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Abstract

Speech is usually observed after passing through some form
of “channel” that results in distortions. For some scenarios it
is possible to build explicit models of this channel distortion
and hence compensate the acoustic models. However the ac-
curacy of the distortion model is sometimes poor and more
general adaptation approaches are required. This paper inves-
tigates these model-based approaches for communication chan-
nel, link, modelling. In particular the paper examines the in-
teraction of link models with speaker adaptation and adaptive
training. CMLLR link models with multiple transforms can
yield multiple inconsistent feature-spaces When combinedwith
speaker adaptation with very few transforms this inconsistency
can limit adaptation performance gains. In contrast using a
front-end CMLLR (FE-CMLLR) transform yields a consistent
space for speaker adaptation. These schemes are compared on
communication channel distorted dialect Arabic conversational
speech. Preliminary results on this task indicate the benefits of
performing adaptation in a consistent feature-space.
Index Terms: acoustic model adaptation, adaptive training.

1. Introduction
For most practical applications of speech recognition it isnot
possible to observe the “clean” speech signal. There are forex-
ample distortions caused by background noise and channel ef-
fects, as well as differences due to speaker. There are a number
of approaches that can address this problem. This paper con-
centrates on model-based approaches which can be split into:
predictive schemes, such as vector Taylor series (VTS) compen-
sation [1]; andadaptive schemes such as Maximum Likelihood
Linear Regression (MLLR) [2] and Constrained MLLR (CM-
LLR) [3]. When multiple distinct distortions, factors, affect the
signal it is important to consider how the various forms of com-
pensation interact with each other. This is of particular interest
when adaptive training approaches [4, 3] are being used.

This paper considers one particular scenario with multiple
factors: speech from multiple speakers is transmitted downa
range of communication channels. Thus it is necessary to con-
sider both the communication channel and the speaker. An in-
teresting aspect of this scenario is that there is usually a large
amount of data available for the channel model compared to
limited data for the speaker models. Thus when using linear
transforms, multiple linear transforms (regression classes) are
used for the channel, compared to a limited number for the
speaker. For the standard adaptive-training transform, CMLLR,
this can cause issues when estimating and using the speaker
transforms [5]. In particular CMLLR independently transforms
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the features for a particular regression class. This could yield
dramatically different transformed feature spaces acrossthe re-
gression classes. Using one or two speaker transforms esti-
mated on these inconsistent features can yield limited perfor-
mance gains. It is possible to modify the speaker transform es-
timation scheme to compensate for this. However in this paper
an alternative scheme is investigated front-end CMLLR (FE-
CMLLR) [6]. This scheme interpolates multiple transforms to-
gether and yields a consistent space for speaker adaptation.

2. Model-Based Adaptation
This section briefly discusses the attributes and examples of
the two main forms of model-based adaptation, predictive and
adaptive schemes.

In predictive approaches an explicit model of the channel
distortion is used. A common approach is VTS compensation
where the distortion is assumed to be of the form [1] for the
distortedd-dimensional speech observationyt

yt = C log
(
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)

= f(xt,ht,nt) (1)
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whereµn andµh are the additive noise and convolutional dis-
tortion means. One of the strengths of VTS and related ap-
proaches is that the number of parameters to be estimated from
the adaptation data is very small, whilst at the same time yield-
ing a highly non-linear compensation process. However the ap-
proach relies on the mismatch function (1) being a reasonable
estimate of the distortions being applied to the channel.

Initial experiments using discriminative VTS adaptive
training [7] were carried out using the data described in sec-
tion 5. Though gains were observed over an equivalent system
using just CMN, the standard PLP-based system out-performed
the VTS adaptive training scheme when using HLDA. In terms
of the distortions caused by the communication links, the mis-
match function in (1) does not appear to be an appropriate form
to use, and is not investigated further.

Rather than using an explicit representation for the distor-
tion of the channel, it is possible to use general adaptationap-
proaches to model the differences. Currently linear transforma-
tion schemes are popular for adaptation, for example MLLR and
CMLLR. To model complex distortions multiple linear trans-
forms can be used. The usual approach is to construct a re-
gression class tree and associate a linear transform with each of



the leaves of the tree [2]. Each component,m, of the system
is assigned to one of theR regression classes,rm indicates the
regression class. For CMLLR-based models (Σ

(m)
x is diagonal)
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Mlnk is the communication channel, or link, model. The pa-
rameters of theR link transforms,W(r)
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(r)
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then be found using the following auxiliary function
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t is the posterior prob-

ability of componentm generating the observation at timet us-
ing the current link modelM̂lnk, Mlnk is to be estimated and
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t = [yT

t 1]. Given these statistics and the occupancy counts,
an iterative estimate of the transforms can be obtained [3].

One of the advantages of CMLLR adaptation is that it is
very efficient to use in adaptive training [3] as the transforms act
on the features. Adaptive training can be applied at the channel
(link) level, link adaptive training (LAT), or speaker level SAT.

3. Front-End CMLLR
An alternative form of feature transformation is the Front-End
CMLLR (FE-CMLLR) [6]. Here the use of transforms is de-
termined by component posteriors from a GMM, rather than
regression classes. For an FE-CMLLR transform,Mc,
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The number of components in the front-end GMM,C, deter-
mines the number of transforms. As the transform alters the
feature-spaces a likelihood normalisation term is required, thus

p(yt|m,Mc,Mx) = |Act|N (Actyt + bct;µ
(m)
x ,Σ
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x ) (9)

Since the normalisation term is not a function of the component
(and hence state or word) it does not impact the rank-ordering
of the hypotheses, thus it can be ignored for decoding. The
following auxiliary function can used to estimate the transform
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and summation form is over allM ASR HMM components.
It is possible to use gradient-descent based techniques to

directly optimise (10). However the memory requirement be-
comes impractical as the number of transformsC increases.
Two simplifications are possible during training: only use the
transform with the highest GMM posterior; use the posteriors to
“weight” the observation contributions toC independent trans-
form estimations. The second approximation does not guaran-
tee an increase in likelihood, unlike the maximum approxima-
tion, but was found to perform best in preliminary experiments.
Thus
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wherek(cj) is given by (12) and

G
(cj) =

M
∑

m=1

T
∑

t=1

γ
(c)
ct γ

(m)
t

σ
(m)2
xj

ζtζ
T

t (14)

This form is similar to (4), except that statistics are weighted by
γ
(c)
ct , and the standard CMLLR update formulae can be used.

FE-CMLLR can be compared to stereo-mapping MMSE
approaches [8, 9]. A front-end GMM is again used and the esti-
mate of the clean speech is given by (7). However MMSE, not
ML, estimation based on a joint Gaussian distribution is used.
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The joint Gaussian distribution is estimated using stereo data
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This form of enhancement yields the same general form as FE-
CMLLR. However there are two important differences:

1. training criterion: for FE-CMLLR an ML-based ap-
proach is used, rather than an MMSE estimate.

2. stereo data: for MMSE estimates stereo data is required.
In general this form of data is not available. In contrast
FE-CMLLR just needs data from the channel.

In this work clean and noisy (retransmitted) data is available,
but it is not synced. Thus MMSE approaches were not used.

4. Channel and Speaker Adaptation
Given the large amounts of data typically available for eachof
the channels it is possible to robustly train individual channel, or
link, models with large numbers of transforms, in this case 128.
However if these link models are to be combined with speaker
level adaptation, either for adaptive training or test, then the
interaction of the two transforms needs to be considered.



In CMLLR individual components are uniquely assigned
to regression classes, thus there are no constraints that different
transforms should yield consistent feature-spaces. If the
number of speaker transforms is greater than the number of
link transforms this is not a problem. However, if this is not
the case the form of link adaptation can significantly influence
the speaker adaptation. In this section the options for this
interaction are described in terms of CMLLR transforms,
MLLR speaker transforms act similarly.

1) Normalised-space adaptation: here transforms are esti-
mated in the transformed space [5]. Thus
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This is computationally efficient. However the resulting
transformed features are not co-ordinated, the feature-spaces
for each regression class are estimated independently.

2) Full-covariance adaptation: here CMLLR is explicitly ap-
plied to the models, rather than implicitly via transforming the
features. This yields
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The transforms are estimated based on the original-space,
which is by definition consistent for all the regression classes.
Though a consistent space for the transform estimation, the
full covariance matrices in (19) make these transforms more
computationally expensive to compute [10].

3) Implicit Co-ordination: rather than having a unique
assignment of components, if components “contribute” to more
than one transform it is possible to co-ordinate the resulting
spaces. The simplest implementation of this is to smooth the
regression class specific counts with global regression class
counts. Though this improves the feature-space co-ordination,
the transforms will become “smoother”. This may limit the
benefits of large numbers of transforms.

Methods (1) and (2) yield the same result when the speaker
and link regression-classes are the same. Both methods (2) and
(3) above offer approaches that help to co-ordinate the estimated
degraded channel transforms, but both have drawbacks. Noteif
MLLR, rather than CMLLR is used for channel modelling then
there is no feature-space transformation, so the space willbe
consistent. However MLLR is significantly more expensive to
use for adaptive training [4].

Alternatively if FE-CMLLR transforms are used the space
should be consistent (co-ordinated). The transform is deter-
mined by the posteriors of the front-end GMM, rather than the
component. This means that the same component will make
use of multiple transforms, ensuring consistency over the trans-
form spaces. It is thus possible to directly estimate the speaker
transforms in the space defined by the FE-CMLLR transform.
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whereAct andbct are given by (8). FE-CMLLR allows effi-
cient speaker adaptation in a space that is co-ordinated. This
should yield better speaker adaptation than the normalised-
space adaptation, avoids the computational cost of full-
covariance adaptation, and avoids the smoothing effects ofthe
implicit co-ordination.

5. Preliminary Experiments
The training and test data was taken from Robust Automatic
Transcription of Speech (RATS) program for Arabic keyword-
spotting. The data was collected by retransmitting Levantine
Arabic conversation telephone speech data1 down eight com-
munication channels (links) labelled A to H. These links have a
range of distortions associated with them. Only a subset of the
original data was retransmitted. The total data for training the
systems from all eight channels, plus the original clean speech,
was 173 hours. Part of the retransmitted data was held-out as
a test-set, dev1. For each of the channels there was between 2
and 2.5 hours of test data, depending how much data passed the
quality assurance tests. As the test data was Levantine Arabic,
there is little appropriate data for training language models. For
this work all the clean Levantine Arabic transcriptions, exclud-
ing the dev1 test data, was used. This gave 1.6 million words for
training. A trigram language model was trained using Kneser-
Ney discounting.

The acoustic data was parametrised using 39-dimensional
PLP-based front-end, including C0, with delta, delta-deltas
and triples projected from 52 to 39 dimensions using HLDA.
Speaker (side) based cepstral mean normalisation was applied.
Word-based graphemic systems, incorporating word boundary
information, were built. Though performance gains can be ob-
tained with phonetic systems and MADA decomposition, the
word context dependence of the decomposition and pronunci-
ations make their use in a keyword spotting system (the final
task) more complicated. State-clustered cross-word triphone
HMM acoustic models were trained using MPE. A total of
about 3K distinct states were used with an average of 36 com-
ponents per state. All adaptation transforms were full in nature.
For the link representations 128 CMLLR transforms were used,
both for CMLLR and FE-CMLLR, with link adaptive training
(LAT). A single GMM for all channels was used in FE-CMLLR.
For speaker adaptation speech and silence CMLLR transforms
were used, similarly in SAT. The CMLLR speaker transforms
were estimated using normalised-space adaptation, method(1).

For the test data the link was assumed to be known, as well
as the segmentation of the utterances. To save space three rep-
resentative links in terms of distortions are given in the tables:
link A (high); link C (medium); and link G (low). In addition
the overall average A-H is also quoted. All results are basedon
confusion network (CN) decoding.

Table 1:Unadapted (for speaker) Decoding Experiments.

System Link WER%
XForm A C G Avg

SI — 80.0 70.6 61.5 71.9
LAT CMLLR 73.6 69.1 61.7 70.1
LAT FE-CMLLR 73.9 69.1 60.7 70.1

1The transcription of dialectic Arabic is highly challenging. The er-
ror rates on non-degraded conversational telephone speechare typically
in the range 40%-50%, for example see [11].



Table 1 shows the unadapted performance of multi-style
speaker-independent (SI), and CMLLR and FE-CMLLR LAT
systems. As expected the overall performance is poor, reflect-
ing the challenging nature of this task. Even the low distortion
link (G) had an error rate of around 60%. For the more distorted
links the use of LAT, CMLLR or FE-CMLLR based, yields
good gains over the SI system. Both LAT systems (CMLLR
or FE-CMLLR based) produced similar average performance.

Table 2:MLLR Speaker Adaptation Experiments.

System Link WER%
XForm A C G Avg

P2a SI — 77.7 70.1 61.0 71.2
P2b LAT CMLLR 73.6 68.7 61.1 69.8
P2c LAT FE-CMLLR 73.6 68.2 60.1 69.6

Table 2 shows the performance of the baseline, CM-
LLR and FE-CMLLR systems using unsupervised speaker-level
MLLR adaptation at test-time. The overall performance gains
of adaptation are small, reflecting the low accuracy of the su-
pervision. However the performance of FE-CMLLR is slightly
better than CMLLR. This indicates that the FE-CMLLR space
may be more co-ordinated than the standard CMLLR system.

Table 3: CMLLR Speaker Adaptive Training Experiments. ⊗
indicates CNC, supervision for adaptation taken from Table 2.

System Link WER%
Supervision XForm A C G Avg

SAT P2a — 73.5 67.6 58.6 68.8

SAT P2b — 71.9 67.2 58.6 68.4
LAT P2b CMLLR 72.5 68.2 59.8 69.1
LSAT P2b CMLLR 71.1 67.2 58.3 67.9

LSAT P2c FE-CMLLR 71.1 66.2 56.6 67.0

LSAT-P2b⊗ SAT-P2b 70.5 66.2 57.3 67.1
LSAT-P2c⊗ LSAT-P2b 70.0 65.3 56.1 66.2

If the FE-CMLLR space is more appropriate for speaker
adaptation, this should be more clearly shown when combined
with speaker adaptive training (SAT). A range of SAT and link
and speaker adaptively trained systems (LSAT) were built. The
supervision hypotheses were based on the output from the sys-
tems in Table 2 and speech and silence CMLLR transforms used
in both training and test. The baseline SAT system using the SI
system supervision (P2a) yielded gains over the SI system in
Table 2. Here, the SAT system models some of the attributes
of the links. Improving the supervision (P2b) yields additional
small gains. The performance of this SAT P2b system is better
than the LAT P2b system, indicating the usefulness of speaker
specific transforms in training for this task. The LSAT system
based on CMLLR LSAT P2b gave gains over the SAT system.
This shows that the limited number of transforms that can be
robustly estimated for each speaker do not fully model the link
distortions. However the impact of the lack of a co-ordinated
space for adaptation is demonstrated by comparing with the
LSAT P2c system where FE-CMLLR was used. The gain of
using LSAT over SAT for the low distortion link is increased
from 0.3% absolute (CMLLR) to 2.0% absolute (FE-CMLLR).
The average performance gain (links A-H) was 1.8% absolute
compared to the baseline SAT P2a system.

In addition it is possible to combine various combinations
of the output from multiple SAT and LSAT systems. The results
for this using CN combination (CNC) are shown in the bottom
two lines of Table 3. By combining the two LSAT systems addi-
tional gains of 0.5%-1.1% and an overall gain of 0.8% absolute.

6. Conclusions
This paper has discussed the possibilities and issues with
modelling distorted channels with predictive and adaptiveap-
proaches. When combined with speaker adaptation it is im-
portant that the form of the link modelling yields a consistent,
co-ordinated, space for adaptation. For standard CMLLR adap-
tation this is not the case, however using a front-end version
of this scheme, FE-CMLLR, a consistent space from the link
model is obtained. The performance of the system was eval-
uated on a highly challenging task, degraded communication
channels with dialect (Levantine) Arabic conversational tele-
phone speech. Though the overall performance of the systemsis
poor, 60%-70% WER, the trends are consistent with the theory.
In particular for the low distortion link (G) the advantagesof
using FE-CMLLR compared to CMLLR are more pronounced.

This paper has only considered one version of FE-CMLLR.
It is possible to extend this in a number of ways: link-specific
front-end GMMs; acoustic de-weighting on the GMM likeli-
hoods to yield smoother spaces; and the use of discriminative
training (which deals with the normalisation issues). It isin-
teresting to note that discriminative FE-CMLLR transformsare
related to region dependent transforms (RDTs) [12]. However
the transforms now become region and link dependent. ML FE-
CMLLR transforms should yield an efficient approach for ini-
tialising these region and link discriminative transforms.
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