSTRACT

Automatic assessment of spoken language proficiency is a
sought-after technology. These systems often need to handle
the operating scenario where candidates have a skill level or
first language which was not encountered during the training
stage. For high stakes tests it is necessary for those systems
to have good grading performance when the candidate is from
the same population as those contained in the training set, and
they should know when they are likely to perform badly in
the case when the candidate is not from the same population
as the ones contained in training set. This paper focuses on
using Deep Density Networks to yield auto-marking confi-
dence. Firstly, we explore the benefits of parametrising either
a predictive distribution or a posterior distribution over the
parameters of the model likelihood and obtaining the predic-
tive distribution via marginalisation. Secondly, we investigate
how it is possible to act on the parametrised density in order
to explicitly teach the model to have low confidence in ar-
eas of the observation space where there is no training data
by assigning confidence scores to artificially generated data.
Lastly, we compare the capabilities of Factor Analysis, Varia-
tional Auto-Encodes, and Wasserstein Generative Adversarial
Networks to generate artificial data.

Index Terms— Auto-Marking, Confidence, Deep Neural
Networks.

1. INTRODUCTION

Systems for automatic assessment of spontaneous spoken
language proficiency are becoming increasingly important
due to the rise in the demand for English as a second lan-
guage learning. Previous work [1], [2], [3] and [4] looked at
filtering-out non-scorable candidates, effectively performing
anomaly detection. One major disadvantage of those systems
is that they reject candidates based on whether they can be
scored at all, rather than providing a confidence measure over
their predictions. To overcome this, [5] successfully used
Gaussian Processes (GP) [6] to yield state-of-the-art grading
performance whilst leveraging GP’s probabilist framework to
provide meaningful confidence estimates. However, GPs are
known for being computational prohibitive due to their cubic
cost in the number of observations.

Deep Neural Networks (DNNs) have achieved state-of-
the-art performance on a wide variety of machine learning
tasks. However, despite their impressive performance, DNNs
are known for not being able to adequately quantify confi-
dence in their predictions, and tend to produce overconfident
predictions [7]. Recently, Bayesian Neural Networks (BNNs)
[8], [9] have generated increasing attention as a principled
framework to provide confidence estimation for deep learn-
ing models. BNNs introduce confidence to deep learning
models from a Bayesian perspective. By giving a prior to the
network parameters, Bayes Theorem is applied to find the
posterior distribution of network weights given the training
data, instead of a point estimate. Whether the resulting pre-
dictive distribution is meaningful depends on the choice of
prior distribution, and one should be aware of the fact that
inappropriate priors can give rise to arbitrarily bad predictive
distributions. Further, due to the complicated non-linearity
and non-conjugacy in deep models, exact posterior infer-
ence is rarely available. As a consequence, the confidence
estimates will not only be affected by the choice of prior
but also by the nature of the approximation used in order to
make inference in these models tractable. Several inference
schemes exists with the state-of-the-art being Hamiltonian
Monte Carlo [10] however, those schemes are an active area
of research as, at the moment, they cannot be scaled to the
millions of parameters found in modern DNNs. Recently,
[11] developed a new theoretical framework, Monte Carlo
Drop-Out (MCD), casting drop-out training in DNNs as ap-
proximate Bayesian inference in Deep Gaussian Processes.
In so doing, they were able to derive practical confidence
estimates mitigating the problem of sacrificing either com-
putational complexity or test accuracy. Unfortunately, the
nature of the confidence estimates greatly depends on the
activation functions being used and the drop-out rate chosen.

Lately, [12] proposed a novel method to yield confidence
in auto-markers in which a Deep Density Network (DDN)
[13] is used to model a predictive distribution and it is trained
in a two-stage fashion to yield a high confidence data dis-
tribution on observations coming from the training set and
a low confidence artificial data distribution on artificial data
representing candidates with unseen characteristics. In so



doing, they were able to obtain grading performance compa-
rable to the one obtained with GPs and MCD and confidence
estimates which surpassed those of GPs and MCD in the task
of deciding which candidates should be backed-off to human
graders.

In this work, we adopt and extend the training procedure
introduced in [12] as follows. Firstly, we explore the impact
that different form of predictive distributions parametrised by
a DDN have on confidence. Secondly, we investigate how it
is possible to act on the parametrised densities in order to ex-
plicitly teach the model to have low confidence in areas of the
observation space where there is no training data by assign-
ing confidence scores to artificially generated data. Lastly,
we compare the capabilities of Factor Analysis, Variational
Auto-Encodes, and Wasserstein Generative Adversarial Net-
works to generate artificial data.

2. PREDICTIVE DISTRIBUTIONS

In this section, we will explore how different predictive
distributions can be parametrised via a DDN. Throughout
it, fθ(x) will denote the output of a DDN, f(·), evaluated
at x, used to yield a parameter θ of a predictive distribu-
tion p(y|x, θ) over the overall grade y. So for example,
p(y|µ, σ2) = N (y|fµ(x), fσ2(x)) is a Gaussian whose
mean, µ, and variance, σ2, are modelled by a DDN, f(·).
Training in this kind of models will be done via the classi-
cal maximum likelihood criterion with the i.i.d. assumption:
given training data D = {(xn, yn)}Nn=1, we solve

max
θ

N∑
n=1

log p(yn|xn, θ). (1)

Our ultimate goal is to have a model which can not only
predict a grade given a feature representation of the candidate
performance, but also provide an estimate of its confidence.
A standard way, and the way adopted in this work, is to use
the mean and the variance of the predictive distribution as the
model prediction of the grade and its confidence in it, respec-
tively

µy = Ep(y|x)(y) =

∫
yp(y|x)dx, (2)

σ2
y = Varp(y|x)(y) =

∫
y2p(y|x)dx− µ2

y. (3)

2.1. Form of Predictive Distribution

One of the simplest form of predictive distribution that can be
used is a Gaussian with empirical variance

p(y|x, µ) = N (y|fµ(x), σ̂2), (4)

where σ̂2 denotes the empirical variance of the training set.
In so doing, the model is effectively predicting a grade and

attaching to it a confidence score equal to σ̂2 irrespective of
what the input was. A natural extension is to model both the
mean and the variance of the Gaussian

p(y|x, µ, σ2) = N (y|fµ(x), fσ2(x)). (5)

This allows the model to provide an estimate of the confidence
in its predictions by taking into account candidate-specific in-
formation.

The Generalised Gaussian (GG), a.k.a the exponential
power distribution, represents an extension of the standard
Gaussian distribution and can be parametrised as follows

p(y|x, µ, α, β) = GG(y|fµ(x), fα(x), fβ(x))

=
fβ(x)

2fα(x)Γ
(

1
fβ(x)

) exp

(
−
(
|y − fµ(x)|
fα(x)

)fβ(x))
.

(6)

This family is much more flexible than a standard Gaussian
as it allows for tails that are either heavier than a Gaussian
(when β < 2) or lighter than a Gaussian (when β > 2).
Further, it is equivalent to a Gaussian and a Laplace when β
is set to 2 and 1, respectively.

So far, we have considered predictive densities which
fall under the exponential family of distributions. A widely
used distribution which is not from the exponential family
is the location-scale t-distribution. This distribution can be
parametrised as

p(y|x, α, µ, σ2) = t(y|(fα(x), fµ(x), fσ2(x))

=
Γ
(
fα(x)+1

2

)
√
πfσ2(x)fα(x)Γ

(
fα(x)

2

)
×

(
fα(x) +

(y−fµ(x))2
fσ2 (x)

fα(x)

)− fα(x)+1
2

.

(7)

Interestingly, a predictive t-distribution can also be ob-
tained by using a Gaussian likelihood and assuming a Normal-
Inverse-Wishart (NIW) distribution over its parameters. In
this case, A DDN is used to parametrise a posterior NIW
distribution

p(µ, σ2|x) = NIW (µ, σ2|fm(x), fλ(x), fψ2(x), fρ(x))

= N
(
y
∣∣∣fµ(x),

fσ2(x)

fλ(x)

)
IW(σ2|fψ2(x), fρ(x)))

(8)

where

IW(σ2|fψ2(x), fρ(x))) =

(
fψ2(x)

fρ(x)
2

) fρ(x)

2

Γ
(
fρ(x)

2

) e
fρ(x)f

ψ2 (x)

2y

y1+
fρ(x)

2

.

(9)



Given a Gaussian likelihood over the grade y and a NIW
distribution over its parameters, the predictive distribution,
which is obtained via marginalisation, is a t-distribution

p(y|x) =

∫ ∫
p(y|x, µ, σ2)p(µ, σ2|x)dµdσ2. (10)

We refer to this parametrisation of the t-distribution as a t-
distribution obtained via marginalisation and we denote it as
t-distribution†. Although using a DNN to parametrise a pos-
terior NIW over a Gaussian likelihood parameters, yields a t-
distribution, doing so provides more flexibility when it comes
to estimating the predictive variance, i.e. confidence, Under a
t-distribution, the predictive variance is equal to α

α−2σ, whilst
in a t-distribution† it is equal to λ+1

λ(ρ−2)ψ
2. That is, we effec-

tively have one more parameter, λ, that can help in modelling
confidence more accurately.

3. EXPLICIT CONFIDENCE MODELLING

DNNs are extremely complex models and guarantees on their
behaviour once asked to make predictions in region of the ob-
servation space where there is no training data very rarely,
if never, exists. In this section we outline how the models
presented above can be explicitly trained in a two-stage fash-
ion to have low confidence in region of the observation space
where there is no training data via artificially generated data
to which we attach confidence scores.

3.1. Training Criterion

In order to teach a model to have low confidence in particular
regions of the observation space, we train a DDN in a two-
stage fashion. Firstly, we train a DDN M to parametrise a
predictive density p(y|x) via maximum likelihood as outlined
in Section 2. Then, we initialise another DDN,M1, from the
trained model and we train it to minimise

L =Ex∼q(x)(KL(q(y|x)||p(y|x,M1)))

+ ηEx∼q̃(x)(KL(q̃(y|x)||p(y|x,M1))),
(11)

In the above equation, q(x) and q(y|x) are the real training
data distribution of x and the target distribution of x|y when
x is a training data point. q̃(x) and q̃(y|x) are the distribu-
tion of the artificial data and the target distribution over y|x
when x is an artificial data point. Therefore, we are essen-
tially asking the model to override what it might have learnt
during the ML training stage with the behaviour that we want
it to exhibit in particular locations of the observation space.
Here, we set q(y|x) = p(y|x,M) and the constant η ∈ R, is
used to scale the effect of the second KL divergence.

In the next section, we will go over how one might choose
q̃(y|x) and specify the confidence scores of the artificial data
depending on what from of predictive distribution has been
chosen, and how to generate artificial data. We will do so by

focusing on the Gaussian and t-distribution leaving the Gen-
eralised Gaussian aside.

3.2. Form of Predictive Distribution over Artificial Data

When the predictive distribution is a Gaussian, we can take
the target distribution over the artificial data to be

q̃(y|x) = N (y|fµ(x|M), νσ2 ||x− x̄||2), (12)

i.e. we use of the mean of the Gaussian predictive distribu-
tion parametrised by M as the target mean and the scaled
euclidean distance between x and the training data mean x̄
as the target variance. In so doing, we are explicitly asking
the model to have low confidence away from the mean of the
training data. We refer to νσ2 ||x − x̄||2 as the confidence
score associated to an artificial data point x.

When the predictive distribution is a t-distribution we
have two choices when it comes to enforcing low confidence
away from the training data. On the one hand, we can act
on the predictive t-distribution directly and choose the target
distribution over the artificial data to be

q̃(y|x) = t(y|fα(x|M), fµ(x|M), νσ2 ||x− x̄||2). (13)

i.e. we use of the degrees of freedom and location of the t-
distribution parametrised by M as the target number of de-
grees of freedom and location, and the scaled euclidean dis-
tance between x and the training data mean x̄ as the target
scale. Unfortunately, a closed form solution for the KL diver-
gence between two t-distributions distributions does not exist
[14]. To overcome this issue, a popular approach, and the ap-
proach used in this work, is to approximate the t-distribution
with a Gaussian

t(y|α, µ, σ2) ≈ N (y|Et(y|α,µ,σ2)(y),Vart(y|α,µ,σ2)(y)),
(14)

where

Et(y|α,µ,σ2)(y) = µ if α > 1, else undefined,

(15)

Vart(y|α,µ,σ2)(y) =
α

α− 2
σ2 if α > 2, else undefined.

(16)

Note that this approximation is only used for KL divergences
computations, we do make predictions at test time using this
approximate form.

On the other hand, we can act on the parameters of the
NIW posterior in which case all the KL diverges are in terms
of the distribution over (µ, σ2), and we can set

q̃(µ, σ2|x) =NIW (µ, σ2|fm(x|M), fλ(x|M),

νρ||x− x̄||2, νψ2 ||x− x̄||2),
(17)



i.e. we use the confidence in the posterior mean λ and the
posterior mean itself estimated byM as the target values and
the scaled euclidean distance between x and the training data
mean x̄ as the target confidence in the posterior scale, ρ, and
the posterior scale itself. This way, we are effectively asking
the NIW to increase its certainty in a high posterior scale as
the distance from the mean of the training data increases.

3.3. Artificial Data Generation

In order to generate artificial observations X̃ , we model q̃(x)
using a FA model, a VAE, and a WGAN. In this section we
give a brief overview all of three models.

FA [15] is possibly the simplest Latent Variable Model
(LVM) where the conditional distribution p(x|z) is expressed
in terms of a linear mapping from latent variables to data vari-
ablesx = Wz+µ+ε, whereW andµ parametrise the linear
mapping between the observation space and the latent space,
and ε is a noise process independent of x. In a FA model,
the prior distribution over z is given by p(z) = N (z|0, I),
and the noise ε is distributed according to p(ε) = N (z|0,Ψ),
where Ψ is a d× d diagonal matrix. Because of the linearity
of the mapping and the Gaussianity of ε, the joint distribution
of x and z is Gaussian and as a result, the marginal distribu-
tion of the observations and the conditional distribution of the
observations given the latent variables are analytical tractable

p(x) = N (x|µ,WW T + Ψ), (18)
p(x|z) = N (x|Wz + µ,Ψ). (19)

We can determine the parameters W , µ, and Ψ by max-
imum likelihood. The solution for µ is given by the training
data mean. However, there is no closed-form solution for
W and Ψ, which must be found iteratively. Because FA is a
LVM, this can be done using the EM algorithm [15].

A VAE [16] is a Latent Variable Model (LVM) where the
conditional distribution p(x|z), assumed to be Gaussian in
the case of a continuous variable, is parametrised by a DDN

p(x|z,θ) = N (x|fµ(z|θ), fΣ(z|θ)), (20)

where fµ(z|θ) and fΣ(z|θ) are the outputs of the DDN,
which is parametrised by θ and also called the decoder net-
work, providing the mean vector and the diagonal covariance
matrix of the Gaussian distribution, respectively. Because of
the non-linearities introduced by the DDN however, the true
conditional p(z|x) is not analytically tractable. To remedy
this, an inference network is introduced

q(z|x,ν) = N (z|fµ(x|ν), fΣ(x|ν)), (21)

where fµ(x|ν) and fΣ(x|ν) are the outputs of the DNN,
which is parametrised by ν and also called the encoder net-
work, providing the mean vector and the diagonal covariance

matrix of the variational approximation to the true condi-
tional, respectively. Like in the FA model, we assume that
the prior distribution over the latent variables is given by
p(z) = N (0, I). The model and inference network can then
be jointly trained using the Auto-Encoding Variational Bayes
(AEVB) Estimator [16].

Traditional GANs, [17] argues, typically minimise diver-
gences which are potentially not continuous with respect to
the generators parameters, leading to training difficulty. They
propose instead using the Earth-Mover, which is also called
Wasserstein-1 divergence, and constructing the WGAN value
function using the Kantorovich-Rubinstein duality [18]

min
G

max
C∈C

Ex∼pdata(C(x)) + Ez∼pz (C(G(z))), (22)

where C is the set of 1-Lipschitz functions, z ∼ N (0, I) is
the latent space from which the generator G(z) : Z → X
creates samples and C(x) : X → R is the critic. Origi-
nally, to enforce the Lipschitz constraint on the critic [17] pro-
posed to clip the weights of the critic to lie within a compact
space [−c, c]. However, the set of functions satisfying this
constraint is a subset of the k-Lipschitz functions for some
k which depends on c and the critic architecture. [19] pro-
posed to solve this issue by introducing a gradient penalty in
the WGAN loss

min
G

max
C∈C

Ex∼pdata(C(x)) + Ez∼pz (C(G(z)))

+ γEx̂∼px̂(||∇x̂C(x̂)− 1||)2,
(23)

where γ is the gradient penalty coefficient and px̂ is explicitly
defined by sampling uniformly along straight lines between
pairs of points sampled from the data distribution pdata, i.e.
the training samples, and the generator distribution which is
implicitly defined via pz . In this work, both the generator and
the critic are parametrised by a DNN.

4. EXPERIMENTAL RESULTS

4.1. Data, Assessment and Experimental Procedure

All experiments were performed using 33-dimensional pro-
nunciation, fluency and acoustic features derived from audio
and ASR transcriptions of responses to questions from the
BULATS exam [20]. The ASR system has a Word Error
Rate (WER) of 32% on a development set. The training and
test sets have 4300 and 224 candidates, respectively. Each
candidate provided a response to 21 questions, and the fea-
tures used are aggregated over all questions into a single
vector. The target variable is 1-dimensional and it represents
the average grade obtained by each candidate. The test data
was graded by expert graders at Cambridge English. These
experts have inter-grader Pearson correlation coefficients
(PCCs) in the range 0.95-0.97. Candidates are equally dis-
tributed across Common European Framework of Reference



for Languages (CEFR) grade levels [21]. The input features
were normalised by subtracting the mean and dividing by the
standard deviations for each dimension computed on all the
training observations.

Assessing confidence is challenging as the ground truth
confidence estimates are usually not available. The operat-
ing scenario is to use a model’s estimate of confidence in its
prediction to decide what candidates should be assessed by
human graders for high-stakes tests a decision which we call
back-off. As the back-off fraction is increased, model pre-
dictions are replaced with true targets according to: (i) ran-
dom ordering, yielding the expected random back-off curve,
(ii) order of decreasing mean squared error MSE relative to
true targets, yielding the optimal back-off curve, (iii) order
of decreasing predictive variance yielding the model back-off
curve. Given an ordering, the model performance is sum-
marised by either the PCC or the mean squared error (MSE)
w.r.t. the true targets. In order to asses confidence estimates,
we employ the following metric

AUCr =
AUCmodel − AUCradom

AUCoptimal − AUCradom
. (24)

where AUCradom, AUCoptimal and AUCmodel represent the
area under the random, optimal and model back-off curves
respectively. When the PCC is used to summarise the model
performance, we refer to AUCPCC

r , and when the MSE is
used we refer to AUCMSE

r . It must be noted that this assess-
ment criterion is not completely independent of the baseline
performance of the model (the performance when 0% of the
candidates are backed-off) so care must be taken when we
want to compare the confidence estimates of two models that
have very different baseline performance in terms of PCC or
MSE.

All the models where tuned on a validation test consisting
of a random 10% of the training data. The DDNs used all
had 2 hidden layers with 180 units within each layer. The
networks weights were initialised from N (0, 0.05) whilst
the biases were initialised at zero. For those DDNs trained
using the maximum likelihood criterion, they were trained
using Adam [22] with a learning rate of 1e − 5 and batch
size of 50 for 800 epochs. For those trained using the two-
stage training procedure, vanilla Stochastic Gradient Descent
(SGD) with a learning rate of 1e − 6 and batch size of 50
and 1000 epochs of training were used. A drop-out rate of
40% and leaky ReLu activation functions were used. In order
to test the sensitivity to the random seed, all the experiments
were repeated 5 times and the mean performance together
with the standard deviation recorded. However, it was found
that the performance metrics used PCC, MSE, AUCPCC

r , and
AUCMSE

r had all standard deviations less than 0.001, hence it
was chosen not to report them.

The FA model used in this work had a 2-dimensional la-
tent space and it is trained using 100 iterations of the EM
algorithm. The VAE had itself a 2-dimensional latent space,
and its architecture comprised of an encoder and a decoder
each having 2 hidden layers with 180 units within each layer.
The networks weights were initialised fromN (0, 0.01) whilst
the biases were initialised at zero. The WGAN used had a 2-
dimensional latent space, and its architecture comprised of a
critic and a generator each having 2 hidden layers with 180
units within each layer. A gradient penalty of 5.0 was used
and for each generator update the critic was updated 5 times.
Both the VAE and the WGAN were trained using Adam with
a learning rate of 1e − 05, for 2000 epochs. A drop-out rate
of 40%, and leaky ReLu activation functions were used.

4.2. Results

Table 1 shows that a predictive t-distribution seems to be
better suited to the dataset at hand as it yields better uncer-
tainty estimates when compared to a Gaussian and Gener-
alised Gaussian. We also observe that using a Gaussian with
empirical variance (Empirical Gaussian) yields slightly better
PCC and MSE performance but it does not yield meaning-
ful uncertainty estimates as it makes every prediction with the
same level of uncertainty, i.e. the variance of the training data.
Unsurprisingly, the Generalised Gaussian performs slightly
better in terms of both AUCPCC

r and AUCMSE
r than a Gaus-

sian since the latter is a special case of the former. We also
see a gain in performance over the t-distribution in terms of
AUCr when the t-distribution is obtained via marginalisation.
This behaviour is certainly linked to the higher modelling ca-
pability of the predictive variance under the t-distribution† as
showed by the fact that when fixing the value of λ to 1, the t-
distribution† achieves a PCC of 0.870 and AUCPCC

r of 0.255.
The same trend in the confidence estimates is observed w.r.t.
both the PCC and the MSE, so, since the same is true for the
subsequent experiments, we report the PCC results.

Table 1. Performance of different forms of predictive distri-
butions.

Grade AUCr
Pred. Dist. PCC MSE PCC MSE

Emp. Gaussian 0.874 8.385 - -
Gaussian 0.870 9.024 0.232 0.185

Gen. Gaussian 0.872 8.834 0.248 0.204
t-distribution 0.870 8.939 0.259 0.223
t-distribution† 0.870 8.996 0.311 0.274

For all three generative models presented above in order
to generate artificial observations which are different from the
training data but still lie on the training data manifold after
training we increase the variance on the prior over the la-
tent variables, i.e. we control β in p(z) = N (0, βI). The
VAE achieves much better average negative log likelihood



(a) (b) (c) (d)

Fig. 1. Two-stage training of a Gaussian: (a)-(b) FA latent space and AUC curves (c)-(d) VAE latent space and AUC curves.

(NLL) on the test set when compared to the FA model (89.952
vs. 186.103) showing the ability of the non-linear mapping
between observations and latent variables to model the data
manifold much better. In their work [12] used FA-generated
artificial data to train a Gaussian predictive distribution to
have low confidence in region of the space where there is no
training data. Table 2 shows that it is possible to improve
on the prediction confidence by using generative models that
can model the data manifold more effectively. As we can see,
using a VAE and a WGAN over a FA model to generate ar-
tificial data, whilst fixing η = 1.0 and νσ2 = 5.0, yields
better confidence estimates with data generated with the VAE
yielding the best performance. The difference in performance
between using a FA model and a VAE can be explained by
looking at the latent space learned by the two models. Figure
1 shows that the FA latent space does not seem to be Gaus-
sian distributed as the linear mapping assumed by the model
is simply too restrictive. As a consequence, generating obser-
vations by sampling the latent variables from a Gaussian prior
might not yield observations which lie on the data manifold.

Table 2. Performance of the Gaussian predictive distribution
under the two-stage training criterion.

Pred. Dist. X̃ PCC AUCPCC
r

Gaussian - 0.870 0.232
” FA 0.870 0.281
” VAE 0.870 0.348
” WGAN 0.870 0.346

Finally, having observed that the artificial data generated
using a VAE improved confidence estimates under the Gaus-
sian predictive distribution the most, we moved onto look-
ing at the effect of using the two-stage training criterion with
VAE-generated data on the other forms of predictive distribu-
tion whilst fixing η = 1.0, νσ2 = 5.0, and νρ = νψ2 = 1e3.
Table 3 shows that once again the training procedure improves
the confidence estimates with the t-distribution obtained via
marginalisation yielding the best performance. It is also in-

teresting to note that the significant differences observed in
terms of AUCr due to the different form of predictive dis-
tribution used tend to disappear once the two-stage training
procedure is used.

Table 3. Performance of different predictive distributions un-
der the two-stage training criterion with VAE-generated arti-
ficial data.

Pred. Dist. X̃ PCC AUCPCC
r

Gaussian VAE 0.870 0.348
t-distribution ” 0.870 0.344
t-distribution† ” 0.869 0.368

5. CONCLUSION AND FUTURE WORK

We explored how a deep-learning-based auto-marker estimate
of confidence can be improved. We find that parametrising a
t-distribution via marginalisation yields better confidence es-
timates compared to parametrising a Gaussian, Generalised
Gaussian, or t-distribution. In [12], it was found that a two-
stage training criterion which enforces low confidence away
from the training data under a Gaussian predictive distribu-
tion could improve an auto-marker estimate of confidence.
Our work agrees with this finding and it complements it by
showing that using more complex generative models, in this
work VAEs, to obtain the artificial data can help improve con-
fidence estimates across different forms of predictive distribu-
tions. Further, it was found that differences observed in terms
of confidence estimates due to the different form of predictive
distribution used tend to disappear once the two-stage training
procedure is used. Future work should asses the performance
of these models on other tasks and datasets.
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