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Abstract

Discriminative classifiers are a popular approach to solving classification problems. How-
ever one of the problems with these approaches, in particular kernel based classifiers such
as Support Vector Machines (SVMs), is that they are hard to adapt to mismatches between
the training and test data. This paper describes a scheme for overcoming this problem for
speech recognition in noise by adapting the kernel rather than the SVM decision boundary.
Generative kernels, defined using generative models, are one type of kernel that allows SVMs
to handle sequence data. By compensating the parameters of the generative models for each
noise condition noise-specific generative kernels can be obtained. These can be used to train a
noise-independent SVM on a range of noise conditions, which can then be used with a test-set
noise kernel for classification. The noise-specific kernels used in this paper are based on Vector
Taylor Series (VTS) model-based compensation. VTS allows all the model parameters to be
compensated and the background noise to be estimated in a maximum likelihood fashion.
A brief discussion of VTS and the optimisation of the mismatch function representing the
impact of noise on the clean speech, is also included. Experiments using these VTS-based
test-set noise kernels were run on the AURORA 2 continuous digit task. The proposed SVM
rescoring scheme yields large gains in performance over the VTS compensated models.



1 Introduction

Speech recognition is normally based on generative models, in the form of Hidden Markov Models
(HMMs), and class priors, the language model. These are then combined using Bayes’ decision
rule to yield the class posteriors. An alternative approach is to use discriminative models [1],
or discriminative functions such as Support Vector Machines (SVMs) [2]. One of the problems
with using these discriminative models and functions is that it is normally hard to adapt them to
changing speakers or acoustic environments. This is particularly true of kernel based approaches,
such as SVMs, where individual training examples are used to determine the decision boundaries.
One approach to handling SVM-based adaptation is described in [3]. This involves using the
support vectors from the original, unadapted, model in combination with the adaptation data to
yield an adapted decision boundary. However there has been little work on adapting SVMs to
handle large differences between training and test conditions.

An obvious application area where there are large mismatches between the training and test
sets is speech recognition in noise. Handling changing acoustic conditions has been an active
area of research for many years [4]. Model-based compensation schemes [5, 6, 7] are a powerful
approach to handling these mismatches. Well implemented model-based compensation schemes
tend to out-perform feature-based compensation schemes as it is possible to more accurately model
situations where speech is, for example, masked by the noise. This paper examines an approach
that allows discriminative classifiers to be combined with model-based compensation schemes to
improve the noise-robustness.

In this work rather than attempting to modify the SVM itself the form of the kernel is altered
to reflect the changing acoustic conditions. For the class of kernels that make use of generative
models [8, 9], such as HMMs, this involves performing model-based compensation to adapt the
generative model to the test noise condition. This noise-specific generative kernel is then used
by a noise-independent SVM for classification in the test noise condition. Provided the form
of kernel compensates for the effects of the environment changes, it should be possible to train
(and classify with) a noise-independent SVM on a range of noise conditions with the appropriate
noise dependent kernels. Though this work is primarily interested in the feasibility of using noise-
independent SVMs, it is important that a good model-based compensation scheme is used. In
this work Vector Taylor Series (VTS) [6] model-based compensation using the noise estimation
in [10] is implemented. In addition to a brief description of VTS model-based compensation, a
discussion of recent research for improved performance by optimising the mismatch function is
also included [11].

This paper is organised as follows. The next section briefly reviews model-based compensation
schemes and VTS model-based compensation. In addition recent approaches for improving VTS
compensation by tuning the mismatch function is described. This is followed by a discussion
of SVMs with dynamic kernels, based generative models, for speech recognition. Section 4 then
describes the complete scheme for using noise-independent SVMs. Results on the AURORA 2
database are then given in section 5.

2 Model-Based Noise Compensation

There are a number of approaches to reduce the impact of changing background noise conditions
and convolutional distortion on the performance of speech recognition systems. For a review of a
number of approaches see [4]. The approach examined in this work is often referred to as model-
based compensation. Here the parameters of “clean” acoustic models, λx, are transformed to be
representative of acoustic models trained in the target test condition, λy.

The first stage in producing a noise compensation scheme is to define the impact of the acoustic
environment and channel on the clean speech data, the mismatch function. In the mel-cepstral
domain1 used in this work the following approximation between the static clean speech, noise

1For this work the cepstral parameters are assumed to be based on “magnitude” filter-bin outputs. For some
schemes, such as the default used in HTK [12] and the ETSI features, where the filter-bin analysis is by-default
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and noise corrupted speech observations is often used (log(.) and exp(.) indicate element-wise
logarithm or exponential functions) [13]

ys
t = xs

t + h +
1
2
C log

(
1 + exp(2C-1(ns

t − xs
t − h))

)

= xs
t + h + f(ns

t − xs
t − h) (1)

where C is the Discrete Cosine Transform (DCT) matrix and h is the convolutional distortion or
noise. For a given set of noise conditions, the observed (static) speech vector ys

t is a highly non-
linear function of the underlying clean (static) speech signal xs

t , noise ns
t and convolutional noise h.

Noise compensation schemes are further complicated by the addition of dynamic parameters. The
observation vector yt is often formed of the static parameters appended by the delta and delta-
delta parameters. Thus yT

t =
[

ysT
t ∆ysT

t ∆2ysT
t

]
. Mismatch functions for all the parameters

can be obtained [5, 14].
The aim of model-based compensation schemes is to obtain the parameters of the noise-

corrupted speech model from the clean speech and noise models. Most model-based compensation
methods assume that if the speech and noise models are Gaussian then the combined noisy model
will also be Gaussian. Thus to compute the expected value of the observation for each corrupted
speech component (assuming a single noise component) the following must be computed

µ(m)
y = E {y} ; Σ(m)

y = diag
(
E {

yyT
}− µ(m)

y µ(m)T
y

)
(2)

where the expectation is over the clean speech “observations” from component m and noise “ob-
servations” combined using equation 1. There is no simple closed-form solution to these equations
so various approximations have been proposed. These include Parallel Model Combination [5] and
Vector Taylor Series (VTS) [6]. An additional problem that must be solved is that noise models
are not normally available. Thus these must be estimated from the observed data. Schemes that
allow all the model parameters to be estimated have been proposed [6, 15, 7].

In previous work on combining SVMs with model-based noise compensated generative ker-
nels, an idealised version of these model-based compensation schemes was used [16], Single-Pass
Retraining (SPR) [5]. In this paper a more practical compensation scheme based on VTS is
used. This is briefly described in the next section and followed by a discussion of recent work on
optimising the mismatch function for improved recognition.

2.1 Vector-Taylor Series Compensation

Vector Taylor series model-based compensation is a popular approach for model-based compensa-
tion [6, 17, 15, 7]. There are a number of possible forms that have been examined. In this work
the first-order VTS scheme described in [10] is used. A brief summary of the scheme is given here.
The first-order VTS expansion of the corrupted speech in equation 1 may be expressed as

ys
t ≈ xs + h + f(ns − xs − h) + (xs

t − xs)
∂f

∂xs
+ (ns

t − ns)
∂f

∂ns
+ (h− h)

∂f

∂h
(3)

where the partial derivatives are evaluated at the expansion point {xs,ns,h}. This approximation
is used to obtain the noise corrupted model parameters. To compute the corrupted speech mean,
the expansion point is set to the means of the speech, noise and convolutional noise distributions
for a particular component. Thus the static mean of the corrupted speech distribution [17]2, µs

y,
is given by

µs
y = E

{
µs

x + µh + f(µs
n − µs

x − µh) + (xs − µs
x)

∂f

∂xs
+ (ns − µs

n)
∂f

∂ns
+ (h− µh)

∂f

∂h

}
(4)

based on magnitude FFT values, the output may be directly used. For other work the square root of the filter-bin
outputs must be used. Of course this complicates the process as the front-end processing must be clearly defined
so that the appropriate mismatch function can be applied.

2The dependence on the noise corrupted speech mean and clean speech mean on the component have been
dropped for clarity.
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where the expectation is over the clean speech and noise distributions which have mean and
variances of: µs

n,Σ
s
n for the additive noise model; µs

x,Σ
s
x for the clean speech model; and µh,Σh

for the convolutional distortion. The partial derivatives above can be expressed in terms of partial
derivatives of the ys with respect to xs , ns and h evaluated at µ = µs

n − µs
x − µh. These have

the form

∂ys/∂xs = ∂ys/∂h = A (5)
∂ys/∂ns = I−A (6)

where A = CFC-1 and F is a diagonal matrix with elements given by 1/(1 + exp(2C-1µ)). It
follows straightforwardly that the means and variances of the noisy speech are given by

µs
y = µs

x + µh + f(µs
n − µs

x − µh) (7)

Σs
y = diag

(
AΣs

xA
T + (I−A)Σs

n(I−A)T
)

(8)

Note the convolutional distortion is assumed to be zero, Σh = 0 .
For model-based compensation schemes, an interesting issue is how to compensate the dynamic

delta and delta-delta parameters. A common approximation is the continuous time approxima-
tion [14]. Here the dynamic parameters, which are a discrete time estimate of the gradient, are
approximated by the instantaneous derivative with respect to time

∆ys
t =

∑n
i=1 wi

(
ys

t+i − ys
t−i

)
∑n

i=1 w2
i

≈ ∂ys
t

∂t
(9)

It is then possible to show that, for example, the mean of the delta parameters µ∆
y can be expressed

as
µ∆

y = Aµ∆
x. (10)

The variances and delta-delta parameters can also be compensated in this fashion. It is possible to
improve on the continuous-time dynamic compensation mismatch function in equation 9. In [5] a
form based on simple-difference rather than regression-based dynamic parameters was described.
In [18] this was extended for regression-based parameters and shown to outperform the continuous-
time approximation. These forms of improved approximation are not investigated in this work.

The compensation schemes described above have assumed that the noise model parameters,
µn, Σn and µh, are known. In practice these are seldom known in advance so must be estimated
from the test data. In this work the noise estimation is based on the Maximum Likelihood (ML)
noise estimation scheme described in [15] was used. In addition, the Hessian approach for the noise
variance in [7] was implemented. This has no effect on recognition performance, but improves the
estimation speed as there are fewer back-offs to ensure that the auxiliary function increases.

2.2 Mismatch Function Optimisation

There are a number of assumptions required to obtain the form of the mismatch function given
in equation 1, see for example [5]. Recently there has been interest in modifying the form of the
mismatch function to reduce the impact of these approximations, or more generally to simply yield
improved recognition performance.

One of the assumptions that has been investigated for VTS is the use of a phase-sensitive
mismatch function [11]. By relaxing the assumption that there is sufficient smoothing to remove
all cross-terms, a function of the following form can be obtained

ys
t = xs

t + h +
1
2
C log

(
1 + exp(2C-1(ns

t − xs
t − h)) + 2α exp(C-1(ns

t − xs
t − h))

)
(11)

where α is related to the level of smoothing. Note in theory α should be a function of the mel-bin
value [19]. In [11] the value of α was tuned to minimise the error rate on the AURORA 2 task [20].
Significant gains over the baseline α = 0 configuration was obtained. However the best performance
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was obtained using α = 2.5, contradicting the phase-sensitive theory where −1 ≤ α ≤ 1. Thus
this form of compensation may be considered as a generalisation of the mismatch function where
α is optimised, rather than compensating for limitations in the mel-bin smoothing.

An alternative form of mismatch function generalisation was proposed in [5]. This has the
form

ys
t = xs

t + h +
1
γ
C log

(
1 + exp(γC-1(ns

t − xs
t − h))

)
(12)

By tuning γ various forms of mismatch function can be obtained. Interestingly equations 11 and 12
are the same when γ = 1 and α = 1 (magnitude combination) and when γ = 2 and α = 0 (power
combination). For the magnitude case the mismatch function is

ys
t = xs

t + h + C log
(
1 + exp(C-1(ns

t − xs
t − h))

)
(13)

This is the form that was used in [10, 21] as it was found to outperform γ = 2. This is also
consistent with the results in [7] where α = 1 yielded the majority of the gains over the baseline
α = 0, though additional gains were obtained using α = 2.5. In this work γ = 1 (α = 1) will be used
as the baseline static compensation mismatch function. This was found to give consistently better
VTS performance than γ = 2. For the final ETSI experiments in section 5.2, γ was optimised to
minimise the Word Error Rate (WER). This will be referred to as a γ-optimised (γ-opt) system.
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Figure 1: Fγ(x, n) and Fα(x, n) for power (α = 0, γ = 2), magnitude (α = 1, γ = 1), γ = 0.75 and
α = 2.5 against SNR in dB.

It is interesting to compare the two forms of mismatch function generalisation in equations 11
and 12. Normalised forms of the two equations were used based on the ratio of the corrupted speech
magnitude to the clean speech magnitude in the linear spectral domain (convolutional distortion is
ignored). Thus the functions for γ-optimisation, Fγ(x, n), and phase-sensitive, Fα(x, n), mismatch
functions are given by

Fγ(x, n) =
(
1 +

(n

x

)γ)1/γ

(14)

Fα(x, n) =
(

1 +
(n

x

)2

+ 2α
(n

x

))1/2

(15)
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where n is the noise and x is the clean speech in the linear spectral domain. Figure 1 shows the
γ-optimisation function for γ = 0.75 (the optimal value found in section 5.2) and phase-sensitive
function for α = 2.5 (the optimal value in [11]) as well as the magnitude (α = 1, γ = 1) and
power (α = 0, γ = 2) functions against signal-to-noise ratio (SNR). It is interesting that the best
γ-optimised function and the best phase-sensitive α function show very similar trends as the SNR
varies for these values of α and γ.

3 SVMs and Generative Kernels

Support Vector Machines (SVMs) [2] are an approximate implementation of structural risk min-
imisation. They have been found to yield good performance on a wide range of tasks. The theory
behind SVMs has been extensively described in many papers, for example see [22], and is not
discussed here. This section concentrates on how SVMs can be applied to tasks where there is
sequence data, for example speech recognition.

One of the issues with applying SVMs to sequence data, such as speech, is that the SVM
is inherently static in nature; “observations” (or sequences) are all required to be of the same
dimension. A range of dynamic kernels have been proposed that handle this problem, for an
overview see [23]. Of particular interest in this work are those kernels that are based on generative
models, such as Fisher kernels [8] and generative kernels [9]. In these approaches a generative
model is used to determine the feature-space for the kernel. An example first-order feature-space
for a generative kernel with observation sequence Y may be written as

φ(Y; λ) =
1
T




log
(
p(Y;λ(ω1))

)
− log

(
p(Y; λ(ω2))

)

∇λ(ω1) log p(Y;λ(ω1))
∇λ(ω2) log p(Y;λ(ω2))


 (16)

where p(Y; λ(ω1)) and p(Y;λ(ω2)) are the likelihood of the data sequence Y using generative
models associated with classes ω1 and ω2 respectively. The normalisation term 1/T is used to help
normalise the feature-space for sequences of different lengths.

A range of generative models can be used. HMMs are the form selected in this paper as they
are the standard model used in speech recognition. Considering the derivative with respect to the
means and variances, elements of the feature-space will have the form [9]

∂

∂µ(m)
log p(Y; λ) =

T∑
t=1

γm(t)Σ(m)-1
(
yt − µ(m)

)
(17)

∂

∂Σ(m)
log p(Y; λ) =

1
2

T∑
t=1

γm(t)
(
−Σ(m)-1 + Σ(m)-1(yt − µ(m))(yt − µ(m))TΣ(m)-1

)
(18)

where γm(t) is the posterior probability that component m generated the observation at time t
given the complete observation sequence Y = y1, . . . , yT . Only the derivatives with respect to the
means are used in this work, though it is possible to use other, and higher-order, derivatives.

As SVM training is a distance based learning scheme it is necessary to define an appropriate
metric for the distance between two points. The simplest approach is to use a Euclidean metric.
However, in the same fashion as using the Mahalanobis, rather than Euclidean, distances for
nearest-neighbour training, an appropriately weighted distance measure may be better. One such
metric which is maximally non-committal is given by [9]

K(Yi,Yj ; λ) = φ(Yi;λ)TG-1φ(Yj ; λ) (19)

where Yi and Yj are two observation sequences and G is related to the Fisher Information matrix
(the log-likelihood ratio is also normalised in this work). In common with other work in this
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area [9, 24], G is approximated by the diagonalised empirical covariance matrix of the training
data. Thus

G = diag

(
1
n

n∑

i=1

(
φ(Yi; λ)− µφ

) (
φ(Yi;λ)− µφ

)T

)
(20)

µφ =
1
n

n∑

i=1

φ(Yi; λ) (21)

where there are n training data sequences Y1, . . . ,Yn.
Classification of observation sequence Y with this form of generative kernel is then based on

the SVM score S(Y; λ)

S(Y; λ) =
n∑

i=1

αsvm
i ziK(Yi,Y;λ) + b (22)

ω̂ =
{

ω1, S(Y; λ) ≥ 0
ω2, S(Y; λ) < 0 (23)

where αsvm
i is the Lagrange multiplier for observation sequence Yi obtained from the SVM maxi-

mum margin training, b is the bias and zi ∈ {1,−1} indicates whether the sequence was a positive
(ω1) or negative (ω2) example.

4 SVMs for Noise Robustness

The previous two sections have described model-based compensation and support vector machines
with generative kernels. This section describes how these schemes can be combined together
to allow noise-specific generative kernels to be used with a noise-independent SVM for speech
recognition. One of the problems with using SVMs for speech recognition is that standard SVMs
are binary classifiers whereas speech is a multi-class task; for large vocabulary systems there are
a vast number of classes. One approach to handling this problem is acoustic code-breaking [25].
Here confusable pairs in the training data are obtained by finding the most confusable word with
each of the reference words. This provides a set of training examples for a binary classifier. A
modified version of acoustic code-breaking is used in this work. The SVM training and sequence
rescoring are described in detail in the next two sections.

4.1 SVM Training

The first stage in training the SVM is to segment the data into homogeneous blocks which have
the same background noise and channel distortion. The clean acoustic model is then adapted to
each of the training data noise conditions using VTS. This adapted corrupted speech model can
be used to segment the training data into words and also derive the feature-space to train the
SVM. In contrast to acoustic code-breaking, during training rather than just selecting the data
from the specific confusable pairs all the data from each of the words is used during training. This
yields a far larger number of training examples for the SVM.

In this work only the log-likelihood ratio and derivatives with respect to the means are used. In
contrast to the standard use of generative kernel, there is an issue with implementing equation 17
when the noise-specific generative kernels are used. Model-based compensation schemes normally
modify the variances of the acoustic models. To keep the dynamic ranges of each set of features
consistent standard-deviation normalisation, rather than the variance normalisation in equation 17,
is used. Note this is not usually a problem as the same covariance matrices are used for all sequences
and the dynamic-range effects handled by the metric G. Thus the feature-space used for the SVMs
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between classes ωl and ωj is of the form

φ(Y; λ) =
1
T




log
(
p(Y; λ(ωl)

y )
)
− log

(
p(Y;λ(ωj)

y )
)

∑T
t=1 γm(t)Σ(ωl1)-1/2

y

(
yt − µ

(ωl1)
y

)

...∑T
t=1 γm(t)Σ(ωlM)-1/2

y

(
yt − µ

(ωlM)
y

)

∑T
t=1 γm(t)Σ(ωj1)-1/2

y

(
yt − µ

(ωj1)
y

)

...∑T
t=1 γm(t)Σ(ωjM)-1/2

y

(
yt − µ

(ωjM)
y

)




(24)

where the clean models have been compensated for the test condition Y, λ = {λ(ωl)
y , λ(ωj)

y }, and
there are a total of M components in each of the two word models λ(ωl)

y and λ(ωj)
y

The complete procedure for training the noise-independent SVMs is:

1. For each training noise condition perform model-based compensation to map the clean model
parameters to noise corrupted model parameters: λx → λy

2. Align each training utterance Y using the reference, r = r1, . . . , rK , and λy to give the
word-segmented data sequence Ỹ1, . . . , ỸK

3. For all word pairs (ωl, ωj) and for each segment Ỹi set λ = {λ(ωl)
y ,λ(ωj)

y }
(a) obtain φ(Ỹi; λ) for all training examples of ωl using the appropriate noise compensated

acoustic models λ

(b) obtain φ(Ỹi;λ) for all training examples of ωj using the appropriate noise compensated
acoustic models λ

(c) train a noise-independent SVM for pair (ωl, ωj) using all positive (a) and negative (b)
examples.

This yields a set of one-versus-one SVMS. Both linear and non-linear SVMs may be trained. In
this work only linear SVMs were used as the generative kernels typically yield a high dimensional
feature without using, for example, polynomial kernels.

4.2 SVM Rescoring

The same set of one-versus-one SVMs trained as above are used for all test noise conditions. For
each test noise conditions VTS is used to adapt the clean models. These noise-compensated models
are then used to recognise and segment the data. Simple majority voting is applied to label each
segment.

Thus during SVM rescoring the following complete procedure is used:

1. Compensate the acoustic models for the test noise condition: λx → λy

2. Recognise the test utterance Y using λy to obtain 1-best hypothesis, h = h1, . . . , hK and
align to give the word-segmented data sequence Ỹ1, . . . , ỸK

3. For each segment, Ỹi:

(a) for each word pair, (ωl, ωj) set λ = {λ(ωl)
y , λ(ωj)

y }

ω̂ =

{
ωl, if S(Ỹi;λ) + ε 1√

g11

(
log

(
p(Ỹi; λ(ωl)

y )
)
− log

(
p(Ỹi;λ(ωj)

y )
))

≥ 0
ωj ; otherwise

(25)

set : count[ω̂] = count[ω̂] + 1 (26)

(b) classification, ĥi, is given by:
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i. if no ties in voting: ĥi = argmaxω {count[ω]}
ii. if only two words (wl, wj) tie then ĥi determined using equation 25

iii. if more than two words tie ĥi = hi

In equation 25 a tunable parameter ε is used. This is an empirically set value which is used to
scale the contribution of the log-likelihood ratio to the SVM score. The log-likelihood ratio is
the most discriminatory of the dimensions of the score-space. However using a maximally non-
committal metric, G, all dimensions are treated equally. Thus ε is used to reflect the additional
usefulness of the log-likelihood ratio. As ε → ∞ the performance of the system will tend to the
HMM performance. In equation 25 ε is applied to a normalised log-likelihood ratio where the
square-root of first term of the metric G is used as the normalisation term. Though there was
little difference in performance between the normalised and un-normalised versions, it was felt to
generalise better between tasks and different noise conditions. For the initial experiments in this
work ε = 2 was used, this is the value used for the SPR experiments described in [16].

The routine above is known to be suboptimal in a number of ways. A simple scheme is used to
combine classifier outputs. More complex versions of binary classifier combination, or multi-class
SVM may be used, for example [26]. The alignment associated with each word-segment is not
updated if the hypothesis sequence changes. It is possible to repeat the alignment if the hypothesis
changes. However in initial experiments this gave no change in performance. The computational
load associated with this scheme increases approximately linearly with the number of word pairs.
However the number of confusable pairs increases roughly as the square of the vocabulary. Thus
the scheme is currently only suited for small vocabulary tasks, such as digit string recognition.

5 Results

The performance of the proposed scheme was evaluated on the AURORA 2 task [20]. AURORA
2 is a small vocabulary digit string recognition task. As the vocabulary size (excluding silence)
is only eleven (one to nine, plus zero and oh) the number of word pairs is small (66 including
silence) making it suitable for the proposed scheme. The utterances in this task are one to seven
digits long based on the TIDIGITS database with noise artificially added. The clean training
data was used to train the acoustic models. This comprises 8440 utterances from 55 male and
55 female speakers. Two forms of front-end were examined, one HTK-based, the other ETSI-
based [20]. For both front-ends 39 dimensional feature vector consisting of 12 MFCCs appended
with the zeroth cepstrum, delta and delta-delta coefficients was used. These differ slightly from
the standard parameterisations and perform slightly worse. However this form of front-end allows
VTS compensation to be applied to compensate the acoustic models. The acoustic models are
16 emitting state whole word digit models, with 3 mixtures per state and silence and inter-word
pause models. All three test sets, A,B and C, were used for evaluating the schemes. For sets A
and B, there were a total of 8 noise conditions (4 in each) at 5 different SNRs, 0dB to 20dB. For
test set C there were two additional noise conditions at the same range of SNRs. In addition to
background additive noise convolutional distortion was added to test set C. Test set A was used
as the development set for tuning parameters.

For all the VTS schemes the same procedure as in [7] was used. An initial estimate of the
background additive noise for each utterance was obtained using the first and last 20 frames of
the utterance. This was then used as the noise model for VTS compensation and each utterance
recognised. This hypothesis was used to estimate a per-utterance noise model in an ML-fashion.
The final recognition output used this ML-estimated noise model for VTS compensation.

Where SVM rescoring was used, the SVMs were trained on a subset of the multi-style training
data available for the noise conditions and SNRs in test set A. For each of the noise/SNR conditions
there are 422 sentences (a subset of all the training data). For the SVMs training only three of
the four available noise conditions (N2-N4) and three of the five SNRs 10dB, 15dB and 20dB were
used. This allows the generalisation of the SVM to unseen noise conditions to be evaluated on test
set A as no data from noise condition N1 and SNRs 5dB and 0dB were used. Note this makes the
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SVM experiments hard to compare with other approaches where none of the multi-style training
data was used. However the baseline VTS experiments are comparable. For all experiments the
SVMs were built using the top 1500 dimensions of φ(Ỹi;λ) ranked using the Fisher ratio.

5.1 HTK-based Front-End

SNR Noise Avg
(dB) N1 N2 N3 N4
20 1.78 1.87 1.55 1.54 1.69
15 2.67 2.63 2.00 2.13 2.36
10 5.13 4.20 3.37 4.91 4.39
05 12.25 12.03 8.20 12.40 11.20
00 32.18 37.70 21.92 26.47 29.55

Avg 10.80 11.69 7.41 9.49 9.84

Table 1: VTS WER (%) on AURORA 2 test set A using HTK features.

Initial investigation used the HTK-features [20]. As discussed in section 2.2 these initial results
used a mismatch function with magnitude combination, γ = 1. Table 1 shows the performance of
the VTS compensated clean system on each of the test set A noise conditions. As expected, as
the SNR decreases the word error rate (WER) increases. Note the word error rate for the clean,
uncompensated, model set on the 5dB SNR system was 66.75%. There is thus an 83% relative
reduction in error rate by using VTS model-based compensation at 5dB.

SNR Noise Avg
(dB) N1 N2 N3 N4
20 1.38 †1.45 †1.25 †1.30 1.35
15 2.12 †2.00 †1.64 †1.54 1.82
10 3.62 †2.93 †2.54 †3.86 3.23
05 8.78 8.43 6.20 9.53 8.22
00 24.04 27.93 18.52 21.54 23.00

Avg 7.99 8.55 6.03 7.55 7.52

Table 2: SVM rescoring WER (%) on AURORA 2 test set A (ε = 2), SVMs trained on N2-N4
10-20dB SNR indicated with †.

Table 2 shows the performance of the SVM rescoring for test set A. For these initial experiments
the value of ε was set to 2, which was the value used in [16]. The noise conditions where the multi-
style training data was used to train the SVMs are marked with a † as there may be a slight bias for
these numbers. For all noise conditions a reduction in the WER was observed. The performance
gains for the unseen N1 noise condition were consistent with those of the seen N2-N4 conditions.
In addition gains at the lower, unseen, SNRs 0dB and 5dB were seen. For example the gain at
5dB SNR was about 27% relative reduction. Overall a 23% relative reduction in error over test
set A was obtained compared to the baseline VTS scheme.

The performance of the system is expected to be sensitive to the value of ε selected. Figure 5.1
shows how the average performance for each of the three test sets varies as ε changes. The
performance of the SVM by itself (ε = 0) is better than the baseline VTS performance (see
table 3). For example the average WER on test set A for the “pure” SVM performance (ε = 0)
was 7.95% compared to 9.84% for the VTS compensation. Additional gains were obtained by
increasing ε. The minima for the three test sets occur in the range 1.5 to 3.0. Thus the previously
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Figure 2: SVM rescoring performance WER (%) against ε using HTK features, SVMs trained on
test set A N2-N4 10-20dB SNR.

used value of ε = 2 is a reasonable value for all three test sets, so was left unaltered for the later
experiments.

SNR Set A Set B Set C
(dB) VTS SVM VTS SVM VTS SVM
20 1.69 1.35 1.46 1.22 1.57 1.33
15 2.36 1.82 2.37 1.77 2.47 2.00
10 4.39 3.23 4.12 3.16 4.49 3.52
05 11.20 8.22 10.05 7.68 10.69 8.70
00 29.55 23.00 27.54 22.93 28.41 25.01

Avg 9.84 7.52 9.11 7.35 9.53 8.11

Table 3: VTS (γ = 1) and SVM rescoring performance WER (%) tests Sets A, B, C (ε = 2) using
HTK features, SVMs trained on test set A N2-N4 10-20dB SNR.

Table 3 summarises the results for VTS compensation and SVM rescoring for all three available
test sets. Note that none of the noise conditions for test sets B and C were used to train the SVMs.
For all noise conditions large reductions in WER were obtained using SVM rescoring compared to
the baseline VTS compensation. The relative reductions in average WER were 23%, 19% and 14%
for test sets A, B and C respectively. Though the relative gains for test sets B and C were slightly
less than that for test set A, it still indicate that a good level of noise-independent classification
can be obtained using these noise-specific generative kernels.

5.2 ETSI-based Front-End

The previous section has used the HTK-based features with the baseline γ = 1 noise compensation.
The ETSI-based features are known to yield better performance than the HTK-based features [20].
The interaction of this improved front-end with VTS and the SVM rescoring gains was therefore
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investigated. It is also interesting to examine whether performance gains are possible when the
VTS mismatch function is optimised. For this work the γ-optimisation in equation 12 was used.
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Figure 3: Plot of test set A WER against γ

Figure 3 shows the variations in WER for test set A as the value of γ is varied in equation 12.
From the graph it is clear that the magnitude-based mismatch function (γ = 1) outperforms the
more theoretically correct power-based mismatch function (γ = 2). The best performance on test
set A is with γ = 0.75. As discussed in section 2.2 the impact of this γ-optimised system is very
similar to the α-optimised phase-sensitive system in [11].

SNR Set A Set B Set C
(dB) VTS γ-opt SVM VTS γ-opt SVM VTS γ-opt SVM
20 1.60 1.47 1.27 1.38 1.30 1.09 1.63 1.49 1.25
15 2.26 2.12 1.75 2.23 2.11 1.69 2.38 2.18 1.87
10 4.27 3.91 3.10 3.91 3.51 2.78 4.40 4.07 3.40
05 10.52 8.94 7.10 9.13 8.53 6.81 9.64 8.56 7.66
00 28.00 25.48 21.73 25.95 24.46 21.64 26.05 24.51 22.56

Avg 9.33 8.39 6.99 8.52 7.98 6.80 8.82 8.16 7.35

Table 4: VTS (γ = 1), γ-optimised (γ = 0.75) and SVM rescoring(ε = 2) performance WER (%)
tests Sets A, B, C using ETSI features, SVMs trained on set A N2-N4 10-20dB SNR.

Table 4 shows the performance for the baseline (γ = 1) and the γ-optimised VTS performance
(γ = 0.75). The performance of the baseline system is consistently better than the HTK-based
features when VTS is used3. By optimising γ further large gains in performance can be obtained
over all test sets. Note that though γ was optimised on test set A, there are consistent gains on
test sets B and C. For example on test set B a 7% relative reduction in average WER was obtained

3The performance of this baseline γ = 1 system is similar to the results in [7]. However it is unclear what domain
was used for the compensation in [7] as the default ETSI features are magnitude based.
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with gains for all SNRs. This is consistent with the gains observed for phase-sensitive α optimised
compensation [11].

The γ-optimised VTS models were then used in the SVM rescoring process. For these SVM
rescoring experiments ε = 2 was again used. These results are also shown in table 4. For all SNRs
and test sets gains over the optimised VTS scheme were obtained. Relative gains of 17% for test
set A, 15% for test set B and 10% for test set C were obtained. These gains are less than those
obtained with non-optimised HTK scheme, but still show that large gains using SVM rescoring
are possible when the VTS compensation has been optimised.

6 Conclusions

This paper has described a new approach to noise-robust speech recognition. The scheme com-
bines model-based noise compensation schemes with a discriminative classifier, in this case an
SVM. Rather than adapting the discriminative classifier, changing noise conditions are handled
by modifying the generative kernel. This is possible as generative models, such as HMMs, are used
to determine the kernel feature-space. Thus model-based compensation can be used to adapt the
generative models and obtain kernel features that are specific to the current noise environment.
For this work VTS was used as the model-compensation scheme. In addition to the baseline VTS
scheme, an improved approach using an optimised mismatch function was investigated. To handle
the multi-class issue (the SVM is inherently binary) a combination of a modified version of acous-
tic code-breaking with majority voting was used. Thus the scheme allows a noise-independent
SVM with noise-dependent generative kernels to be used to rescore the recognition output from a
standard HMM-based speech recognition systems.

Initial experiments on the AURORA 2 task are presented using VTS as the model-based
compensation scheme. To train the SVMs a subset of the multi-style training data for test set A
was used. To ensure that the SVMs could handle unseen noise conditions and SNRs, no data from
the N1 noise condition and the 0dB and 5dB SNRs were used to train the SVMs. Note this makes
it hard to compare the SVM rescoring experiments with other schemes where for example only
the clean models are used. In addition to test set A the performance was evaluated on test sets
B and C with unseen noise conditions. Compared to the VTS trained system large reductions in
WER were observed with SVM rescoring for all noise conditions, including the ones on which the
SVMs were not trained. Consistent gains over the VTS baseline was obtained even when the VTS
compensation scheme was optimised for the space in which the speech and noise are assumed to
be additive, γ optimisation.

The results presented in this paper are preliminary for a number of reasons. Though consistent
gains on more complex tasks have been obtained using magnitude compensation (γ = 1) it is not
clear whether further γ-optimisation will generalise from task to task. Discriminatively trained,
or more complex, acoustic models can be used for this task. The proposed scheme can be applied
using these improved generative models. The AURORA 2 task comprises artificially corrupted
data. The standard issue of whether the large gains observed will map to “real” data is not
clear. Finally SVMs were used as the discriminative classifier. For larger vocabulary tasks other
discriminative classifiers, such as conditional augmented models [24], may be more appropriate.
Despite these limitations, the results indicate that good levels of performance can be obtained
using noise-independent discriminative classifiers with noise-specific kernels.
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