
Stimulated Deep Neural Network for Speech Recognition

Chunyang Wu1, Penny Karanasou1, Mark J.F. Gales1, Khe Chai Sim2

1University of Cambridge
2National University of Singapore

{cw564, pk407, mjfg}@eng.cam.ac.uk, simkc@comp.nus.edu.sg

Abstract
Deep neural networks (DNNs) and deep learning approaches
yield state-of-the-art performance in a range of tasks, including
speech recognition. However, the parameters of the network
are hard to analyze, making network regularization and robust
adaptation challenging. Stimulated training has recently been
proposed to address this problem by encouraging the node ac-
tivation outputs in regions of the network to be related. This
kind of information aids visualization of the network, but also
has the potential to improve regularization and adaptation. This
paper investigates stimulated training of DNNs for both of these
options. These schemes take advantage of the smoothness con-
straints that stimulated training offers. The approaches are eval-
uated on two large vocabulary speech recognition tasks: a U.S.
English broadcast news (BN) task and a Javanese conversational
telephone speech task from the IARPA Babel program. Stim-
ulated DNN training acquires consistent performance gains on
both tasks over unstimulated baselines. On the BN task, the pro-
posed smoothing approach is also applied to rapid adaptation,
again outperforming the standard adaptation scheme.
Index Terms: Deep Neural Networks, Stimulated Learning,
Speaker Adaptation

1. Introduction
In recent years, deep neural networks [1, 2, 3] (DNNs) have
successfully been applied to acoustic models of state-of-the-art
speech recognition systems. DNNs are a set of hidden layers
with linear transformations and non-linear activations for mak-
ing predictions. This approach allows complex data to be well
modeled. However, the whole DNN remains a “black-box” and
the behaviors of the activations can be hard to understand. In
computer vision, several works [4, 5, 6] have been proposed to
analyze neural network weights. However, this topic has rarely
been investigated in speech recognition.

In order to enhance interpretation, stimulated learning [7]
has been proposed to augment the DNN optimization with reg-
ularization at the hidden-layer activation level. A stimulation
term is introduced to the training criterion to encourage the
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DNN activations in a region to be similar. For instance, by using
a phonemic prior, the neurons in different regions are regular-
ized to correspond to different phonemes. In this way, DNN
activations can then be interpreted and visualized directly ac-
cording to the underlying stimulated prior [7].

Another advantage of stimulated DNNs is that the infor-
mation from its activation patterns can be utilized for DNN
regularization and adaptation schemes. In speaker adapta-
tion, limited amount of data are used to adapt the speaker-
independent (SI) acoustic model to a speaker. Several methods
have been proposed to impose interpretable structures on the
DNN topology to effectively adapt the DNN. Transformation-
based schemes [8, 9, 10] add additional linear layers as speaker-
dependent (SD) transforms. In the DNN-CAT [11, 12] and
the multi-basis adaptive neural network [13] models, speaker-
dependent interpolation weights are introduced to combine dif-
ferent DNN modules to handle the acoustic distortions. The
learning hidden unit contributions [14] (LHUC) and the para-
metric activation [15] adaptation methods introduce a scaling
factor on each hidden-layer activation. In [16], the differen-
tiable pooling technique is used to obtain the speaker-dependent
compensation from a hidden-activation candidate pool. Al-
though they can be used immediately on a stimulated DNN, the
expressive activation properties are rarely taken advantage of on
these approaches.

This paper investigates stimulated training of DNNs for
both network regularization and robust adaptation. There are
two major contributions of this paper. First, stimulated DNN
regularization is applied to large vocabulary recognition tasks
and achieves consistent gains. Second, based on the activation
patterns obtained by stimulated learning, a smoothing approach
is proposed to regularize the DNN adaptation schemes. In the
standard LHUC adaptation method, the neurons are treated as
independent items without considering their inter-relations: a
large number of parameters are required to adapt, which is
incapable of handling rapid adaptation scenarios with limited
data. In the regularized LHUC approach, the information from
a node’s spatial neighbors in the stimulated DNN are utilized
to robustly smooth LHUC scaling factors during the adapta-
tion phase. This kind of auxiliary indicators is expected to help
regularize the LHUC behaviors even when there is insufficient
adaptation data. The experiments are conducted on two large
vocabulary recognition tasks: a U.S. English broadcast news
(BN) transcription task and a Javanese conversational telephone
speech (CTS) task from the IARPA Babel program.

The rest of this paper is organized as follows. The stim-
ulated DNN regularization is presented in Section 2. In Sec-
tion 3, we propose the regularized LHUC adaptation approach
on stimulated DNNs. Experimental results are reported in Sec-
tion 4. This paper is concluded in Section 5.
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2. Stimulated DNN Regularization
Deep neural networks are commonly integrated to the acoustic
model of speech recognition systems: given a frame observation
x, a DNN is usually used to predict the posterior of the context-
dependent target y

P (y = i|x) =
exp

(
z
(L)
i

)
∑
j exp

(
z
(L)
j

) . (1)

The DNN activation input z(l) and output h(l) are recursively
defined as

z(l) = W(l)Th(l−1) + b(l), 1 ≤ l ≤ L

h(l) = σ
(
z(l)
)
, 1 ≤ l < L

h(0) = x

where σ(·) represents the sigmoid function; L is the total num-
ber of layers in the neural network; W(l) and b(l) are the trans-
formation parameters belonging to the l-th hidden layer; x is
the input feature.

Define θ = {W(1),b(1), . . . ,W(L),b(L)} as the DNN
parameters, standard training schemes try to minimize some cri-
terion L(θ) over a training set. For instance, the cross-entropy
(CE) criterion is

Lce(θ) = − 1

T

T∑
t=1

logP (yt|xt;θ) (2)

where T is the total of training samples; xt and yt are a training
sample and its true context-dependent target. One of the issues
with the standard training is that the hidden activations are not
interpretable. This lack of interpretability can cause issues for
network regularization and speaker adaptation as it is difficult
to relate weights from the network to each other.

To address this problem, the stimulated leaning [7] ap-
proach has been proposed. The aim of stimulated training is
to train DNNs where nodes with similar activation functions
are grouped together in the spatial ordering, instead of form-
ing an arbitrarily-ordered set of activations. In detail, a phone
(or grapheme) dependent prior distribution is defined over the
normalized activation function outputs for each of the layers.
The nodes in each layer are reorganized into a grid, e.g., a layer
with 1024 nodes can form a 32 × 32 two-dimensional grid. In
this way, each node i of a layer is represented as a point in a
two dimensional network-grid space, denoted as si. A point
in this network-grid space is also associated with each phone
p, denoted as sp. The phone positions can be determined via
methods like t-SNE [17] over the acoustic feature means of the
phonemes. It is then possible to define a normalized distance
from every node to the correct phone position. These normal-
ized distances are used as a prior over the distribution of activa-
tion function values for a layer. This prior encourages activation
functions in the same locality to have the same normalized out-
put.

To implement stimulated training, a regularization term
Rst(θ) is added to the training criterion F(θ)

F(θ) = L(θ) + ηstRst(θ) (3)

where L(θ) is the standard training criterion; ηst determines
the contribution of the stimulated prior Rst(θ). Here Rst(θ)

is based on the KL-divergence of the prior distribution over
the current distribution g(si, ŝpt) and the normalized activation
h̄
(l)
i (xt)
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where the two distributions are defined as:

1. phone-specific activation distribution prior: the normal-
ized distance of a node and the current active-phone po-
sition:

g(si, ŝpt) =
exp
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where si is the position of the i-th node in the network-
grid space; ŝpt is the position in the network-grid space
of the “correct” phoneme at time t; σst controls the
sharpness of the prior surface.

2. network activation distribution: h̄(l)
i (xt) is the normal-

ized activation output for the i-th node on the l-th layer
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where β(l)
i is used to reflect the impact that the activation

function has on the following layer l + 1 and has been
found to be important for stimulated training.

This form of prior can be applied to any form of network. In
this work it is applied to a DNN trained using either the cross-
entropy, or Minimum-Phone-Error (MPE) sequential training.

3. Stimulated DNN Adaptation
Recent progress in neural network adaptation introduce ad-
ditional structures to the network as model parameters. In
LHUC [14] and the parametric activation [15] adaptation ap-
proaches, a speaker-dependent scaling factor α(ls)

i is introduced
independently to every activation of all the hidden layers. Fol-
lowing [15],

h̃
(ls)
i (xt) = α

(ls)
i h

(l)
i (xt) (7)

where h̃(ls)
i denotes the adapted output of the i-th node on the

l-th layer and s stands for the speaker index. Scaling factors are
introduced per activation thus a large number of parameters are
required to adapt. The lack of interpretable meanings among the
activations causes that they are modeled as independent compo-
nents, instead of groups based on functional similarities.

As illustrated in Figure 1(b), the network grid behaves as a
smooth surface on each layer of a stimulated DNN. The nearby
nodes in the spatial ordering are likely to perform analogously.
Based on this phenomenon, a regularized LHUC model asso-
ciated with the stimulated DNN is proposed, which aims at
smoothing the adapted activation outputs by spatial neighbors.
Define α(s) as a super-vector concatenating the LHUC scaling
factors of activations in all hidden layers. The adaptation regu-
larization term is defined as

RL(α(s)) =
1

2T (s)

∑
l

∑
i

∑
j

qij ∑
t∈I(s)

fij
(
xt;α

(s)
)

(8)
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where I(s) and T (s) are respectively the index set and the total
of frames belonging to the s-th speaker; fij(·) is the squared
difference between two activation outputs

fij
(
xt;α

(s)
)

=
(
β
(l)
i h̃

(ls)
i (xt)− β(l)

j h̃
(ls)
j (xt)

)2
,

the term β
(l)
i , as defined in Eq. 6, is also introduced to keep the

consistency in stimulated learning. qij is the impact of a neigh-
bor to the current node, measured by the normalized Euclidean
distance between their positions on the stimulated grid

qij =
1
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exp
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2σ2
L
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)
,

σL is the decay factor and Qi =
∑
j exp

(
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2σ2
L
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)
.

On both the frame-level and the sequential DNN systems
in this paper, LHUC optimization using the frame-level cross-
entropy criterion with the proposed regularization is investi-
gated. The adaptation criterion F(α(s)) is given by

F(α(s)) = Lce(α(s)) + ηLRL(α(s)) (9)

where ηL penalizes the importance of the regularization term.
The optimization of the regularized LHUC scaling factors can
be performed in a stochastic gradient descend fashion. The es-
sential gradients ∂L

∂α
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4. Experiments
Experiments were conducted on a U.S. English broadcast news
(BN) task and a Javanese conversational telephone speech task
from the IARPA Babel program. The relevant GMMs, DNNs
and the proposed models were trained on an extended version
of HTK Toolkit 3.5 [18].

4.1. Broadcast News

The training set for this task included the 144-hour 1996 & 1997
Hub-4 English Broadcast News Speech dataset (LDC97S44,
LDC98S71), containing 288 shows with approximately 8k
speakers. For performing evaluation, both the BN testsets 2.7-
hour Dev03 and 2.6-hour Eval03 were used. The utterances
of both testsets were processed by automatic segmentation and
their averaged utterance durations were 10.7 and 10.9 seconds,
respectively. Decoding was performed with the RT04 tri-gram
language model [19]. The adaptation schemes were evaluated
in a rapid utterance-level unsupervised fashion: the SI decoding
hypotheses are used to estimate the LHUC parameters for each
utterance.

The baseline DNN cross-entropy system used the 468-
dimensional PLP+∆+∆∆+∆∆∆, processed by both global
cepstral mean normalization (CMN) and cepstral variance nor-
malization (CVN), in a temporal context window of 9 frames

as the input feature. The neural network consisted of 5 hidden
layers with 1024 nodes in each layer and the context-dependent
targets were approximately 6k. Its parameters were initialized
by the layer-wise discriminative pre-training and then optimized
by back-propagation. 28 shows with about 600 speakers were
randomly selected as the cross validation set. The well-trained
CE DNN was subsequently used to generate the lattices of the
training set, initialize the sequential MPE DNN and further tune
for four iterations under the MPE criterion to obtain the base-
line MPE DNN system. On both the CE & MPE DNN systems,
we used their respective hypothesis alignment to adapt the DNN
via LHUC for each utterance in the testsets.

In order to setup the stimulated DNNs, the mono-phone 2D
positions were firstly obtained via t-SNE [17] over the training-
set averaged CMLLR [20] frames of the phonemes. They were
then scaled to fit in the unit square [0, 1] × [0, 1]. The network
configuration of stimulated DNNs kept the same as that of the
baselines. The prior sharpness factor σ2

st was empirically set as
0.1. The sequential MPE stimulated system were initialized as
the CE stimulated one and then tuned for three iterations. The
standard and regularized LHUC models were then evaluated on
both the stimulated CE & MPE DNNs.

Table 1 reports the impact of the stimulating penalty ηst
on CE systems. All the stimulated DNNs (CE-Stimu) penal-
ized from 0.05 to 0.2 outperformed the unstimulated baseline
(CE). The best system was achieved by that with 0.05, decreas-
ing the word error rate (WER) by 0.8% in absolute value. In

System ηst %WER
CE 0 12.7

CE-Stimu

0.05 11.9
0.1 12.1
0.15 12.5
0.2 12.6

Table 1: Comparison of the Impact of ηst on Stimulated CE
Systems on Dev03.

addition to the performance, a meaningful pattern was also ob-
tained. As shown in Figure 1, we compared the first-hidden-
layer activation grids of the unstimulated and stimulated (ηst =
0.05) DNNs on a frame example belonging to the phone “ay”.
Because of the arbitrary ordering issue, there is no pattern in

(a) Unstimulated (b) Stimulated ηst = 0.05

Figure 1: Comparison of unstimulated and stimulated DNN ac-
tivations on an “ay” frame.

the grid of the unstimulated DNN. However on the stimulated
one, the activation grid nicely corresponded to the stimulating
pattern: the nodes around the “ay” location echoed higher acti-
vation values.

The best stimulated system (ηst = 0.05) was subsequently
used to investigate the proposed regularized LHUC adaptation
approach (+regLHUC). The distance decay σ2

L was fixed as
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System ηL %WER
LHUC – 12.4

regLHUC

0 11.6
0.05 11.5
0.1 11.4

0.15 11.5
0.2 11.5

Table 2: Comparison of the Impact of ηL in Utterance-Level
Adaptation on Dev03.

0.01, according to empirical results. The impact of the LHUC
regularization penalty ηL in utterance-level unsupervised adap-
tation is compared in Table 2. The best adaptation performance
was obtained when ηL was set as 0.1, which outperformed the
original LHUC method by 0.2% absolutely on WER. Then, ηL
was fixed as 0.1 and a summary of rapid adaptation on the CE
systems is given in Table 3, including the performance on the
unseen testset Eval03. The regularized LHUC method on top

System Dev03 Eval03
CE 12.7 10.7

+LHUC 12.4 10.6
+regLHUC 12.8 10.8

CE-Stimu 11.9 10.3
+LHUC 11.6 10.0
+regLHUC 11.4 9.9

Table 3: CE Utterance-Level Adaptation on Broadcast News.

of the stimulated DNN acquired improvement compared with
the default LHUC (+LHUC) on both testsets. The regularized
LHUC was also tested on the default CE baseline. However,
since the arbitrary neighbors were unable to provide useful in-
formation, no enhancement was achieved on top of the unstim-
ulated system.

This CE stimulated DNN was then used to train the MPE
stimulated system. Table 4 reports the comparison of the per-
formance of different MPE systems. Similar to the CE ones,

System Dev03 Eval03
MPE 11.6 10.1

+LHUC 11.2 9.8
MPE-Stimu 11.2 9.8

+LHUC 10.9 9.5
+regLHUC 10.6 9.4

Table 4: MPE Utterance-Level Adaptation on Broadcast News.

the MPE stimulated DNN outperformed the unstimulated MPE
baseline. The regularized LHUC on the stimulated system
achieved the best performance as well, reducing the WER up
to 5% relatively in contrast with the SI MPE stimulated system.

4.2. Javanese

The next experiments were conducted on the Javanese con-
versational telephone speech task from the IARPA Babel pro-
gram (IARPA-babel402b-v1.0b). The Full Language
Pack (FLP) of the Javanese (402) language was used. The train-
ing set consisted of approximately 60 hours from 720 speakers.
The evaluation set was the 10.2-hour Dev set from 120 speak-
ers and its segmentation was automatically processed with an

average duration 2.1 seconds. Decoding was performed with a
decoding tri-gram language model followed by confusion net-
work.

In the DNN training, the 77-dimensional multilingual bot-
tleneck feature [21] on 11 Babel languages was used. It was
processed by both side-level CMN & CVN and the DNN used
it in a temporal context window of 9 frames as the input fea-
ture. The context-dependent targets were approximately 4k and
the DNN configuration was 693 × 10245 × 4k. DNN param-
eters were initialized in a layer-wise discriminative pre-training
fashion and then optimized by back-propagation. 36 speakers
were randomly selected as the cross validation set. The well-
trained CE DNN was subsequently used to initialize the sequen-
tial MPE DNN and further tuned for three iterations under the
MPE criterion to obtain the baseline MPE DNN system. For
the stimulated DNNs, the graphemic [22] information, instead
of phones, was used and the positions of the correct graphemes
were given by the t-SNE method. Both CE & MPE stimulated
DNNs were optimized in a similar fashion as the unstimulated
ones.

The word error rate of stimulated DNNs on different ηst
is summarized in Table 5. It showed a small but consistent
gain over the standard training, on both the Viterbi decoding
and that processed by confusion network (+CN). This indicated

System ηst %WER
Viterbi +CN

CE 0 60.5 58.3

CE-Stimu

0.05 60.4 58.2
0.1 60.1 58.0
0.15 60.0 57.9
0.2 60.6 58.2

Table 5: CE Performance of Stimulated DNNs on Javanese.

the effectiveness of the stimulated training using the graphemic
information. The best stimulated system was achieved with
ηst = 0.15. It was then used to train the stimulated MPE DNN

System %WER
Viterbi +CN

MPE 58.5 56.3
MPE-Stimu 57.6 55.7

Table 6: MPE Performance of Stimulated DNNs on Javanese.

and the comparison of MPE systems is given in Table 6. A con-
sistent gain was also acquired by the stimulated DNN in contrast
with the unstimulated MPE baseline. In this high-error-rate sce-
nario, LHUC adaptation was not examined.

5. Conclusion
In this paper, stimulated training of DNNs for network regu-
larization and robust adaptation has been investigated. Both
schemes rely on generating a smooth “surface” over its acti-
vation functions. The approaches were evaluated on two large
vocabulary speech recognition tasks: a U.S. English broadcast
news task and a Javanese CTS task from the IARPA Babel pro-
gram. Stimulated DNN training yields consistent performance
gains on both tasks over unstimulated baselines. On the BN
task, the smoothing approach is applied to rapid adaptation, out-
performing the original LHUC scheme. Future work will look
at stimulated learning in recurrent neural networks.
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