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Training Augmented Models using SVMs

M.J.F. GALES† and M.I. LAYTON†, Nonmembers

SUMMARY There has been significant interest in develop-
ing new forms of acoustic model, in particular models which al-
low additional dependencies to be represented than those con-
tained within a standard hidden Markov model (HMM). This
paper discusses one such class of models, augmented statistical
models. Here, a local exponential approximation is made about
some point on a base model. This allows additional dependen-
cies within the data to be modelled than are represented in the
base distribution. Augmented models based on Gaussian mix-
ture models (GMMs) and HMMs are briefly described. These
augmented models are then related to generative kernels, one
approach used for allowing support vector machines (SVMs) to
be applied to variable length data. The training of augmented
statistical models within an SVM, generative kernel, framework
is then discussed. This may be viewed as using maximum mar-
gin training to estimate statistical models. Augmented Gaussian
mixture models are then evaluated using rescoring on a large
vocabulary speech recognition task.
key words: speech recognition, hidden Markov models, support

vector machines, augmented statistical models

1. Introduction

There have been a wide-range of acoustic models ap-
plied to the speech recognition task. These range from
the standard hidden Markov model (HMMs), to seg-
mental models [1], switching linear dynamical systems
(LDSs) [2], buried Markov models (BMMs) [3] and
mixed memory models [4]. Many of these models can be
viewed as state-space models and graphical models [2].
The underlying aspect of all these models is how to ap-
propriately model the dependencies (and complexities)
of the speech signal. For example, forms of dependen-
cies include observation independence given the current
state, as in an HMM, and independence given a contin-
uous latent state-space variable, as in an LDS. The fun-
damental questions that must be answered when look-
ing at these models is which latent variables should be
included, what dependencies should be modelled, and
how the distributions of the observations are altered
by the dependencies. To the authors’ knowledge, there
are as yet no systematic approaches that allow all these
questions to be answered.

In this paper a structured approach is described to
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obtain the statistics that determine the dependencies
to be modelled in the observation sequence. The ap-
proach adopted is to use a base statistical model, and
then for each point on that distribution to construct
a local exponential model. The base statistical model
determines the latent variables; the sufficient statistics
are determined using higher order derivatives of the
log-likelihood. This is similar to a constrained expo-
nential model [5]. However here all the parameters of
the model, including the parameters of the base distri-
bution, may be trained. This will be referred to as an
augmented statistical model [6].

Using this form of model, the number of model
parameters rapidly increases. Though with sufficient
training data, large numbers of model parameters can
be trained, the use of robust training criteria that allow
for good generalisation are useful. In this work maxi-
mum margin training, as used to train support vector
machines (SVMs), is used. The paper is organised as
follows. The next section describes the general theory
of augmented statistical models and the forms that they
take for Gaussian mixture models (GMMs) and HMMs.
SVMs and generative kernels are then described. This
is followed by a description of how maximum margin
training can be used to train augmented models. The
issues of applying these models to large vocabulary sys-
tems is then described followed by results on an large
vocabulary task.

2. Augmented Statistical Models

2.1 The Exponential Family

Many standard forms of statistical model are based on
the exponential family. The general form for the ex-
ponential family with parameters α can be expressed
as,

p(o; α) =
1

τ
h(o) exp (α′T(o)) (1)

where h(o) is the reference distribution, α are the nat-

ural parameters, τ is the normalisation term (a func-
tion of both the reference distribution and the natu-
ral parameters), and the function T(o) is a sufficient

statistic. There are a number of standard examples,
including the exponential distribution and the Gaus-
sian (Normal) distribution. The reason for the interest
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in members of the exponential family is that the suf-
ficient statistics are of a fixed dimensionality and that
conjugate priors can be defined simply for all members
of this family. When dynamic data is being consid-
ered, such that each example is a series of observations,
O = {o1, . . . ,oT}, ot ∈ R

d, the range of possible statis-
tics becomes very large. Dependencies between obser-
vations (as in BMMs [3]), as well as within the feature
vector, can now be modelled.

An interesting subset of the set of all possible mem-
bers of the exponential family is the constrained expo-

nential family [5]. Here rather than allowing any form
of statistics, a local exponential approximation to the
reference distribution is used as the statistical model,
where the local approximation replicates some of the
properties of the reference distribution. In this paper a
slightly more general form of statistical model than the
constrained exponential family is used. In addition to
the values of the local exponential model, the reference
distribution parameters may be learnt from the data.
These models are referred to as augmented statistical

models [6].

2.2 Augmented Statistical Models

Augmented statistical models are an attractive ap-
proach to building class-conditional probability density
functions, since they yield a mathematically consistent
formulation to add higher order dependencies into the
model. First a base statistical model, p̌(o; λ), is de-
fined. A member of the exponential family that locally
approximates this base model for a particular set of pa-
rameters λ is then used as the final statistical model.
The general form of augmented statistical model for a
base statistical model, p̌(o; λ), can be expressed as,

p(o; λ, α) =
1

τ
p̌(o; λ) exp

(

α′
{

∇
(ρ)
λ ln p̌(o; λ)

})

=
1

τ
p(o; λ, α) (2)

where ∇
(ρ)
λ ln(p̌(o; λ)) is the vector form of all the

derivatives† up to order ρ,

∇
(ρ)
λ ln p̌(o; λ) =











∇λ ln p̌(o; λ)
1
2!vec

(

∇
2
λ ln p̌(o; λ)

)

...
1
ρ!vec (∇ρ

λ ln p̌(o; λ))











(3)

τ is the appropriate normalisation term, thus

τ =

∫

Rd

p(o; λ, α)do (4)

†For simplicity, in this work the natural basis and higher
order derivatives are assumed to yield an orthogonal ba-
sis. Given this assumption it is not necessary to distin-
guish between covariant and contravariant components and
bases [5].

For this augmented model to be a valid PDF, λ and α

must be chosen such that the integral is bounded.
If the base statistical model is itself a member of

the exponential family, the augmented statistical model
will also be a member of the exponential family, though
not necessarily of the same form as the base distribu-
tion. This is not true for situations where the base
statistical model is not a member of the exponential
family, for example the Gaussian mixture model dis-
cussed in Sect. 2.3.

It is interesting to contrast the nature of the depen-
dencies that are incorporated into the augmented model
compared to those of the base model. Independence as-
sumptions in the base statistical model are reflected in
the independence assumptions in the augmented model.
However this is not the case for the conditional inde-
pendence assumptions. For example, for augmented
GMMs (A-GMMs) and HMMs (A-HMMs), discussed
below, the observations are not conditionally indepen-
dent given the base component that generated them –
the posterior, P (n|o; λ) in Eq.(7), causes the likelihood
to be a function of all the components. The augmented
statistical models can be related to performing a Taylor
series expansion on the statistical model [6], [7].

2.3 Augmented Gaussian Mixture Models

One of the standard forms of model used in statistical
pattern processing are mixture models, in particular
GMMs. The base statistical model, a GMM, has the
form

p̌(o; λ) =

M
∑

m=1

cmN (o; µm,Σm) (5)

Considering just the first order derivatives of the mean
as an element of the augmented model

∇µm
ln p̌(o; λ) = P (m|o; λ)Σ−1

m (o− µm) (6)

where P (m|o; λ) = cmN (o; µm,Σm)/p̌(o; λ), and cm,
µm and Σm are the prior, mean and covariance matrix
for component m. The associated A-GMM is then given
by

p(o; λ, α)=
1

τ

M
∑

m=1

cm

{

N (o; µm,Σm) × (7)

exp

(

M
∑

n=1

P (n|o; λ)α
′
nΣ−1

n (o − µn)

)

}

The parameters α = {α1, . . . , αM} are additional
model parameters for the A-GMM.

Figure 1 shows two distributions trained using
data generated from a symmetric log-normal distribu-
tion. ML training was used to obtain a two-component
GMM for the training data. In addition an A-GMM,
using only first-order derivatives of the mean, was
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Fig. 1 Modelling of “symmetric” log-normal distribution

trained. From the diagram it is clear that the additional
power of the A-GMM is able to model the distribution
better than the GMM, though using an additional 2
model parameters. This is reflected in the average log-
likelihoods, -1.59 for the GMM and -1.45 for the A-
GMM. Interestingly even using a 4-component GMM
the log-likelihood was only -1.46, still less than the two
component A-GMM.

2.4 Augmented Hidden Markov Models

For speech recognition the most commonly used acous-
tic model is the HMM. In contrast to GMMs, HMMs
do not assume that the observations are independent
of one another. For an example, consisting of T obser-
vations, O = {o1, . . . ,oT }, the HMM base statistical
model can be written as,

p̌(O; λ) = (8)

∑

θ∈Θ

{

T
∏

t=1

aθtθt−1

(

∑

m∈θt

cmN (ot; µm,Σm)

)}

where the state distributions are modelled using
GMMs, θ denotes a particular state path through the
HMM, and Θ represents all valid state paths of length
T through the HMM. The first order derivatives of the
log-likelihood have a similar form to the GMM and can
be written as [7],

∇µjm
ln p̌(O; λ) =

T
∑

t=1

γjm(t)Σ−1
jm (ot − µjm) (9)

where the posterior, γjm(t) = P (θt = {sj , m}|O; λ).
In addition to the state assignment sj , the latent vari-
able, θt, has been extended to include the mixture-
component, m, From a segment model perspective,
when each state has a single mixture-component, the
derivative is related to the weighted segment mean.
The inclusion of the posterior, P (θt = {sj , m}|O; λ),
in this expression ensures that observations generated
by an A-HMM are dependent on all other observations

in the utterance O. Thus, conditional independence of
observations given the current state is broken.

It is interesting to examine the higher-order deriva-
tives of HMMs. For example, the second derivative with
respect to the means is given by,

∇µin
∇

′
µjm

ln p̌(O; λ) = (10)

T
∑

t=1

T
∑

τ=1

{

(

γ{jm,in}(t, τ) − γjm(t)γin(τ)
)

×

Σ−1
in (oτ − µin) (ot − µjm)

′
Σ−1

jm

}

where γ{jm,in}(t, τ) is the joint state/component pos-
terior,

γ{jm,in}(t, τ) =

P (θτ = {si, n}, θt = {sj , m}|λ,O) (11)

From Eq. (10), it is clear that second derivatives of the
base statistical model are dependent on all observations
within an utterance and all possible pairs of (discon-
tiguous) states. Thus second-order A-HMMs overcome
the first-order Markov assumption of the base model,
allowing additional temporal dependencies to be mod-
elled.

Calculation of the joint state/component posterior
requires the use of a double forward-backward style al-
gorithm [8]. Alternatively, continuous rational kernels
can be used. These offer an attractive framework where
standard and efficient finite-state transducer (FST) al-
gorithms can be used. Within this framework, calcula-
tion of higher-order derivatives is reduced to the task
of selecting appropriate finite-state transducers (FSTs).
Examples of such transducers are given in [9].

Unfortunately, for both first- and second-order
augmented models, the final log-likelihood cannot be
computed until the end of the sentence, impacting stan-
dard pruning techniques.

3. Support Vector Machines

Support Vector Machines (SVMs) [10] are an approx-
imate implementation of structural risk minimisation.
They have been found to yield good performance on a
wide of range tasks. This section briefly reviews SVMs
and the use of generative kernels which are one ap-
proach to handling the dynamic nature of speech.

3.1 Maximum Margin Training

SVMs are based upon the intuitive concept of maximis-
ing the margin between the decision hyperplane and the
closest training examples. This has been shown to be
related to minimising an upper bound on the generali-
sation error [10]. However, in general it is not possible
to construct a separating hyperplane between classes
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with no classification errors. In these situations, an op-
timal hyperplane is found to minimise the probability
of error, averaged over the training set. This is accom-
plished by allowing soft margins. The margin between
classes is said to be soft if there exist training examples,
oi (with labels yi ∈ {−1, 1}), that violate the constraint
yi(〈w,oi〉 + w0) ≥ 1, where w is the weight vector, w0

is the bias of the optimal hyperplane and 〈·, ·〉 indi-
cates the inner product between the two vectors using
an appropriate metric†. Slack variables, εi ≥ 0, are
introduced to measure the deviation of these examples
from the ideal condition of pattern separability. For a
set of n training examples, the objective function and
constraint become,

{ŵ, ŵ0} = arg min
w,w0

{

1

2
〈w,w〉 + C

n
∑

i=1

εi

}

(12)

subject to yi(〈w,oi〉+w0) ≥ 1−εi. C acts as a regulari-
sation parameter and controls the trade-off between the
margin and the number of misclassified points. For non-
linearly separable data, Cover’s theorem [11] states that
examples may be made linearly separable with a high
probability given a non-linear transformation, φ(o; λ),
from input-space, o, to a feature-space of sufficient di-
mensionality. Using this mapping, the kernelised form
of the dual objective function is defined for the La-
grange multipliers, αsvm,

α̂svm = arg max
αsvm

{ n
∑

i=1

αsvm

i (13)

−
1

2

n
∑

i=1

n
∑

j=1

αsvm

i αsvm

j yiyjK(λ,oi,oj)

}

subject to
∑n

i=1 αsvm

i yi = 0 and 0 ≤ αsvm

i ≤ C. Here

K(λ,oi,oj) = 〈φ(oi; λ), φ(oj ; λ)〉 (14)

The upper limit on the Lagrange multipliers, αsvm, lim-
its the influence of individual examples (which may
be outliers). At optimality, the Karush-Kuhn-Tucker
(KKT) conditions ensure that only examples that lie
on the margin (〈w,oi〉 + w0 = 1 − εi), or that violate
the margin constraint, have αsvm

i > 0. These examples
are known as the support vectors [10].

3.2 Generative Kernels

One of the issues with applying SVMs to time varying
data, such as speech data, is that the SVM is inherently
static in nature. To handle this problem Fisher Ker-
nels [12] and generative kernels [7] have been proposed.
Here a generative model that can handle dynamic data
is used. An example first-order form of a generative

†Where a Euclidean metric is used this simply becomes
the scalar product of the two vectors.

kernel for the set of T observations, O = {o1, . . . ,oT },
may be written as,

φ(O; λ)=
1

T





ln p̌(O; λ(1)) − ln p̌(O; λ(2))
∇λ(1) ln p̌(O; λ(1))

−∇λ(2) ln p̌(O; λ(2))



 (15)

where p̌(O; λ(1)) and p̌(O; λ(2)) are the generative mod-
els associated with classes ω1 and ω2 respectively. The
term 1/T provides length normalisation for the score-
space. When the base model parameters are con-
strained to be equal, the generative score-space reduces
to the Fisher score-space.

As SVM training is a distance based learning
scheme it is necessary to define an appropriate met-
ric for the distance between two points. The simplest
approach is to use a Euclidean metric. However, in the
same fashion as using Mahalanobis, rather than Eu-
clidean, distances for nearest-neighbour training, an ap-
propriately weighted distance measure may be better.
One such metric which is maximally non-committal is
given by,

K(λ,Oi,Oj) = φ(Oi; λ)′G−1φ(Oj ; λ) (16)

where Oi and Oj are two sequences and,

G = E
{

(φ(O; λ) − µφ) (φ(O; λ) − µφ)
′}

(17)

where µφ = E {φ(O; λ)}. This will be the form of
generative kernel used in this work.

In contrast to other forms of kernel there may be
many parameters associated with the generative model.
It is therefore sensible to investigate maximum margin
training of the generative kernels [8]. Here,

{α̂svm, λ̂} = argmax
αsvm

min
λ

{

n
∑

i=1

αsvm

i − (18)

1

2

n
∑

i=1

n
∑

j=1

αsvm

i αsvm

j yiyjK(λ,Oi,Oj)







Unfortunately there is no simple method for optimis-
ing the values. A simple iterative process can be used
where the support vectors are estimated and then the
generative kernel parameters are updated using gradi-
ent descent.

4. Maximum Margin Statistical Models

From the previous section, maximising the margin is
a good training criterion when dealing with large di-
mensional feature-spaces, or little training data. Fur-
thermore as maximum margin training attempts to cor-
rectly classify all training examples, it is inherently dis-
criminatory in nature and is thus an obvious alternative
criterion to discriminative criteria such as maximum
mutual information (MMI) [13]. The disadvantage of
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the approach is that it is inherently a binary classifi-
cation approach. For this work, the binary case will
be considered, although schemes have been proposed
to handle the multiclass case [14]. For the binary case,
there are two sets of augmented model parameters to
train, {λ(1), α(1)} and {λ(2), α(2)}. For a binary clas-
sification problem, the Bayes’ decision is based on,

P (ω1)τ
(2)p(o; λ(1), α(1))

P (ω2)τ (1)p(o; λ(2), α(2))

ω1
>
<
ω2

1 (19)

where P (ω1) and P (ω2) are priors for the two classes.
Taking logs of both sides, this may be expressed as,

ln

(

p(o; λ(1), α(1))

p(o; λ(2), α(2))

)

+ b

ω1
>
<
ω2

0 (20)

where the class priors and normalisation terms are com-
bined as,

b = ln

(

P (ω1)τ
(2)

P (ω2)τ (1)

)

(21)

Note that the priors for the classes are not trained using
ML, but rather using maximum margin. Using Eq. 2,
Eq. 20 can be rewritten as the scalar product, (·, ·),

([

w

w0

]

,

[

φ(o; λ)
1

]) ω1
>
<
ω2

0 (22)

This now has the form of a score-space, φ(o; λ), which
is a function of the base-statistical model parameters,

φ(o; λ) =







ln p̌(o; λ(1)) − ln p̌(o; λ(2))

∇
(ρ)

λ(1) ln p̌(o; λ)

−∇
(ρ)

λ(2) ln p̌(o; λ)






(23)

and a linear decision boundary which is determined by
the augmented model parameters α(1) and α(2)†,

[

w

w0

]

=









1
α(1)

α(2)

b









(24)

One candidate for estimating the decision bound-
ary is the Support Vector Machine (SVM). This is
suitable for these forms of models as the decision
boundaries that are estimated achieve good general-
isation performance even when the dimensionality of
the feature-space (in this case the score-space) is very
large. This may be viewed as maximum margin train-
ing of the statistical models. If the SVM is trained, the
parameters of the augmented model are given by††,

†Due to the definition of the bias b, there is some inter-
action between the base statistical model parameters and
the augmented parameters, α

††The additional use of the metric G below is due to
training the SVM using an inner product, whereas the aug-
mented model is described in terms of a scalar product.
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Fig. 2 (a) Maximum Likelihood (ML) and (b) Maximum Mar-
gin (MM) distributions in a Log-Likelihood Ratio (LLR) score-
space; and (c) ML base distribution and LLR+∇µ,Σ score-space;
(d) MM base distribution and a LLR+∇µ,Σ score-space.

α0





1
α(1)

α(2)



 = α0w =
n
∑

i=1

αsvm

i yiG
−1φ(oi; λ) (25)

where G is given by Eq. 17. The additional scaling term
α0 has no affect on the decision boundary, but allows
standard SVM training to be used††† (by avoiding the
need to explicitly enforce the constraint, w1 = 1).

One objection to the use of SVMs is that the dis-
tances from the decision boundaries do not have a sta-
tistical interpretation [15]. This has led to techniques
that transform the output so that it is probabilistic
in nature [16] and the use of the relevance vector ma-
chine [15]. However if generative kernels are used the
distance from the decision boundary is directly inter-
pretable as the log-posterior ratio of the two classes.
This comes directly from Eq. 22. It is interesting to
contrast this to MMI training [13]. In MMI training
the average posterior of the correct label is optimised.
In maximum margin training of this form, all correctly
labelled points beyond the margin are ignored.

A simple example of maximum margin training
of a statistical model is shown in Fig. 2 on artificial
data generated using three-component GMMs per class.
Here class-conditional single Gaussian component mod-
els are used as the base distribution. The ML estimate
for this model is shown in Fig. 2(a) along with the SVM
trained decision boundary from the one-dimension log-
likelihood ratio (LLR) score-space,

φ(o; λ) =
[

ln p̌(o; λ(1)) − ln p̌(o; λ(2))
]

(26)

and the Bayes’ decision boundary (the dotted line).

†††The values of the bias must also be scaled, hence b =
w0/α0.
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The base acoustic model was then trained using max-
imum margin estimation using Eq. 18 and the score-
space in Eq. 26. The decision boundary and positions
of the Gaussians are shown in Fig. 2(b). The direction
of the decision boundary is closer to that of the Bayes’
decision boundary and is also reflected in the classifica-
tion rate in this data. Figures (c) and (d) show the de-
cision boundaries that result from using the LLR with
derivatives of the mean and covariances. The decision
boundaries that result from (c) and (d) are very simi-
lar to that in (b). This is because the class-conditional
base distribution was a member of the exponential fam-
ily (a Gaussian). Since the derivatives with respect to
the means and the variances yield first and second order
statistics [17], the final distribution should be the same
as directly training class-conditional Gaussian distribu-
tions using maximum margin.

One of the issues with using maximum margin
training with generative kernels is that the final dis-
tribution is not guaranteed to be a valid distribution
(though a distance from the decision boundary will al-
ways be available). This is best illustrated by exam-
ining maximum margin training of a univariate Gaus-
sian class-conditional distribution. Consider a mean
and variance first derivative score-space. The resul-
tant maximum margin variance is given by σ4/(σ2 − α)
where α is associated with the variance derivative.
Thus if α ≥ σ2 the effective variance will not be positive
definite.

For the training to directly correspond to estimat-
ing augmented model parameters a linear kernel in the
score-space is required. However, non-linear kernels
such as polynomial and Gaussian kernels are commonly
used. Provided that the normalisation integral (the
value of τ) is bounded, the distances from the deci-
sion may still be interpreted as a log-posterior ratio.
However, this will not have the form of the augmented
models described in Sect. 2.

5. LVCSR Decoding

SVMs are inherently binary classifiers. For Large
Vocabulary Continuous Speech Recognition (LVCSR)
there are a vast number of possible classes making one-
versus-one binary classification impractical. In order to
apply the maximum margin trained statistical models
of the previous section to LVCSR it is necessary to map
this highly complex classification problem into a set of
binary classification problems.

To solve this problem an approach related to that
described in [18] is used. Word-lattices are first gener-
ated by a standard, in this case HMM-based, LVCSR
system. These lattices consist of nodes and arcs. The
arcs are labelled with words, language and acoustic
model likelihoods. The nodes are labelled with time
stamps. The word-lattices are then converted to a con-

fusion network. This consists of a series of nodes, with

a linear graph. Each of the arcs is labelled with a word,
a start and end time and a log-posterior, F(ωi). For
details of this process see [19]. The confusion networks
are then pruned so that at each node a maximum of
two possible words occur. The pruning is achieved by
simply selecting the words with the greatest posteriors.

Once a set of confusion pairs has been generated,
it is possible to train a set of statistical models for each
pair of data. One issue is the form of score-space to
be used. From Eq. 19 only the unigram prior for the
word is available (though the probabilities are trained
in a maximum margin fashion). For LVCSR, trigram
and higher order language models (LMs) are commonly
used. This additional information can be incorpo-
rated into the binary classifier using the log-posteriors
from the confusion networks. The log-posterior may be
treated as an additional information source. Now the
decision rule becomes,

1

T
ln

(

p(O; λ(1), α(1))

p(O; λ(2), α(2))

)

+b+β(F(ω1)−F(ω2))

ω1
>
<
ω2

0

where β is an empirically set constant. This is a simple
process as it only requires combining the log-posterior
ratio with the distance from the SVM decision bound-
ary. Alternatively the posterior may be combined into
the score-space to give,

φ(O; λ) =









F(ω1) −F(ω2)
1
T

ln p̌(O; λ(1))−ln p̌(O; λ(2))
1
T

∇
(ρ)

λ(1) ln p̌(O; λ)

− 1
T

∇
(ρ)

λ(2) ln p̌(O; λ)









(27)

This allows β to be set using maximum margin train-
ing. However empirically setting β has a number of ad-
vantages. The lattices used to generate the confusion
networks are usually generated using HMMs that have
been trained on all the acoustic data. This means that
the posteriors obtained from the confusion networks are
liable to be biased. Thus the β value will tend to be
larger than when estimated using held out data.

6. Results

The database used for the LVCSR experiments was a
400 hour subset of the Fisher LDC data. This is the
fsh2004sub data set used for initial system develop-
ment [20]. The model set used was based on the stan-
dard front-end and models described in [20]. However
for this work only ML, rather than discriminatively,
trained acoustic models were used. The confusion net-
works were generated using a bigram language model on
the same 400 hours as used to train the acoustic mod-
els. The held-out dataset for these experiments was the
eval03 test set, which consists of 6 hours of data.

For initial assessment, 8-fold cross-validation ex-
periments were carried out on the training data. For
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Word Pair
Training

CN # Components
(examples) post. 1 2 4

A/THE
ML

79.8

58.3 58.4 56.2

(8533)
SVM φll() 61.1 63.0 64.7

+βCN 79.8 80.0 80.3
SVM φcn() 80.4 80.1 80.6

CAN/CAN’T
ML

78.5

81.7 86.0 88.2

(3761)
SVM φll() 84.8 89.4 90.5

+βCN 88.5 91.2 91.9
SVM φcn() 89.0 91.4 91.6

KNOW/NO
ML

83.1

68.4 69.4 70.8

(4475)
SVM φll() 72.1 73.6 76.6

+βCN 84.3 84.5 85.2
SVM φcn() 85.7 86.2 86.2

Table 1 8-Fold cross-validation results (% correct) using
variable number of components, ML training of the base
model (ML) and SVM training with LLR+∇µ,Σ (φll()) and
LLR+∇µ,Σ+CN posterior (φcn()) score-spaces with the ML
model.

all experiments diagonal covariance matrix GMMs were
trained using the longest time-stamps from the confu-
sion networks† for the two confusable words. The num-
ber of examples for each word pairing were sampled so
that the number of positive examples for each word is
the same. This means that random selection will yield
50% correct. The GMMs were trained using ML. SVMs
were then trained using a first order mean and covari-
ance matrix score-space. A range of SVMs were trained
and a few examples are shown in detail in table 1. For
all cases using SVMs trained in the likelihood ratio plus
derivative score-space gave performance gains over the
ML trained base model. For the “CAN/CAN’T” pair-
ing the ML GMM and SVM systems were better than
the confusion network score used as a baseline. How-
ever in general this was not the case. For the “A/THE”
pairing the performance was less than 60% for the ML
GMM. Then, using the two forms of combining the con-
fusion network posterior scores from Sect. 5, gains in
performance were obtained for most cases. Though
schemes where the ML GMM performance was poor,
such as “A/THE”, the gains were negligible. Using the
score-space including the confusion network posterior
gave consistent gains over simply interpolating the in-
formation sources.

To examine performance on held-out data the
eval03 test set was used. This has a total of 76,157
words in the reference transcription. The baseline re-
sults using a bigram language model were 34.4% and
33.9% using Viterbi and Confusion Network (CN) de-
coding respectively, and the baseline numbers using a
trigram were 30.8% and 30.1% respectively. As ex-
pected the use of CN decoding consistently decreased
the error rate. These CN decoding results were used

†By the longest time-stamps the earliest time of the two
words and the latest time of the two words is used. This
is required as the confusion network times are generated by
taking the earliest and latest times that contribute to an
arc.

SVM Rescoring
#corrected/#pairs (% corrected)

bigram LM trigram LM

9 SVMs 44/1401 (3.1%) 41/1310 (3.1%)
15 SVMs 55/2116 (2.6%) 43/1954 (2.2%)

Table 2 SVM rescoring giving change in number of errors
compared to the CN decoding and total pairs rescored using
φll() + βCN on eval03.

as the baseline for SVM rescoring. Table 2 shows the
results of rescoring with 9 and 15 SVMs trained on con-
fusion pairs from the 400 hour training set. All SVM
rescoring was based on φll() + βCN, with β roughly
tuned to the task†. As expected from table 1 there was
a range of performances depending on the word pair.
The best performance for the bigram LM was obtained
using the “CAN/CAN’T” pairing. This reduced the
number of errors by 17 in a total of 165 pairs (10.0%
reduction). The use of the φcn() score-space to find
β was worse than the standard CN decoding. This il-
lustrates the dependence of the posterior scores on the
exact acoustic/language models used. Overall, though
the number of errors reduced was small, the percent-
age of pairs corrected, 3.1%, for 9 pairs indicates that
the general approach may be useful. Even using SVMs
based on 15 commonly confused pairs less than 3% of
the hypothesised words were rescored.

Second and higher order score-spaces yielded no
improvement in performance. Since, for speech recogni-
tion, observations are sampled from a high-dimensional
space, posterior probabilities of latent states are po-
larised to be either one or zero. Second derivatives
(which are a function of the derivatives of the poste-
riors) are therefore negligible†† and can be ignored.

7. Conclusion

This paper has described the general form of augmented
statistical models. These models are specified by a base
distribution and a local exponential family approxima-
tion to that distribution at a particular point. The

†The performance was relatively insensitive to differ-
ences in the value of β.

††For example, consider the second derivative of a GMM
with respect to µj and µk, k 6= j,

∇µk
∇T

µj
ln p(o;λ)

= −P (j|o; λ)P (k|o;λ)Σ−1

k (o − µk)(o − µj)
T
Σ

−1

j

When posteriors are one or zero, at least one of P (j|o; λ)
and P (k|o; λ) must be zero (since observations cannot be
generated by two components simultaneously). The second
derivative is zero.

This means that, given a full score-space (with deriva-
tives with respect to all parameters), maximum margin
training of base model parameters yields no improvement
in performance [21]. Note that, for the single component
case, the SVM trained augmented model is the equivalent
of a maximum margin trained model.
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statistics used for the exponential model are based on
first, and higher order, derivatives of the base distribu-
tion. These models are difficult to train because of the
potentially large numbers of model parameters and is-
sues in determining the normalisation term. This paper
shows that these augmented models can be trained for
a two-class problem using maximum margin training.
This is directly related to the use of generative kernels
within an SVM framework. Initial experiments using
SVM training on a large vocabulary speech recognition
task indicate that this form of modelling and training
may be useful for speech recognition.
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