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Low Resource Speech Processing

• Low-resource can refer to various elements:
• available acoustic model training data
• available audio transcriptions
• available lexicon (phonetic lexicon)
• available language model training data
• available language processing resources (parsers/PoS tagger)

• Highlighted described in context of the Babel Programme
• ran from March 2012 to November 2016
• see web-page for CUED references

http://mi.eng.cam.ac.uk/∼mjfg/BABEL/index.html
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IARPA Babel Program

“The Babel Program will develop agile and robust speech
recognition technology that can be rapidly applied to any
human language in order to provide effective search
capability for analysts to efficiently process massive
amounts of real-world recorded speech.”

Babel Program BAA
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Task: Key Word (Phrase) Spotting

• Specified task is KWS - query terms can be words or phrases
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• Key problems are:
• ASR systems with very limited training data available
• ASR systems for highly diverse languages
• KWS systems with high out-of-vocabulary query terms
• KWS for low accuracy ASR systems

This talk focuses on ASR

4/63



Task: Key Word (Phrase) Spotting

• Specified task is KWS - query terms can be words or phrases

SIL

SIL

TO

TO

TO

IT

IT

IT

IT IT

IN

AN
AN

A

A

BUT

BUT

DIDN'T

DIDN'T

ELABORATE
SIL

IN

Time (s)

0.00 0.50 1.00 1.50 2.25 2.85

 Speech  Speech
Recognition

Word Lattice

Keyword

Hits

Query

Keyword
Search

• Key problems are:
• ASR systems with very limited training data available
• ASR systems for highly diverse languages
• KWS systems with high out-of-vocabulary query terms
• KWS for low accuracy ASR systems

This talk focuses on ASR

4/63



IARPA Babel Program Specifications

• Language Packs
• Conversational/scripted telephone data (plus other channels)
• Full: 60-80 hours transcribed speech
• Limited: 10 hours transcribed speech
• Very Limited: 3 hours transcribed speech
• additional untranscribed audio data available
• 10 hour Development and Evaluation sets
• Lexicon covering training vocabulary
• X-SAMPA phone set

• Increasing number of development languages: 4/5/6/7
• total: 25 languages (inc. surprise languages, Pashto repeated)

• Surprise Language evaluation
• decreasing development time - final phase 1 week
• 80 hours of data to transcribe/KWS - 1 week
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IARPA Babel Program Primary Evaluations

• Base Period (BP): > 0.3 MTWV
• Full Language Pack (FLP), 60-80 hours of transcribed data

• Option Period 1 (OP1): > 0.3 MTWV
• Limited Language Pack (LLP), 10 hours of transcribed data

• Option Period 2 (OP2): > 0.3 MTWV
• Very Limited Language Pack (VLLP), 3 hours transcribed data
• no phonetic lexicon
• language model harvested from the web (web-data)
• multi-language (ML) data allowed from BP and OP1

• Option Period 3 (OP3): > 0.6 MTWV, < 50% WER
• Full Language Pack (FLP), 40-60 hours of transcribed data
• no phonetic lexicon
• language model harvested from the web (web-data)
• ML data allowed from BP/OP1/OP2/OP3+non-Babel
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Low Resource
Speech Recognition
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Use of (Deep) Neural Networks
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• Develop both Tandem and Hybrid system configurations
• results are complementary (both for ASR and KWS) - see later
• gains from techniques often apply to both set-ups
• but systems also have different advantages

• Mixed gains from RNN/LSTM/CNN configurations
• challenges to get KWS working well
• BBN team got some gains in OP3
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Multi-Language Framework

Train

Models

Trans L103

Trans L102Audio L102Audio L101Trans L101

Audio L103

• Data from non-target language used to train model:
• train complete acoustic model (see later)
• train DNN to extract multi-language features
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Multi-Language Bottleneck Features
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• Generate BN features from multiple languages
• aim to make feature extractor language independent
• language-dependent GMM used for recognition

• All layers other than output layer shared over all languages
• output-layer language-specific - “hat-swapping”
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Performance on Swahili

BottleNeck TER MTWV
Features (%) iv oov tot
FLP 44.6 0.5707 0.4121 0.5399
ML 41.7 0.6157 0.4733 0.5886

• Multi-Lingual (ML) BN Features trained on 11 languages
• large gains in both ASR and KWS

• Larger gains observed as languages for BN features increases
• Other configurations possible

• ML BN features used by all Babel teams
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Multi-Language Language Models
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• Current research direction
• use ML-BN configuration but for language models
• both input and output layers language dependent
• far fewer parameters tied for LMs than BNs/hybrid systems
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ASR: Lexicon
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Phonetic Lexicons

• Most speech recognition systems use a phonetic lexicon:
A ax
A ey
A. ey
A.’S ey z
AAH aa

• Each phone has attributes used for decision tree questions

ax Vowel V-Back Back Short Medium Unrounded
ey Vowel Short Dipthong Front-Start Fronting Medium Unrounded
z Fricative Central Lenis Coronal Anterior Continuent Strident

• Phonetic lexicon generated manually
• additional terms added using grapheme-to-phoneme (G2P)

systems
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Graphemic Lexicons

• As well as manual cost other issues with phonetic lexicons
• inconsistencies depending on the phonetician
• sometimes transcriptions generated for particular speaker

• An alternative is to generate a graphemic lexicon
A aˆI
A. aˆI;B
A.’S aˆI;BA sˆF
AAH aˆI aˆM hˆF

• deterministic process - no manual/G2P system required
• CUED system additional markers added (phonetic possible)

• A - apostrophe following the letter
• B - abbreviation (A., B. etc)
• position - I (initial), M (middle), F (final)
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Performance on English - Non-Native Learners
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• For “beginners” graphemic systems outperform phonetic
• as ability improves ASR performance improves
• graphemic systems can be useful for (even) English!
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Writing Systems

• English/European languages Latin script is used

What about general languages world-wide?

• There are a range of writing schemes used:
• Pictographic - graphemes represent concepts
• Logographic - graphemes represent words of morphemes
• Syllabries - graphemes represent syllables
• Segmental - form examined on the Babel project

• Segmental writing systems can be further partitioned as
• alphabet - consonants and vowels both written
• abugida - vowels marked as diacritics on consonants
• abjad - only the consonants are written
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Example Writing Schemes

Language System Script Graphemes
Pashto Abjad Arabic 47
Tagalog Alphabet Latin 53†

Tamil Abugida Tamil 48
Zulu Alphabet Latin 52†

Kazakh Alphabet Cyrillic/Latin 126†

Telugu Abugida Telugu 60
Amharic Abugida Ethiopic 247
Mongolian Alphabet Cyrillic 66†

• Count excludes apostrophe, hyphen, punctuation ...
• includes capitals for Latin/Cyrillic scripts
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Graphemic System Attributes

• Often no attributes associated with graphemes
• limits decision tree questions to grapheme
• no attributes such as voiced/unvoiced

• Interesting to examine additional attributes
• bottom-up clustering of observed graphemes
• make use of attributes of the unicode coding
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Kazakh Lexicon

• Mixture of Cyrillic and Latin script
• use unicode descriptors to map between forms

• Able to relate accented letters to root grapheme
• also detect diacritics from actual graphemes
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Phonetic vs Graphemic Performance

Language Id Script TER (%)
Phon Grph CNC

Tok Pisin 207 Latin 40.6 41.1 39.4
Kazakh 302 Cyrillic/Latin 53.5 52.7 51.5
Telugu 303 Telugu 69.1 69.5 67.5

• Comparable performance of graphemic/phonetic systems
• graphemic/phonetic systems are complementary to one another

• Similar trend observed over all the Babel languages
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ASR: Regularisation
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Stimulated Systems

• Consider one layer of a standard deep neural network

h(l) = σ (W(l)h(l−1) + b(l))

• σ() - non-linear activation function
• W(l),b(l) - network parameters for layer l

• No structure enforced on parameters
• possible to arbitrarily order nodes (and get same result)
• highly complicated relationship between layers

but that’s kind of why we like them!
• Stimulated training: performance/interpretability balance
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Stimulated Systems
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Stimulated Network Training

• Introduce regularisation term into training

F(λ) = L(λ) + αR(λ)

• Regularisation term R(λ) based on KL-divergence

R(λ) =∑
t
∑
l
∑
i
g(s i , ŝpt) log

⎛

⎝

g(s i , ŝpt)

h(l)ti

⎞

⎠

g(s i , ŝpt)∝ N (s i ; ŝpt , σ
2I)

• ŝpt position in grid-space of active phone at time t
• s i position of node in grid-space of node i
• h(l)ti (normalised) activation for node i of layer l at time t
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Stimulated Training: Activation Function
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Stimulated Training

Language Id Stimu TER MTWV
Train (%) iv oov tot

Amharic 307 7 41.1 0.6500 0.5828 0.6402
3 40.8 0.6619 0.5935 0.6521

Javanese 402 7 50.9 0.4991 0.4448 0.4924
3 50.7 0.5024 0.4679 0.4993

• Stimulated training on hybrid system only
• results based on combined hybrid/tandem systems

• Consistent gains (all languages) for ASR and KWS
• enabled larger networks to be trained
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ASR: Language Model
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Language Model Training Data

• Concentrated on the acoustic model - LM also impacted
• training data determines possible vocabulary for systems
• vocabulary impacts OOV rates (both ASR/KWS)
• quantity of data determines accuracy (and order) of LMs

• Significant quantities of data available on the web
• Wikipedia - about 290 languages have entries
• 1st item quantity, 2nd term “quality” measure:

English 5,056,964 911.38
Swedish 2,603,446 7.58
German 1,897,531 99.3
Cebuano 1,859,449 2.12
Dutch 1,851,256 10.86

Can we make use of web-data for language model training?
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Language Model Training Data

• Babel project using conversational telephone speech
• Wikipedia not a perfect match!

• A number of issues need to be considered
• sources of data to use
• ensure match to target language (language identification)
• select data that matches target domain
• tidying data

• Once sources found - build language model component(s)
• interpolate (linear/log-linear) with matched source
• interpolation weights often small - Swahili VLLP

VLLP-LM 0.885, TED 0.015, Blogs 0.008, General 0.0926
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BABEL OP3 Web Collection

Language Id LM Data (K) FLP OOV (%)
words vocab Weight ASR KWS

Pashto 104 FLP 535 14.4 — 1.96 11.38
Web 104624 376.3 0.981 0.68 3.05

Amharic 307 FLP 388 35.0 — 9.80 15.42
Web 13911 223.6 0.976 5.67 9.16

Georgian 404 FLP 406 34.3 — 8.16 14.93
Web 137041 278.6 0.911 3.02 5.22

• Quantity of web-data available highly dependent on language
• interpolation weight (“match”) of web data 0.089 to 0.019
• remember need for rapid deployment
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Efficient:
Model Training
Keyword Spotting
System Combination
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Efficient Model Building

• Rapid/efficient system development important in Babel
• handle any language
• rapid development of surprise language: 1 week!
• large amounts of evaluation data (≈ 80 hours)

• “Plug and Play” scripts developed (all sites)
• standardised language pack distributions
• common system set-up for all languages

• Various “bottlenecks” needed to be addressed
• state-of-the-art systems
• rich lattices (large quantities of data)
• system combination (best performance)
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Efficiency: RNNLMs
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RNN Language Models
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• Recurrent neural networks model complete word history

P(ω1∶L) ≈
L
∏
i=1

P(ωi ∣ωi−1, h̃i−2) ≈
L
∏
i=1

P(ωi ∣h̃i−1)

• Issues that need to be addressed: training & decoding
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Cross-Entropy Training Criteria

• Standard training criterion for word sequence ω1∶L = ω1, . . . , ωL

Fce = −
1
L

L
∑
i=1

log (P(ωi ∣h̃i−1))

• GPU training makes this reasonable BUT
• Compute cost for softmax normalisation term Z(h̃i−1)

P(ωi ∣h̃i−1) =
1

Z(h̃i−1)
exp (wT

f (ωi)
h̃i−1)

• required as unobserved sequence (contrast acoustic model)
• scales with vocabulary size and training data
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Alternative Training Criteria

• Variance Regularisation: eliminate decoding normalisation

Fvr = Fce +
γ

2
1
L

L
∑
i=1
(log(Z(h̃i−1)) − log(Z))

2

• log(Z) average (log) history normalisation
• all normalisation terms tend to be the same

• Noise Contrastive Estimation: efficient decoding and training

Fnce = −
1
L

L
∑
i=1

⎛

⎝
log(P(yi = T∣ωi , h̃i−1) +

k
∑
j=1

log(P(yi = F∣ω̂ij , h̃i−1)
⎞

⎠

• ω̂ij competing samples for ωi - often sample from uni-gram LM
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Impact of RNN LM (Pashto)

LM RNN Crit Time (hrs) TER
Data Trn F-T Train Rescore (%)
FLP — — 44.1

FLP+Web
— — 43.8

CE CE 125.0 23.0 42.8
NCE VR 10.7 2.0 43.0

• Gains from web-data for N-gram
• larger gains from RNNLM
• modified training reduced training time > 5 days to < 1/2 day

• BUT KWS requires large lattices to handle high WERs ...
• interacts badly with the RNNLM ....
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ASR Decoding with RNNLMs
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• ASR decoding LM score depends on previous hypothesis
• history vector depends on “unobserved” word sequence
• predictions depends on complete previous path

• Possible to use for ASR (or even use N-best lists)
• impractical to use for lattices (and lattice generation)
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ASR Decoding with RNNLMs
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Lattice Prefix Tree

• Consider word-lattice on the left
• becomes prefix tree (right) using complete history
• significant increase in number of paths
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N-Gram History Approximation
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Prefix Tree N-Gram Approximation

• Use exact RNN LM value but
• merge paths based on N-gram history
• can also use history vector distance merging
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Impact of RNN LM (Pashto)

LM RNN Crit TER MTWV
Data Trn F-T (%) iv oov tot
FLP — 44.1 0.4808 0.2412 0.4541

FLP+Web
— 43.8 0.4828 0.4083 0.4750

CE CE 42.8 0.4975 0.4048 0.4871
NCE VR 43.0 0.4975 0.3953 0.4862

• Large gains for KWS than ASR from web-data
• reduces the keyword OOV rate

• Efficient training does not impact performance
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Efficiency: KWS
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Unique-Arcs-Per-Second Pruning

• Need compact lattices to ensure speed of KWS
• need diverse lattices to ensure performance of KWS
• alternative to CN-KWS and quantised-time lattices
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vocabulary

• Modify pruning to maintain distribution over unique arcs
• (currently) implemented as lattice post-processing stage
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Unique-Arcs-Per-Second Pruning - Impact
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Unique-Arcs-Per-Second Pruning - Impact

Language Id Arcs/Sec
Decode UAPS

Mongolian 401 88,479 17,623
Javanese 402 41,880 11,109

• Dramatic reduction in lattice size
• for some languages an order of magnitude

• No degradation in performance - significantly faster
• far richer lattices could be used for evaluation

• Approach can be applied at lattice generation stage
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Efficiency: Combination
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KWS System Combination Architectures
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Combination Approaches

• ASR system combination
• minimum Bayes’ risk (confusion network) combination

ω̂ = argmin
ω

⎧⎪⎪
⎨
⎪⎪⎩

∑
ω
(

M
∑
m=1

P(ω∣x1∶T ;M(m)
)L(ω,ω))

⎫⎪⎪
⎬
⎪⎪⎭

multiple decode - posting-list merging/lattice combination
• joint decoding

log (p(xt ∣s))∝
M
∑
m=1

log (p(xt ∣s;M(m)
))

single decode - single KWS run
• KWS posting-list merging ... see paper references
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System Combination (Georgian)

System TER MTWV
BN Features (%) iv oov tot

HI (IBM) Hybrid 40.1 0.7178 0.7254 0.7198
HA (Aachen) 40.0 0.7129 0.7221 0.7152
HI⊕HA Joint 38.1 0.7390 0.7413 0.7398
HI⊗HA Merge 37.9 0.7379 0.7542 0.7409

• Significant gains from system combination (ASR/KWS)
• small performance differences joint/merge
• joint decoding significantly more efficient

• Evaluation used both styles of system combination
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Evaluation System
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OP3 4-Way Joint Decoding
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• 28 language BN features
• A28+: fine-tuned RWTH
• I28: IBM

• 4-way Joint (A28+⊕I28):
1. IBM-BN Hybrid-SAT
2. IBM-BN Tandem-SAT
3. RWTH-BN Hybrid-SAT
4. RWTH-BN Tandem-SAT

• Multiple models built
• semi-supervised training
• enriched lexicon

• Multiple LMs built
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Surprise Language System Description

• Enriched lexicon based language specific peculiarities (LSP)
• document describing general attribues of language

• Used morphological decomposition (Morfessor)

J1 4-way, 45 × 45 nodes, word RNNLM, LSP lexicon
J2 4-way, 45 × 45 nodes, word RNNLM
J3 4-way, semi-supervised, 45 × 45 nodes, word RNNLM, LSP lexicon
M3 4-way, semi-supervised, 45 × 45 nodes, morph RNNLM, LSP lexicon
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Surprise Language System Performance

System TER STO KST
(%) iv oov tot tot

J1† 36.7 0.7379 0.7389 0.7383 0.7409
J2† 37.1 0.7381 0.7194 0.7357 0.7389
J3‡ 36.5 0.7431 0.7242 0.7407 0.7461
M3 — 0.6820 0.7197 0.6882 —
J3⊗M3† — 0.7430 0.7555 0.7452
J3⊗J2 36.0 0.7481 0.7440 0.7479
J3⊗J1⊗J2 36.1 0.7473 0.7521 0.7487
J3⊗J2⊗M3 — 0.7481 0.7676 0.7514

• † indicates systems supplied to IBM for combination
• ‡ indicates the single system submission
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Performance Analysis
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Performance Analysis (OP2 Configuration)
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• Framework used for OP2 evaluation
• combines (stacked) Hybrid-SAT and Tandem-SAT systems
• supervision from Hybrid-SI system
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Summary plot MTWV vs TER for FLP (OP-2)

• Examined performance with a consistent configuration
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Language Variability

• Performance range: 0.3→ 0.6 MTWV, < 40%→> 65%
• correlation between Word (Token) Error Rate and MTWV

• Range of factors may impact performance:
• recording conditions (telephone network)
• morphological complexity of language (vocabulary size)
• syntactic complexity of language (impact of language model)
• grapheme to phoneme relationship
• “confusability” of words
• nature of the keywords being used
• accuracy of transcriptions

Interested in what is important (and predict)
• So we tried many things ... many didn’t correlate
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Graphemic Error Rate for Prediction

• Graphemic Error Rate (GER) correlated well
• basic (PLP/GMM/ML) ASR on training data (fast,simple)
• handles many aspects of impact factors
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Performance Prediction

Language Id Script %TER MTWV
pred obs pred obs

Dholuo 403

Latin

45.4 46.0 0.561 0.549
Guarani 305 49.5 51.1 0.490 0.496
Igbo 306 60.2 61.7 0.304 0.286
Javanese 402 54.2 59.8 0.408 0.362
Amharic 307 Ethiopic 50.5 48.5 0.473 0.528
Mongolian 401 Cyrillic 61.1 55.9 0.288 0.414
Georgian 404 Mkhedruli 43.3 49.2 0.599 0.596

• Not bad - even for non-Latin languages
• BUT still had to build a basic system ...
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Conclusions
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Conclusions

• “Plug and Play” systems built for 25 diverse languages
• graphemic lexicons worked well for all languages

• Multi-language acoustic models important
• either bottleneck features, or “complete” models

• Predicting difficulty of a language challenging
• need more languages to draw conclusions

• Babel programme data a wonderful resource
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