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Abstract

Adaptive training is a widely used technique for building speech recognition systems on
non-homogeneous training data. Recently there has been interest in applying these approaches
for situations where there is significant levels of background noise. Various schemes for adap-
tive training are based on noise, or speaker, specific transforms of the observed noise-corrupted
speech to yield estimates of the clean speech. However when there are high levels of back-
ground noise, these clean speech estimates may be poor resulting in degradations in per-
formance. In this work, a new approach for adaptive training on noise-corrupted training
data is presented. It extends a popular form of linear transform for model-based adaptation
and adaptive training, constrained MLLR (CMLLR), to reflect additional uncertainty from
noise-corrupted observations. This new form of transform is called noisy CMLLR (NCM-
LLR). NCMLLR uses a modified version of generative model between clean speech and noisy
observation, similar to factor analysis (FA). However in contrast in FA here the generative
model describes a transformation, rather than a covariance matrix structure. The use of
NCMLLR for adaptation and adaptive training using an expectation-maximisation approach
is described. Discriminative adaptive training with NCMLLR is also presented based on the
minimum phone error criterion. Experiments are conducted on noise-corrupted version of
Resource Management and in-car recorded digit data. In preliminary experiments this new
approach achieves improvements in recognition performance over the standard approach in
low signal-to-noise ratio conditions. In addition the need for adaptive training when there are
a range of noise conditions in the training data is shown.
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1 Introduction

Current large vocabulary speech recognition systems are normally constructed on large amounts
of acoustic training data from multiple speakers with different background noise and channel
conditions. The standard approach to building acoustic models is to treat all the data as a single
block, multi-style training. This yields acoustic models which represent both the speech, speaker
and background noise. However performance of these multi-style systems can be limited, especially
if there is a wide range of noise conditions seen in the training data. An alternative approach is
to use adaptive training [1, 2]. Though normally described in terms of speaker adaptive training,
the same approaches may be used to handle large variabilities in the background noise, which
will be the focus of this work. Noise-specific transforms are estimated during training. These
transforms should compensate for the noise, allowing a “clean” canonical acoustic model to be
trained on noise corrupted data. These canonical models can then be adapted to a particular test
condition. This yields a purer canonical model of speech compared to multi-style training where
the models incorporate all the variability of the acoustic data. Adaptive training is usually based
on linear transforms, in particular constrained maximum likelihood linear regression (CMLLR) [2],
as minimal changes to the standard code are required for estimating the canonical model. However,
these forms of adaptive training do not deal specifically with data having high levels of background
noise. CMLLR may be viewed as making an estimate of the clean speech given the noise-corrupted
data and the transform, effectively it is a feature-enhancement approach. For low signal-to-noise
ratio (SNR) conditions the estimate of the clean speech may be poor and should not be treated
with the same level of confidence as high SNR data.

A number of noise-specific schemes that make use of feature-enhancement approaches have also
been used to handle varying noise conditions in the training data. These approaches are sometimes
referred to as noise adaptive training (NAT) [3]. In the same fashion as CMLLR, these techniques
do not alter the level of confidence in the estimate of the clean speech to reflect the noise conditions,
possibly limiting performance when trying to deal with low-SNR data. Approaches in this class
include robust environment-effects suppression training (REST) [4] and NAT [3]. Discriminative
versions of these adaptive training schemes have also been proposed [5, 6].

To overcome the limitation of these feature-enhancement-style approaches, model-based adap-
tive training schemes have been proposed for data with high levels of background noise [7, 8]
using joint uncertainty decoding (JUD) [9] or vector Taylor series (VTS) [10]. These model-based
approaches modify the parameters of the acoustic models, so that they are representative of the
target test environment. As the model parameters are transformed, there is additional flexibility
which allows the uncertainty of the clean speech estimates to be modelled. A problem with these
model-based schemes is that a mismatch function representing the impact of the background noise
on the clean speech must be specified for the feature-parameterisation being used. This is not
simple for all feature parameterisations.

In this paper, a new approach for adaptive training on training data with a wide-range of noise
conditions is presented. The scheme is described as an extension to estimating CMLLR transforms
and adaptive training with CMLLR, though its structure is also related to factor-analysed-based
covariance matrix schemes [11, 12]. An approximate generative model relating the “clean” speech
and the observation is proposed. This model allows a noise term to be included, which is important
to allow a level of confidence in the clean estimate to be described. This form of generative process
may be expressed as a linear transform of the observed features and a bias on the variance (thus
it may be viewed as combining CMLLR with the variance bias described in [13]) and will be
referred to as noisy CMLLR (NCMLLR). The form of this transform is identical to JUD [9].
However in the NCMLLR transform the parameters are estimated in a maximum likelihood (ML)
fashion rather than being based on a mismatch function and noise model parameter estimates. By
directly estimating the parameters from the observation it is not necessary to specify a mismatch
function allowing more complex forms of front-end processing and normalisation to be used. It
also allows additional flexibility in the nature of the feature linear transform and variance bias.
In addition, EM-based canonical model estimation formulae are derived using NCMLLR. Given
the relationship between JUD and VTS these are closely related to those given in [8]. Finally
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adaptive training with NCMLLR is extended to support discriminative training of the acoustic
models based on the minimum phone error (MPE) [14] criterion.

This report is organised as follows: The next section describes adaptation and adaptive training
approaches based on linear transforms. Model-based compensation approaches for robust speech
recognition are reviewed in section 3. In section 4, NCMLLR is formally introduced and adaptive
training with NCMLLR presented. The relationship to existing approaches is also described.
Section 5 discusses practical implementation issues. Results are reported in section 6 on noise
corrupted Resource Management and Toshiba in-car collected data. Lastly, conclusions are given
in section 7.

2 Adaptive Model-Based Linear Transforms

Linear transform based adaptation is a widely used approach to speaker and environment adapta-
tion when there is limited adaptation data available. The basic idea is to estimate a test-domain
specific linear transform for the means and/or covariance matrices of the Gaussian components.
In standard schemes, the transforms are estimated using the ML criterion given a set of hidden
Markov models (HMMs). This section will review the adaptation based on the linear transforms,
including maximum likelihood linear regression (MLLR) [15], covariance MLLR [16, 2], CMLLR [2]
and variance bias [13]. These schemes will be given the general name of adaptive transforms, as
all the transform parameters are estimated directly.

For all the transformation estimation schemes in this section and the rest of the report, the
clean speech models are assumed to HMMs. The state output distributions are modelled using
continuous density Gaussian mixture models with diagonal covariance matrices.

The notation used in this section differs from the standard presentation as it is linked with the
next section on noise robustness. Thus the subscript s will be used to indicate the “clean”-speech
model and o the corrupted speech model.

2.1 Maximum Likelihood Linear Regression

MLLR [15, 16] adaptation uses the ML criterion to estimate a linear transform to adapt the
Gaussian component parameters of the HMMs. In MLLR, the mean of Gaussian component m is
adapted to a particular acoustic condition by

µ(m)
o = A(rm)µ(m)

s + b(rm) = W(rm)ξ(m)
s (1)

where µ
(m)
o is the adapted mean of component m for the target acoustic condition, ξ(m)

s =
[1 µ

(m)T
s ]T is the extended mean vector, and W(rm) = [b(rm) A(rm)] is the extended linear

transform. The superscript rm indicates that the transform applied to acoustic model component
m is based on the regression class that component m belongs to. The total number of classes
R is usually small, especially compared to the number of model components M . Components
are often clustered together to form a regression class tree [17]. Using a regression tree gives an
elegant means to scale the number of transforms to the available adaptation data [17, 18]. The
linear transform, A(rm) can be diagonal, block, or a full in structure depending on the amount of
supervision data available. It is worth emphasising that the transform W(rm) is associated with
a particular test acoustic condition.

The likelihood of a particular state at time t, θt, given the MLLR transform can then be
expressed as

p(ot|M, T , θt) =
∑

m∈θt

c(m)N
(
ot;A(rm)µ(m)

s + b(rm),Σ(m)
s

)
(2)

Using the ML criterion, the optimal transform can be found by maximising the likelihood of
generating the adaptation data for a particular speaker. The EM algorithm [19] is applied to solve
the optimisation problem. The estimation of the transform is based on a set of well-trained HMMs
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M and the current set of transforms T . Ignoring the constants independent of the transform, the
auxiliary function for MLLR transform estimation can be written as [15]

Q(T̂ ; T ) = −1
2

T∑
t=1

M∑
m=1

γ
(m)
o,t

(
ot − Ŵ(rm)ξ(m)

s

)T

Σ(m)-1
s

(
ot − Ŵ(rm)ξ(m)

s

)
(3)

where T̂ is the set of R MLLR transforms to be estimated {Ŵ(1), . . . ,Ŵ(R)}, γ
(m)
o,t is the posterior

occupancy of component m calculated using the forward-backward algorithm with HMMs adapted
by the current transform estimate. Usually the Gaussian covariance matrices are assumed to be
diagonal. This will greatly simplify the estimation of MLLR transforms. Differentiating the aux-
iliary function in equation 3, with respect to Ŵ(rm) and equating to zero yields the ML estimate.
Let Ŵ(r) = [ŵ(r)

1 , · · · , ŵ(r)
D ]T, where ŵ(r)T

d is the dth row of Ŵ(r), D is the dimensionality of the
feature vector, the ML estimate of the dth row is given by

ŵ(r)
d = G(r)−1

d k(r)
d (4)

where the sufficient statistics for the dth row are given by

G(r)
d =

∑
m∈r

T∑
t=1

γ
(m)
o,t

σ
(m)2
sd

ξ(m)
s ξ(m)T

s (5)

k(r)
d =

∑
m∈r

T∑
t=1

γ
(m)
o,t otd

σ
(m)2
sd

ξ(m)
s (6)

where m ∈ r indicates components m in regression class r, otd is the dth element of observation
vector ot, σ

(m)2
sd is the dth diagonal element of Σ(m)

s . MLLR transform estimation is an iterative
process. A new transform is estimated by making use of the current transform to obtain a new
posterior occupance, γ

(m)
o,t . This process can be repeated until convergence.

The covariance matrix of each component can also be adapted using linear transforms. This
is referred to as covariance MLLR. The covariance matrix may be adapted by [16, 2]

Σ(m)
o = H(rm)Σ(m)-1

s H(rm)T (7)

where H(rm) is the linear transform to adapt covariance matrices. This form has the advantage
of other alternatives in that the likelihood can be efficiently calculated by transforming the mean
and observations, which is much more efficient than the calculation using a full covariance matrix.
The likelihood of an observation ot can be expressed by

p(ot|M, T , θt) =
∑

m∈θt

c(m)|H(rm)|N
(
H(rm)-1ot;H(rm)-1µ(m)

s ,Σ(m)
s

)
(8)

A solution for estimating H(rm) using EM algorithm has also been derived in [2].

2.2 Constrained MLLR

A tied mean and covariance transform can be applied to both mean vectors and covariance ma-
trices, this is referred to as a constrained linear transform [20, 2]. In this case

µ(m)
o = H(rm)µ(m)

s + g(rm) (9)

Σ(m)
o = H(rm)Σ(m)

s H(rm)T (10)

where H(rm) is the constrained linear transform, g(rm) is the bias on the mean vector, and µ
(m)
s

and Σ(m)
s are the original Gaussian parameters. This is referred to as CMLLR. In contrast to the
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MLLR transform, CMLLR can be efficiently applied in the feature space. This yields a regression
class-specific estimate of the clean speech. Thus

ot = H(rm)st + g(rm) st = A(rm)ot + b(rm) = W(rm)ζt (11)

where A(rm) = H(rm)-1 and b(rm) = −A(rm)-1g(rm). W(rm) = [b(rm) A(rm)] is the extended
transform matrix and ζt = [1 oT

t ]T is the extended observation vector. Then the likelihood of the
observation ot can be calculated by

p(ot|M, T , θt) =
∑

m∈θt

c(m)|A(rm)|N
(
A(rm)ot + b(rm); µ(m)

s ,Σ(m)
s

)
(12)

This form of transformation is highly efficient when the background noise conditions are rapidly
changing. Rather than having to transform the model parameters, where in large vocabulary there
may be hundreds of thousands of Gaussian components, only the features have be transformed at
each time instance.

The CMLLR transforms are estimated by optimising the auxiliary function [2]

Q(T̂ ; T ) =− 1
2

T∑
t=1

M∑
m=1

γ
(m)
o,t

[
log(|Σ(m)

s |)

− log(|Â(rm)|2) + (Ŵ(rm)ζt − µ(m)
s )TΣ(m)-1

s (Ŵ(rm)ζt − µ(m)
s )

]
(13)

The ML estimate of the dth row of Ŵ(r), given all other rows, is expressed by

ŵ(r)
d = G(r)-1

d

(
αp(r)

d + k(r)
d

)
(14)

where pd is the extended cofactor vector [0 cd1 · · · cdD]T, cij = cof(Aij) is the cofactor. A solution
for α was given in [2]. The sufficient statistics for regression class r and row d are given by

G(r)
d =

∑
m∈r

1

σ
(m)2
sd

T∑
t=1

γ
(m)
o,t ζtζ

T
t (15)

k(r)
d =

∑
m∈r

µ
(m)
sd

σ
(m)2
sd

T∑
t=1

γ
(m)
o,t ζt (16)

where σ
(m)2
sd is the dth diagonal element of covariance matrix Σ(m)

s and µ
(m)
sd is the dth element

of µ
(m)
s . Equation 14 is used to estimate each row of Ŵ(r) while keeping the others fixed. The

estimate is guaranteed to improve the likelihood and provides a stable, row-by-row, iterative
process [2].

2.3 Variance Bias

In the previous sections, the adaptation to a particular condition is assumed to be a fixed linear
transform of the original speech model. Alternatively the observation vector ot may be assumed
to be the output from a generative model of the original speech vector st and an acoustic condition
term, denoted by bt, in the form

ot = f(st,bt) (17)

where f is a mismatch function that describes the impact of bias on the clean speech. The additive
bias model [21, 13] is a special case of the mismatch function described in the next section such
that ot is given by

ot = st + bt (18)
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The bias transform can also be made regression class specific. Thus for component m of regression
class rm

bt|m,Mb ∼ N (µ(rm)
b ,Σ(rm)

b ) (19)

where Mb =
{
{µ(1)

b ,Σ(1)
b }, . . . , {µ(R)

b ,Σ(R)
b }

}
represents a set of R regression-class specific pa-

rameters for the bias bt. st is modelled by the set of HMMs M. If st and bt are independent,
the means and covariance of the observed speech for each component m are derived by adding the
mean µ

(rm)
b and the variance Σ(rm)

b to the means and covariances of the original speech model

µ(m)
o = µ(m)

s + µ
(rm)
b (20)

Σ(m)
o = Σ(m)

s + Σ(rm)
b (21)

Then the likelihood of the observation ot can be calculated by

p(ot|M,Mb, θt) =
∑

m∈θt

c(m)N
(
ot; µ(m)

s + µ
(rm)
b ,Σ(m)

s + Σ(rm)
b

)
(22)

If the covariance bias, Σ(rm)
b , is full then the cost of computing the likelihood in equation 22 will be

the same as a full covariance matrix system. In practice the covariance bias is normally restricted
to be diagonal.

In the same fashion as the other transformation parameters, the bias model parameters Mb

need to be found given the observed speech O and the original speech model M. Again the ML
criterion and the EM algorithm are used to find the bias parameter estimates. Let Mb denote
the current bias parameters and M̂b the estimated bias parameters and the complete data is
Z = (O,B,Θ), where B and Θ represent the bias sequence and possible hidden state sequence
for O, respectively. The auxiliary function can then expressed as

Q(M̂b;Mb) = E
[
log p(Z|M,M̂b)|O,M,Mb

]
(23)

where E denotes the conditional expectation over all possible hidden sequences (S,Θ), given the
observation sequence O computed with model set M and bias parameter Mb. Following [21, 13],
the auxiliary function may be expressed as

Q(M̂b;Mb) =− 1
2

T∑
t=1

M∑
m=1

γ
(m)
o,t ×

E
[
log |Σ̂(rm)

b |+ (bt − µ̂
(rm)
b )TΣ̂

(rm)-1

b (bt − µ̂
(rm)
b )|ot,m,M,Mb

]
(24)

where γ
(m)
o,t is the posterior probability of component m given the observation sequence O, bias

parameter Mb, and model set M. Differentiating equation 24 with respect to µ̂
(rm)
b and Σ̂

(rm)

b ,
and equating to zero yields

µ̂
(r)
b =

∑
m∈r

∑T
t=1 γ

(m)
o,t E

[
bt|ot, m,M,M(rm)

b

]

∑
m∈r

∑T
t=1 γ

(m)
o,t

(25)

Σ̂
(r)

b =

∑
m∈r

∑T
t=1 γ

(m)
o,t E

[
btbT

t |ot,m,M,M(rm)
b

]

∑
m∈r

∑T
t=1 γ

(m)
o,t

− µ̂
(rm)
b µ̂

(rm)T
b (26)

The conditional expectation of the bias vector and its outer product in equations 25 and 26 can
be calculated as

E
[
bt|ot,m,M,M(rm)

b

]
= (Σ(m)-1

s + Σ(rm)-1
b )-1(Σ(m)-1

s (ot − µ
(rm)
b ) + Σ(rm)-1

b µ(m)
s ) (27)

E
[
btbT

t |ot,m,M,M(rm)
b

]
= (Σ(m)-1

s + Σ(rm)-1
b )-1

+ E
[
bt|ot,m,M,M(rm)

b

]
E

[
bT

t |ot,m,M,M(rm)
b

]
(28)
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Thus the bias parameter estimation consists of iteratively applying the expectation step in equa-
tions 27 and 28, and the maximisation step in equations 25 and 26 starting from the initial bias
values. Each iteration is guaranteed not to decrease the likelihood of the observation data [21, 13].

3 Predictive Model-Based Noise Compensation

The previous section has described the use of general linear transformations of both the mean and
covariance matrix parameters to represent the differences between the “clean” speech acoustic
models and speech in the target acoustic conditions. This section describes the use of model-
based compensation schemes, where the model parameters are modified using an estimate of the
noise model in the target environment and a mismatch function that describes the impact of
that noise on the model parameters. A review of three model-based compensation scheme is
given: parallel model combination (PMC) [22]; VTS [10]; and JUD [23]. These schemes will be
described under the general heading of predictive transforms. Though these predictive schemes
are not investigated in the results in this paper, they motivate limitations in the standard linear
transforms described in the previous section.

The production of the underlying speech signal is influenced by the acoustic environment such
as additive background noise and channel distortions [24]. The standard model of the corrupted
speech in time-domain is given by

o(τ) = h(τ) ∗ s(τ) + n(τ) (29)

where o(τ) is the noise-corrupted speech, h(τ) represents the channel or convolutional noise, s(τ)
the clean speech and n(τ) the additive noise. In the cepstral domain this relationship is given by

ot = st + h + C log(1 + exp(C-1(nt − st − h)) (30)

where matrices C and C-1 are the discrete cosine transform (DCT) matrix and its inverse. The
log() and exp() functions indicate element-wise operations that yield a vector of the same dimen-
sionality as the input vector. In the above expression, as is commonly done, the convolutional
noise term, h, has been assumed to be constant, independent of time.

Equation 30 only describes the impact of the noise on the static model parameters. In practice
improved performance is obtained by compensating all the model parameters [22], including the
delta and delta-delta parameters. A commonly used approach to handle this is the continuous-time
approximation [25, 26]. The following section only consider the static parameter compensation1.

For all these predictive approaches it is necessary to estimate the parameters of the noise model,
normally {µn,Σn, µh}. These are usually estimated using the ML criterion [27, 28]. The advantage
of using these predictive schemes over more general adaptive approaches such as MLLR and
CMLLR is that the number of parameters to estimate for the target acoustic condition is normally
very small, and the non-linear impact of the noise of the clean speech models is better represented.
However the disadvantage is that the mismatch function needs to be specified. Approximations
in the definition of the mismatch function can impact performance.

3.1 Parallel Model Combination

PMC [26, 22] is a term that describes a set of model-based compensation approaches. These all
aim to approximate the following expectations where the corrupted speech is related to the clean
speech and the noise models using equation 30.

µ(m)
o ≈ E {ot|m} (31)

Σ(m)
o ≈ E

{
otoT

t |m
}− µ(m)

o µ(m)T
o (32)

Obtaining expressions for this corrupted speech output distribution given the clean acoustic model
and a noise model is not simple because the corrupted speech is a non-linear function of the noise,

1The notation has been kept the same as the previous section to help understanding.
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channel and clean speech. To address this problem various forms of approximation have been
proposed.

The simplest forms of approximation are the log-normal and log-add approximations. The log-
normal approximation is based on the assumption that the sum of two log-normally distributed
variables is itself approximately log-normally distributed. Log-add is a simple approximation based
on the assumption that the variances are small, so the corrupted mean of the static dimension can
be written as

µ(m)
o = C log

(
C-1 exp(µ(m)

s + µh) + C-1 exp(µn)
)

(33)

The covariance matrix is assumed to be unaltered, Σ(m)
o = Σ(m)

s .
More complex, and accurate, versions have also been derived including data-driven PMC

(DPMC) and iterative PMC (IPMC) [26]. Though more accurate, these approaches are com-
putationally expensive.

3.2 Vector Taylor Series

An alternative approximation to those referred to as PMC is the Vector Taylor Series (VTS)
approximation. A truncated VTS is used to approximate the non-linearities in equation 30. The
first-order VTS approximation of the static corrupted speech may be expressed as

ovtst = o
∣∣∣
µ0(m)

+ J(m)
s

(
st − µ(m)

s

)
+ J(m)

n (nt − µn) + J(m)
h (h− µh) (34)

where |µ0(m) is the Taylor series expansion point indicating the function is evaluated at, the clean
speech component mean µ

(m)
s , and current estimates of the additive noise mean µn and channel

noise µh. The Jacobian matrices are given by

J(m)
s = I−CFC-1 (35)

J(m)
h =

∂ot

∂ht

∣∣∣
µ0(m)

=
∂ot

∂st

∣∣∣
µ0(m)

, J(m)
n =

∂ot

∂nt

∣∣∣
µ0(m)

= CFC-1 (36)

where the elements of the diagonal matrix F are

fii =
exp([C-1]i(µn − µ

(m)
s − µh))

1 + exp([C-1]i(µn − µ
(m)
s − µh))

(37)

where [C-1]i is a row vector that is the ith row of the inverse DCT matrix, C-1. The terms fii

vary from 0 to 1 depending on the ratio of the speech to the noise. If the noise level µn is greater
than the speech µ

(m)
s in the log-spectral domain, then fii → 1 and J(m)

s tends to zero; otherwise
if little noise is present, fii → 0 and J(m)

s also tends to identity. The term J(m)
s behaves in the

opposite manner to J(m)
n .

In the same fashion as PMC, the corrupted speech mean for each component m may be
approximated by the expected value of equation 34 [29]

µ(m)
o ≈ E {ovtst|m} (38)

= µ(m)
s + µh + C log(1 + exp(C-1(µn − µ(m)

s − µh))) (39)

assuming the clean speech, additive noise and channel noise are independent of each other. This
yields the same estimate of the mean as the PMC log-add approximation. The covariance is given
by

Σ(m)
o ≈ E{

ovtstoT
vtst|m

}− µ(m)
o µ(m)T

o (40)

≈ J(m)
s Σ(m)

s J(m)T
s + J(m)

h ΣhJ
(m)
h + J(m)

n ΣnJ(m)
n (41)
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where Σn and Σh denote the variance of the static additive noise and the variance of the static
channel, respectively. Since the Jacobian matrices are full, the corrupted speech covariance matrix
will also be full and hence is normally diagonalised for standard decoders. Also, it is often assumed
that the channel noise does not vary, that is Σh = 0. Hence the static corrupted speech variance
may be given by

Σ(m)
o ≈ diag

(
J(m)
s Σ(m)

s J(m)
s + J(m)

n ΣnJ(m)
n

)
(42)

3.3 Joint Uncertainty Decoding

Recently there has been interest in uncertainty decoding (UD) framework for speech recognition
that incorporates the notion of uncertainty introduced by environmental noise [30, 31, 32, 33,
23]. These approaches have the property that the uncertainty varies with the noise level and is
propagated to the recogniser as an additional variance bias to the model variance. In observation
uncertainty forms [30], the uncertainty is represented by the variance of the residual occurred
during enhancement. Hence the clean speech posterior is passed to the decoder instead of using a
point estimate of the features. Alternatively, in UD schemes [34, 23], the conditional distribution
of the corrupted speech, given the clean speech is propagated into the recognition stage. Two
approaches for UD are front-end and model-based schemes. In front-end UD [34, 23], by using
approximation of the conditional distribution the uncertainty information passed into the decoding
stage depends only on the observed features which is independent from the back-end acoustic
model. SPLICE with uncertainty [34] and the front-end JUD method [23] are the two specific
forms of front-end UD. However, there are issues with using these forms of uncertainty decoding
in low SNR conditions [9].

In the model-based UD [23], the conditional distributions are computed over the regression
classes and thus the uncertainty information depends on the class of the acoustic model component.
JUD [23] has shown to be an effective model-based approaches which are characterised by a feature
transform and an uncertainty bias on the model variances. The transform and uncertainty bias
for JUD are derived from a model of the joint distribution of the clean and the noisy speech for
the class rm. The joint distribution is assumed to be Gaussian such that

[
st

ot

]
∼ N

([
µ

(rm)
s

µ
(rm)
o

]
,

[
Σ(rm)

s Σ(rm)
so

Σ(rm)
os Σ(rm)

o

])
(43)

and thus the conditional distribution will also be Gaussian. Using the Gaussian form for the
corrupted speech conditional distribution, the corrupted speech observation likelihood for state θt

may be approximated by

p(ot|M, T , θt) =
∫

RD

p(ot|st, T )p(st|θt)dst (44)

≈
∑

m∈θt

c(m)|A(rm)|N
(
A(rm)ot + b(rm); µ(m)

s ,Σ(m)
s + Σ(rm)

b

)
(45)

and the transform parameters

A(rm) =Σ(rm)
s Σ(rm)-1

os , b(rm) = µ(rm)
s −A(rm)µ(rm)

o (46)

Σ(rm)
b =A(rm)Σ(rm)

o A(rm)T −Σ(rm)
s

and T =
{
{A(1),b(1),Σ(1)

b }, . . . , {A(R),b(R),Σ(R)
b }

}
, rm denotes the regression class r that com-

ponent m belongs to, and R the total number of regression classes. Increasing the number of
classes R to equal the number of model components M , and using a diagonal acoustic model vari-
ances, is equivalent to VTS model compensation of each individual acoustic model component [35].
However by having R far smaller than the number of Gaussian components in the system, JUD
can be computationally far less expensive than VTS.
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Comparing this form of resultant likelihood calculation to the form of CMLLR in equation 12,
shows that JUD is similar to CMLLR, both may be viewed as estimating the “clean” speech,
but JUD introduces a variance bias term to indicate that uncertainty in the estimate of the clean
speech will increase as the SNR decreases. Contrasting the JUD likelihood in equation 45 with the
bias form in equation 22 shows that, though both allow the variance to increase, the estimate of
the clean speech in the bias form is far simpler than that in JUD. A clear direction of interest is to
combine CMLLR with variance biases, to yield a transform similar in structure to JUD. Though
in theory this could be implemented using the hierarchical transform structure in HTK V3.4 [36],
an integrated transform estimation scheme would be preferable.

4 Adaptive Training

Adaptive training [1] is a powerful technique for building speech recognition systems on non-
homogeneous training data. The basic concept of adaptive training is to use one or more transforms
for each speaker and acoustic environment when training the acoustic models. These transforms
should remove the unwanted variability (the speaker changes and environment changes) allow-
ing a “neutral”, canonical, model to be estimated. Thus during training two sets of models are
generated: a canonical model set for the desired true variability of the speech data; and a set
of transforms to represent the unwanted variability. The canonical model represents the speech
variability of the training data, which is independent of speaker and acoustic conditions. The
form of the canonical model used here is the standard HMMs denoted by M. A set of transforms
T represent the unwanted non-speech variabilities such as different speaker and/or acoustic en-
vironment. Usually a linear transform of the acoustic models is used to represent the acoustic
condition of a particular homogeneous block and adapt the canonical model to that particular
acoustic condition. The canonical model is estimated given the set of transforms accounting for
non-speech variabilities. Hence, in recognition, the canonical model must be adapted by an ap-
propriate transform to represent both speech and specific non-speech variabilities of a particular
test acoustic condition. Due to the modelling of desired speech variability, the canonical model
is more amenable to being adapted to a new test acoustic condition than a multi-style trained
system.

4.1 ML Adaptive Training

Assume that the training data is written as O = {O(1), . . . ,O(H)} and Href = {H(1)
ref, . . . ,H(H)

ref },
where O(h) is the observation sequence of a homogeneous block associated with a particular
acoustic condition h, H(h)

ref is the corresponding transcription sequence. Given the canonical model,
the homogeneous blocks are assumed to be independent of each. Thus the log-likelihood of the
heterogeneous training data may be expressed as

log(p(O|M, T ,Href)) =
H∑

h=1

log
(
p(O(h)|M, T (h),H(h)

ref)
)

(47)

where the set of transforms is denoted by T =
{T (1), . . . , T (H)

}
. In ML adaptive training esti-

mation of the canonical model and transform set estimation are interleaved. The estimate of the
canonical model parameters maximise equation 47

M̂ = arg max
M

{
log(p(O|M, T ,H(h)

ref))
}

(48)

where T is the current set of ML transforms given the canonical model estimate. The transform
estimate for homogeneous block h is given by

T̂ (h) = arg max
T

{
log(p(O(h)|M̂, T ,H(h)

ref))
}

(49)
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Linear transforms such as MLLR and CMLLR have been successfully applied in adaptive
training [1, 2]. The transform estimation formulae for adaptive training are the same as for
adaptation described in section 2. In this section, the estimation of the canonical model given
the set of transforms is given for adaptive training with CMLLR [2] is described. The auxiliary
function used to estimate the acoustic models can be written as [2]

Q(M̂;M, T̂ ) = E
[
log p(O,Θ|M̂, T̂ )|O,M, T̂

]

=− 1
2

M∑
m=1

H∑

h=1

T (h)∑
t=1

γ
(mh)
o,t

[
log(|Σ̂(m)

s |) (50)

− log(|Â(rmh)|2) + (ŝ(rmh)
t − µ̂(m)

s )TΣ̂
(m)-1

s (ŝ(rmh)
t − µ̂(m)

s )
]

where ŝ(rmh)
t = Ŵ(rmh)ζt is the transformed observation and γ

(mh)
o,t , is the posterior probability of

an observation being generated by component m, homogeneous block h, with transcription H(h)
ref.

The resultant estimate for mean and covariance for each component m are given by

µ̂(m)
s =

∑H
h=1

∑T (h)

t=1 γ
(mh)
o,t ŝ(rmh)

t∑H
h=1

∑T (h)

t=1 γ
(mh)
o,t

(51)

Σ̂
(m)

s = diag




∑H
h=1

∑T (h)

t=1 γ
(mh)
o,t

(
ŝ(rmh)
t − µ̂(m)

s

)(
ŝ(rmh)
t − µ̂(m)

s

)T

∑H
h=1

∑T (h)

t=1 γ
(mh)
o,t


 (52)

ML adaptive training has also been used with both VTS [8] and JUD [7] model-based compen-
sation. In [7] a second-order gradient descent-based schemes was described to fund the canonical
model parameters. Alternatively an expectation-maximisation (EM) approach was used in [8]
based on the approach used in [21]. The approach described in [8] is closely related to the estima-
tion of the canonical model in this paper described in section 5.

4.2 Discriminative Adaptive Training

The previous section has described adaptive training with the ML criterion. However state-of-
the-art speech recognition systems are normally trained using discriminative criteria. Commonly
used discriminative training criteria include: minimum classification error (MCE) [37]; maximum
mutual information (MMI) [38]; and MPE [14]. This section will review discriminative training
and discriminative adaptive training (DAT) based on the MPE criterion [39]. MPE training is an
example of minimum Bayes’ risk training. It can be expressed as

FMPE(M) =
H∑

h=1

∑

H
P (H|O(h),M)L(H,H(h)

ref) (53)

where O(h) is the observation sequence of the training utterance h, H denotes a possible hypothesis
of the training data and L(H,H(h)

ref) is the error (loss) measured in phones of the hypothesis H
given the reference H(h)

ref. Whereas the ML criterion can be optimised by the EM algorithm, a
weak-sense auxiliary function [39] is often used to optimise the MPE criterion.

Adaptive training within the framework of discriminative training has been used to improve
the recognition performance. An ideal DAT approach is to discriminatively update both the
canonical model and the transform parameters during training. However this approach is prob-
lematic when unsupervised adaptation is required to be used, as there is no correct transcription
available. Though it is possible to generate hypotheses, and treat them as if they were correct
as in ML training, discriminative criteria are more sensitive to errors in these hypotheses than
ML training [40]. To avoid this problem, a simplified DAT scheme is often adopted in which only
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the canonical model is discriminatively updated given a set of ML estimated transforms [40]. The
basic training procedures are as follows:

1. perform standard ML adaptive training resulting in a canonical model estimate M̂ML and a
set of ML transform estimates T̂ML = {T̂ (1)

ML , · · · , T̂ (H)
ML }.

2. given the ML transform estimates, T̂ML, the canonical model is discriminatively trained.

3. repeat step (2) to yield, the final discriminative canonical model, M̂MPE.

In adaptation, given the discriminatively trained model M̂MPE, the ML criterion is used to estimate
transform parameters for each homogeneous block of the test data. DAT with the linear transforms
such as MLLR and CMLLR has been investigated [40]. However discriminative versions of the
model-based compensation schemes have not previously been investigated.

5 Noisy CMLLR

Noisy CMLLR (NCMLLR) is a new form of linear transform. It may be viewed from two very
different perspectives. The first, and the one adopted in this work, is to view it as an extension to
the standard CMLLR transform described in section 2. The second is realted to forms of shared
factor analysis model [12, 41] but modified so that the shared loading matrices and noise variances
are used as transforms rather than as a method for covariance matrix modelling. The form of
the NCMLLR transformation is exactly the same as that of JUD, described in section 3, but the
parameters of the transform are estimated using ML, rather than based on a mismatch function
and noise model estimates. It can thus be used in situations where deriving accurate mismatch
functions is not possible..

In addition to transform estimation, adaptive training using NCMLLR is also described. Given
the relationship of the form of NCMLLR to JUD, The canonical model estimation for adaptive
training with NCMLLR in section 5.3 can be directly applied to JUD, rather than using the
second-order optimisation scheme described in [7]. Note, since JUD and VTS are equivalent when
the number of regression classes in JUD is the same as the number of Gaussian components, the
adaptive training scheme described here is the same as that described in [8] under these conditions
as well.

5.1 Generative Model

This section presents a probabilistic model for the corrupted speech in the feature space. First,
assume that the corrupted observation ot can be written as a generative model of the clean speech
vectors st for each regression class rm in the form

ot = H(rm)st + g(rm) + nt (54)

where H(rm) is a linear transform and g(rm) is a bias on the clean speech, rm denotes the regression
class r that component m belongs to, and nt is a zero-mean Gaussian additive noise with covariance
matrix Ψ(rm) such that nt ∼ N (0,Ψ(rm)). Furthermore, the clean speech st is assumed to be
generated by state θt of an HMM. The acoustic model M consists of Gaussian components each
defined by a prior, c(m), mean, µ

(m)
s , and diagonal covariance matrix, Σ(m)

s , so that the likelihood
can be written as

p(st|M, T , θt) =
∑

m∈θt

c(m)N (st;µ(m)
s ,Σ(m)

s ) (55)

The corrupted speech observation ot at time t is assumed to be conditional independent of all
other observations given the clean speech and the noise at that time. Then the corrupted speech
likelihood for a state θt is

p(ot|M, T , θt) =
∑

m∈θt

c(m)N
(
ot;H(rm)µ(m)

s + g(rm),H(rm)Σ(m)
s H(rm)T + Ψ(rm)

)
(56)
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This can be rewritten as a transformation of the observations

p(ot|M, T , θt) =
∑

m∈θt

c(m)|A(rm)|N
(
A(rm)ot+b(rm); µ(m)

s ,Σ(m)
s +Σ(rm)

b

)
(57)

where A(rm) = H(rm)-1, b(rm) = −H(rm)-1g(rm) and Σ(rm)
b = A(rm)Ψ(rm)A(rm)T. This form of

transformation will be referred to as noisy CMLLR (NCMLLR). NCMLLR has the same form as
the JUD transform [9]. It is also similar to CMLLR [2] where from equation 12

p(ot|M, T , θt) =
∑

m∈θt

c(m)|A(rm)|N
(
A(rm)ot+b(rm); µ(m)

s ,Σ(m)
s

)
(58)

and the observation in feature space, and clean speech estimate, are given by

ot = H(rm)st + g(rm); st = A(rm)ot + b(rm) (59)

Both CMLLR and NCMLLR have an affine transform of the features, but in equation 57 there is an
additional variance bias, Σ(rm)

b , for modelling the changes in the variance of the corrupted speech
due to noise nt, hence the name. Whereas JUD transforms are only dependent on the estimated
noise model, NCMLLR specifically requires the noise-corrupted adaptation data to estimate the
transform parameters. With NCMLLR the amount of training data required will depend on the
number and complexity of transforms used.

NCMLLR is also related to schemes based on factor analysis (FA) [11], which have the same
general form as the generative model in equation 54. FA is a standard statistical method for mod-
elling the covariance matrices of high dimensional data using a small number of latent variables.
In FA the latent variables of dimension P < D, D is a dimension of the corrupted speech ot, are
defined to be independent and Gaussian with unit variance such that st ∼ N (0, IP ), where IP is
the P × P identity matrix. Shared FA and FA invariant to linear transformations (FACILT) [12]
are generalised form of standard FA for modelling covariance matrices. One version of these
approaches would yield the following covariance matrix

Σ(m)
o = H(rm)Σ(m)

s H(rm)T + Ψ(rm)

This form of covariance matrix is identical to the form in equation 56. FA may also be extended
to employ an underlying mixture of Gaussians HMM as latent variables. This is called factor
analysed HMM (FAHMM) [41]. As NCMLLR and FA have the same generative model, the same
EM framework for parameter estimation can be used for both [11, 12].

Though NCMLLR and FA-based schemes are related to one another, the fundamental starting
point for NCMLLR is to use the shared “loading” matrices and noise variances as a transformation
from the clean speech to corrupted speech distributions. Whereas for FACILT and FAHMMs they
are used for covariance matrix modelling. Another important difference is that NCMLLR is
constrained to have the same dimensionality space for both the observations, ot, and the clean
speech, st. Though a restriction this allows certain efficiencies in the likelihood calculation. In
FA and related schemes the calculation of the log-likelihood is more expensive than the diagonal
covariance matrix case, as the covariance matrix in equation 60 will be full2. In contrast for
NCMLLR if the covariance matrix for the clean speech is diagonal, then by restricting Σ(rm)

b =
A(rm)Ψ(rm)A(rm)T to be diagonal the likelihood calculation in equation 57 will only have the cost
of a diagonal covariance matrix calculation. Furthermore as NCMLLR is a transform, the clean
speech model must be trained in an adaptive training fashion. Thus the summations for both
the estimation of the transforms and the canonical will differ from the forms used for FACILT
for example. The full derivations for MCMLLR are therefore given here, so that it is clear where
the summation differences come from, and the subtleties of the differences between NCMLLR and
related FA-based schemes is clear.

2Depending on P , the matrix inversion lemmas, also known as the Sherman-Morrisson-Woodbury formula, can
be used to make this more efficient than the standard full-covariance matrix calculation.
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5.2 Transform Estimation

It is required to determine the NCMLLR transform parameter T (rm) = {H(rm),g(rm),Ψ(rm)}
(based on equation 56), or equivalently T (rm) = {A(rm),b(rm),Σ(rm)

b } (based on equation 57),
given the observation sequence O, the acoustic model parameters M and a hypothesis H. The
NCMLLR transform parameters are found by maximising the likelihood of the noisy observation
as follows:

T̂ = arg max
T

{log(p(O|M, T ,H))} (60)

Directly finding the NCMLLR parameters that optimises equation 60 is difficult because of the
hidden state sequence and unobserved “clean” speech vectors. Hence an iterative EM approach,
similar to those described in [21, 11, 12], is used. Since the clean speech vectors are also considered
to be hidden, the complete data is Z = {O,S,Θ} where S and Θ represent the clean speech
sequence and possible hidden state sequences for O given the transcription, respectively. Let T be
the current NCMLLR parameters and T̂ the NCMLLR parameters to be estimated, the auxiliary
function for transform parameters can then expressed as

Q(T̂ ; T ) = E
[
log p(Z|M, T̂ )|O,M, T

]
(61)

where E denotes the conditional expectation over all possible hidden sequences (S,Θ), given
the observation sequence O computed with parameter set M and transform set T . Following
Appendix A, the auxiliary function may be expressed as

Q(T̂ ; T ) =− 1
2

T∑
t=1

M∑
m=1

γ
(m)
o,t E

[
log |Ψ̂(rm)|+ (62)

(ot − Ĥ(rm)st − ĝ(rm))TΨ̂
(rm)-1

(ot − Ĥ(rm)st − ĝ(rm))|ot,m,M, T (rm)
]

where γ
(m)
o,t is the posterior probability of component m given the observation sequence O, NCM-

LLR parameter set T , and model set M. To simplify the estimation of the NCMLLR parameters,
the auxiliary function can be rewritten as

Q(T̂ ; T ) =− 1
2

T∑
t=1

M∑
m=1

γ
(m)
o,t ×

E
[
log |Ψ̂(rm)|+ (ot − V̂(rm)ζt)

TΨ̂
(rm)-1

(ot − V̂(rm)ζt)|ot, m,M, T (rm)
]

(63)

where V̂(rm) = [ĝ(rm) Ĥ(rm)] is the extended transformation matrix and ζt = [1 sT
t ]Tis the

extended clean speech vector.
It is hard to directly optimise equation 63 for all the transform parameters. Instead an iterative

approach is used where initially the variance bias Σ̂
(rm)

b (or equivalently Ψ̂
(rm)

) is estimated, then
the feature transformation {A(rm),b(rm)} (or equivalently {H(rm),g(rm)}) is found. The process
is then repeated using the latest values for each of the parameters. Thus the NCMLLR parameter
estimation is itself an iterative process, interleaving estimates of Σ̂

(rm)

b , and Â(rm) and b̂(rm).

5.2.1 Variance Bias Estimation

Differentiating equation 63 with respect to Ψ̂
(r)

, and equating to zero yields

Ψ̂
(r)

=

∑
m∈r

∑T
t=1 γ

(m)
o,t E

[
(ot − V̂(rm)ζt)(ot − V̂(rm)ζt)T|ot,m,M, T (rm)

]

∑
m∈r

∑T
t=1 γ

(m)
o,t

(64)
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From equation 64 and using the equality Σ(r)
b = A(r)Ψ(r)A(r)T, the covariance bias can be esti-

mated as

Σ̂
(r)

b =

∑
m∈r

∑T
t=1 γ

(m)
o,t E

[
(ŝ(rm)

t − st)(ŝ
(rm)
t − st)T|ot,m,M, T (rm)

]

∑
m∈r

∑T
t=1 γ

(m)
o,t

(65)

where

ŝ(rm)
t = Â(rm)ot + b̂(rm) (66)

In the presentation above, Σ(rm)
b is specified as being full in equation 65. In this case the

likelihood calculation in equation 57 has the same cost as using a full-covariance matrix. This
is the same problem encountered when using full transforms with JUD. However in contrast to
JUD it is possible to use full feature transforms A(rm) with diagonal Σ(rm)

b . Simply diagonalising
equation 65 still yields an ML-solution for the variance bias but now for a diagonal form. Thus
for all the experiments reported in the next section, the variance bias term is estimated using

Σ̂
(r)

b = diag




∑
m∈r

∑T
t=1 γ

(m)
o,t E

[
(ŝ(rm)

t − st)(ŝ
(rm)
t − st)T|ot,m,M, T (rm)

]

∑
m∈r

∑T
t=1 γ

(m)
o,t


 (67)

This is an important flexibility in this form of model compared to JUD and highlights one of
the major differences to previous work on FA-based models. Note it is possible to map full
JUD transforms to have diagonal variance biases using the predictive linear transform approach
described in [42] and the NCMLLR estimation formulae described in this section.

5.2.2 Feature Transformation

Differentiating equation 63 with respect to V̂(r), and equating to zero, gives

V̂(r) =

(∑
m∈r

T∑
t=1

γ
(m)
o,t ot E

[
ζT

t |ot,m,M, T (rm)
])

×
(∑

m∈r

T∑
t=1

γ
(m)
o,t E

[
ζtζ

T
t |ot,m,M, T (rm)

])-1

(68)

Having found V̂(r) = [ĝ(r) Ĥ(r)], the estimation of the feature-transforms are obtained using

Â(r) = Ĥ(r)-1 (69)

b̂(r) = −Ĥ(r)-1ĝ(r) (70)

The update formulae, equations 65 and 68, can be expressed in terms of the conditional ex-
pectation of the extended clean speech vector and its outer product as follows (see Appendix
B):

E
[
ζt|ot,m,M, T (rm)

]
=

[
1 E[sT

t |ot, m,M, T (rm)]
]T

= [1 s̃(m)T
t ]T (71)

E
[
ζtζ

T
t |ot,m,M, T (rm)

]
=

[
1 s̃(m)T

t

s̃(m)
t Σ̃

(m)

s + s̃(m)
t s̃(m)T

t

]
(72)

where

s̃(m)
t = Ã(m)ot + b̃(m) (73)

Σ̃
(m)

s =
(
Σ(m)-1

s + Σ(rm)-1
b

)-1

(74)
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and

Ã(m) =
(
Σ(m)-1

s + Σ(rm)-1
b

)-1

Σ(rm)-1
b A(rm) (75)

b̃(m) =
(
Σ(m)-1

s + Σ(rm)-1
b

)-1 (
Σ(m)-1

s µ(m)
s + Σ(rm)-1

b b(rm)
)

(76)

5.3 Adaptive Training

Adaptive training with NCMLLR follows the general adaptive training framework. The canonical
acoustic model parameters M and set of NCMLLR parameters T are estimated such that they
maximise the log-likelihood of the heterogenous training data comprised of H homogeneous block
O = {O(1), . . . ,O(h)}. The log-likelihood may be written as

log(p(O|M, T ,Href)) =
H∑

h=1

log(p(O(h)|M, T (h),H(h)
ref)) (77)

where h indexes a homogeneous block of training data O(h) and H is the total number of blocks.
Thus H sets of NCMLLR parameters are required and the entire set of parameters denoted by
T = {T (1), . . . , T (H)}. Href = {H(1)

ref, . . . ,H(H)
ref } is the corresponding transcription sequence. The

set of transforms and the canonical model parameters are iteratively estimated to yield the final
canonical model.

The complete data for a homogeneous block h are Z(h) = {O(h),S(h),Θ(h)} where S(h) and
Θ(h) represent the clean speech data sequence and possible hidden state sequences for O(h) given
the transcription, respectively. Assume that M and T are the current model and NCMLLR
parameters and M̂ and T̂ the estimated model and NCMLLR parameters, respectively. The
auxiliary function can then be expressed as, letting Z = {Z(1), . . . ,Z(H)},

Q(M̂, T̂ ;M, T ) = E
[
log p(Z|M̂, T̂ )|O,M, T

]
(78)

where E denotes the conditional expectation over all possible hidden sequences (S,Θ), given the
observation sequence O computed with parameter set M and transform set T . This auxiliary
function may be expressed as

Q(M̂;M, T ) =− 1
2

H∑

h=1

T (h)∑
t=1

M∑
m=1

γ
(mh)
o,t ×

E
[
log |Ψ̂(rmh)|+ (ot−Ĥ(rmh)st−ĝ(rmh))TΨ̂

(rmh)-1
(ot−Ĥ(rmh)st−ĝ(rmh))

+ log |Σ̂(m)|+(st−µ̂(m)
s )TΣ̂

(m)-1

s (st−µ̂(m)
s )|ot,m,M, T (rmh)

]
(79)

where γ
(mh)
o,t is the posterior probability of component m given the observation sequence O(h),

NCMLLR parameter set T (rmh), and model set M for homogenous block h. This auxiliary
function will be iteratively optimised by first updating the NCMLLR transform parameters then
the canonical model parameters. First, given the current acoustic modelsM a new set of transform
T̂ is estimated, Subsequently, the canonical model parameters are updated to M̂ given this new
set of transforms. Multiple iterations of this interleaved training may be performed to optimise
the auxiliary function. The NCMLLR parameter estimation is described in section 5.2. It is worth
emphasising that the transform estimation is based on each homogenous data block rather than
the whole training dataset.

After the NCMLLR transform parameters have been estimated, the canonical model param-
eters must be retrained. The auxiliary function can be rewritten, ignoring terms independent of
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the canonical model parameters, as

Q(M̂;M, T̂ ) =− 1
2

H∑

h=1

T (h)∑
t=1

M∑
m=1

γ
(mh)
o,t × (80)

E
[
log |Σ̂(m)

s |+ (st − µ̂(m)
s )TΣ̂

(m)-1

s (st − µ̂(m)
s )|ot,m,M, T̂ (rmh)

]

Optimising the auxiliary function, equation 80, with respect to µ̂(m)
s and Σ̂

(m)

s leads to the update
formulae as follows:

µ̂(m)
s =

∑H
h=1

∑T (h)

t=1 γ
(mh)
o,t E

[
st|ot,m,M, T̂ (rmh)

]

∑H
h=1

∑T
t=1 γ

(mh)
o,t

(81)

Σ̂
(m)

s = diag




∑H
h=1

∑T (h)

t=1 γ
(mh)
o,t E

[
stsT

t |ot,m,M, T̂ (rmh)
]

∑H
h=1

∑T
t=1 γ

(m)
o,t

− µ̂(m)
s µ̂(m)T

s


 (82)

These equations are similar to those given in [8], however the conditional expectations differ. The
conditional expectations in equations 81 and 82 are given by

E
[
st|ot,m,M, T̂ (rmh)

]
= s̃(mh)

t (83)

E
[
stsT

t |ot,m,M, T̂ (rmh)
]

= Σ̃
(mh)

s + s̃(mh)
t s̃(mh)T

t (84)

which have been defined for homogeneous block h in equations 73 - 76. Note that here the updated
transform paramerters, T̂ (rmh) are used.

5.4 Discriminative Adaptive Training

The adaptive training with NCMLLR can be extended to support discriminative training of the
acoustic models based on disriminative criteria. DAT with NCMLLR follows the simplified DAT
strategy in which only the canonical model is discriminatively updated given a set of ML es-
timated NCMLLR transforms. Assume that M̂ and M are the model to be estimated and the
current model, respectively. To estimate the canonical model parameters, the weak-sense auxiliary
function can be written as [39]

QMPE(M̂,M) = Qn(M̂;M)−Qd(M̂;M) + S(M̂;M) + log p(M̂|Φ) (85)

where the numerator and denominator parts, Qn(M̂;M) and Qd(M̂;M) have the same form as
the standard ML auxiliary function for adaptive training with NCMLLR in equation 80. It is also
necessary to specify appropriate forms for S(M̂;M) and log p(M̂|Φ).

The remaining terms that need to be specified for the auxiliary function in equation 85 are the
smoothing function, S(M̂;M), and the prior term log p(M̂|Φ). An appropriate form of smoothing
function for NCMLLR has the same form as the standard discriminative training schemes [43, 39]

S(M̂;M) =− 1
2

∑

h,m

Dm

{
log |Σ̂(m)

s |

+ Tr
[
Σ(m)

s Σ̂
(m)-1

s

]
+ (µ(m)

s − µ̂(m)
s )TΣ̂

(m)-1

s (µ(m)
s − µ̂(m)

s )-1
}

(86)

where µ
(m)
s and Σ(m)

s are the mean vector and covariance matrix of Gaussian component m from
the current model set M. The constant Dm is a critical value in MPE training as it needs to
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make the weak-sense auxiliary function convex and yield a rapid and stable update. This is set
on a per-component basis as described in [39]

Dm = max

{
E

H∑

h=1

T∑
t=1

γ
(mh)
do,t , 2Dmin)

}

where Dmin is the minimum value to ensure that the covariance matrix of component m is semi-
positive definite. E is an empirically set constant and γ

(mh)
do,t are the “occupancies” computed over

the model corresponding to all alternative word sequence.
The prior distribution for I-smoothing, p(M̂|Φ), again has a similar form as the standard aux-

iliary function. One commonly used distribution for p(M̂|Φ) is the Normal-Wishart distribution
which was also used for maximum a posteriori (MAP) estimation in [44]. The logarithm of the
distribution, ignoring the constants independent of the parameters, is expressed as

log p(M̂|Φ) =− τp
2

∑
m

{
log |Σ̂(m)

s |

+ Tr
[
Σ(m)

p Σ̂
(m)-1

s

]
+ (µ̂(m)

s − µ(m)
p )TΣ(m)-1

s (µ̂(m)
s − µ(m)

p )
}

(87)

where Φ = {τp,µ(m)
p ,Σ(m)

p } is the set of hyper-parameters of the I-smoothing distribution. τp is

the specified parameter which controls the impact of the prior and µ
(m)
p and Σ(m)

p are the prior
hyper-parameters of the distribution for component m.

By substituting the above expressions and differentiating the weak-sense auxiliary function
with respect to the model parameters and setting it to zero, the canonical model estimate for
NCMLLR can be derived

µ̂(m)
s =

∑
h,t(γ

(mh)
no,t − γ

(mh)
do,t )E [st|ot,m] + Dmµ

(m)
s + τpµ

(m)
p

∑
h,t(γ

(mh)
no,t − γ

(mh)
do,t ) + Dm + τp

(88)

Σ̂
(m)

s = diag

(∑
h,t(γ

(mh)
no,t − γ

(mh)
do,t )E

[
stsT

t |ot,m
]
+ DmL(m)

s + τpL
(m)
p

∑
h,t(γ

(mh)
no,t − γ

(mh)
do,t ) + Dm + τp

− µ̂(m)
s µ̂(m)T

s

)
(89)

where

L(m)
s = Σ(m)

s + µ(m)
s µ(m)T

s (90)

L(m)
p = Σ(m)

p + µ(m)
p µ(m)T

p (91)

γ
(mh)
no,t represents that occupancies are calculated by the forward-backward algorithm with the

composite HMM model corresponding to the correct transcriptions on the target environment
adaptation data, while γ

(mh)
do,t means that occupancies are computed over the model corresponding

to all alternative word sequence. E [st|ot,m] and E
[
stsT

t |ot,m
]

are defined in equations 83 - 843.

6 Implementation Issues

There are a number of issues that must be considered when using NCMLLR either as a trans-
form or in adaptive training. When using full transformation matrix, A(rm), it is necessary to
store full outer-product observation statistics for each component. Equation 68 requires the term
otE

[
ζT

t |ot,m
]

to be stored. From equation 73 this needs functions of otoT
t to be accumulated

for each component. For LVCSR systems this can be highly memory intensive. Terms like this
3The dependence on the current model parametersM and the transform parameter T in expectation are assumed

for simplicity.
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are not required for CMLLR estimation as observation outer-products can be accumulated at the
base-class level. As all components tend not to be observed when estimating a particular trans-
form, this can still be practical even for large vocabulary systems by only generating accumulation
space on demand. For NCMLLR, this is not an issue when using diagonal transforms. Note unlike
CMLLR estimation, the transform update formulae are applicable with both diagonal and full
covariance canonical models, though only diagonal covariance matrix systems are used.

Scheme Type Parameters # Free Parameters
JUD/VTS Predictive µn, Σn, µh 5Ds

CMLLR Adaptive A, b 2RD
NCMLLR (diagonal) A, b, Σb 3RD

CMLLR Adaptive A, b R(D2 + D)
NCMLLR (full) A, b, Σb R(D2 + 2D)

Table 1: Number of free parameters to estimate for diagonal forms of various model-based com-
pensation schemes.D is the dimensionality of the full feature vector, Ds the number of static
parameters (in the experiments D = 3Ds).

Table 1 compares the number of free parameters that need to be estimated for diagonal forms
of various model-based compensation. The predictive schemes such as VTS and JUD only require
the noise model parameters to be estimated. Hence they have a lower number of free parameters
and require less adaptation data than the adaptive forms. The number of free parameters for the
adaptive schemes depends on the number of regression classes R. This means that the number of
parameter can be adjusted according to the amount of adaptation data. NCMLLR requires more
parameters to be estimated than CMLLR due to the variance bias.

Another problem, also observed with JUD compensation [9], is that the magnitude of the
transform matrix, and hence the variance bias, can become very large in low SNR regions. This
is because the corrupted speech distribution is dominated by the noise in the region of low speech
energy, the cross-covariance Σso will be approximately zero. That is, the clean speech and the
corrupted speech will be uncorrelated since the clean speech and noise are independent in low
SNR regions. In these cases the cross-covariance term Σ(m)

so for component m can be expressed as

Σ(m)
so = E

[
(st − µ(m)

s )(ot − µ(m)
o )T

]
= Σ(m)

s HT ≈ 0 (92)

In the NCMLLR scheme, the transform matrix H will tend to zero in low SNR, hence A = H-1

goes to infinity along with the variance bias Σb. To prevent this problem it is sensible to limit
the possible values for the compensation parameters. The compensation parameters can then be
restricted by enforcing a maximum on the variance bias for dimension i used in equations 73 - 76
as follows

σ
(m)2
bi ≤ ρσ

(m)2
si (93)

where ρ is an empirically determined constant. Performance was found to be relatively insensitive
to ρ over a range of values for each of the tasks examined. The value of ρ was approximately
tuned and fixed for all experiments.

7 Experiments and Results

The use of NCMLLR transforms in ML adaptation and adaptive training was evaluated on two
tasks, noise corrupted Resource Management (RM) and in-car data collected by Toshiba Research
Europe Ltd (TREL)4. Additionally recogniotion results for MPE-trained systems are given on

4The authors thank TREL for making this data available.
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Toshiba data, as there is insufficient data in the RM database for discriminative training. Exper-
iments were conducted using HTK V3.4 [36] with additional routines to support adaptation and
adaptive training with NCMLLR.

There are a large number of possible noise robustness schemes, both enhancement-based and
model-based, that NCMLLR could be compared to. In this work CMLLR for adaptation, adaptive
training and discriminative adaptive training was selected. Though there are known limitations of
linear transform-based schemes for noise-robustness, it allows a contrast with a standard scheme,
which forms part of the motivation for the NCMLLR transform. Furthermore in these experiments
adaptation was run at the speaker level. Thus there is no issue with making robust transform
parameter estimates. In situations like adaptive approaches will tend to outperform predictive
approaches.

7.1 Resource Management

Initial experiments were conducted on a medium vocabulary speech recognition task, the 991 word
RM database. A 39 dimensional feature vector was used consisting of MFCCs, including the 0th
cepstra, and associated 1st- and 2nd-order delta coefficients. Cross-word, state-clustered triphone
acoustic models with 6 components per state, giving 9492 recognition components, were built
using the RM recipe distributed with HTK. The RM word pair grammar was used. Operations
Room noise from the NOISEX-92 was artificially added at the waveform level database to give
20 and 14 dB SNR test-sets. All results are averaged across the feb89, oct89 and feb91 test
sets. The ML multi-style model was built from data with Operations Room noise added at the
speaker level at SNRs of 8, 14, 20, 26 or 32 dB. Thus the mismatch investigated here is primarily
the range of SNR levels in training and test. The same data was used for the adaptively trained
systems.

For all adaptation experiments the unadapted recognition output from the multi-style trained
system (the first line in tables 2 and 3) was used for the hypotheses. 16 regression classes were used
for diagonal linear transforms, while a single regression class for the full transform5. The variance
bias Σb was restricted to be diagonal. Though this configuration the NCMLLR transform had
more parameters than the CMLLR transform, see table 1, using additional base-classes yielded
minimal gains for CMLLR (this was also true on the Toshiba task). For NCMLLR transform
estimation, EM was intialised with: A = I; b = 0; and large diagonal biases were used as the
initial values.

System Adapt WER (%)
20dB 14dB

Multi-style
— 6.96 15.44

CMLLR 5.76 13.01
NCMLLR 6.37 12.10

Adaptive CMLLR 5.27 11.98
Training NCMLLR 4.97 9.87

Table 2: Performance of ML multi-style and adaptive training with 16-diagonal transforms CM-
LLR and NCMLLR on the RM data.

Table 2 shows the performance of NCMLLR adaptation compared to the equivalent CMLLR
set-up for multi-style trained systems using 16 base-classes and diagonal feature transformations.
As expected both forms of adaptation improved the performance of the multi-style system. Inter-
estingly, CMLLR out-performed NCMLLR at the higher SNR condition (20dB) whereas NCMLLR
yielded better performance at lower SNR (14dB). This is expected as the variance bias will become
more important as the SNR decreases. Also the bias term added to the variance, by definition, will
be positive definite. With multi-style trained systems at low test condition SNRs this constraint

5Using multiple full-transforms did not yield performance gains.
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means that this bias is likely to be small, yielding little possible gains over CMLLR. Note for
all conditions NCMLLR yielded higher likelihoods than CMLLR. Adaptive training using both
NCMLLR and CMLLR showed gains over the multi-style trained systems. Interestingly, adap-
tive training with NCMLLR out-performed CMLLR for both noise conditions. Overall the best
performance for the low SNR condition, was using NCMLLR with NCMLLR adaptive training.

System Adapt WER (%)
20dB 14dB

Multi-style
— 6.96 15.44

CMLLR 5.64 13.35
NCMLLR 6.02 11.57

Adaptive CMLLR 4.33 10.52
Training NCMLLR 4.52 9.05

Table 3: Performance of ML multi-style and adaptive training with 1-full transform CMLLR and
NCMLLR compensation on RM data.

It is also possible to use full feature transforms, though still diagonal variance biases, for
NCMLLR. Table 3 shows the performance of a single full transform of NCMLLR compared to
CMLLR. The same general trends as the diagonal system are observed. For the multi-style trained
system, at the higher SNR condition (20dB) CMLLR slightly outperforms NCMLLR and for
the lower SNR condition (14dB) the opposite is true. In contrast to the diagonal configuration
in table 2, adaptive training with NCMLLR did not outperform CMLLR for the higher SNR
condition, though the difference in performance is smaller than when using the multi-style trained
system. For the lower SNR condition, again the best performing set-up was NCMLLR with
adaptive training. This highlights the advantage of using NCMLLR when the SNR conditions are
low.

7.2 Toshiba Task

The Toshiba task is a small/medium sized task with noisy speech collected in cars driving at
various conditions. The WSJ SI284 training data were used to train a ML multi-style system
model. Noise-corrupted multi-condition data were generated by adding car noise at the speaker
level at average SNRs of 15, 18, 25 and 35 dB. The car noise added to the training data was not
the same as that observed in the test data. For more information about the data and training
configurations see [35]. Similar features and model topology to the RM system were used, except
normalised log energy instead of 0th cepstra (this would complicate the specification of a mismatch
function for predictive schemes). Again cross-word decision-tree state-clustered triphones were
used, with about 6400 distinct states were generated with 16 Gaussian components per state.

In addition to ML systems, MPE systems were build: an MPE multi-style system trained;
and a MPE based DAT systems. Both CMLLR and NCMLLR MPE adaptively trained systems
were built. For these systems, the ML adaptive training systems were trained first and the HMM
canonical model parameters were discriminatively estimated given ML estimated transforms for
CMLLR and NCMLLR respectively. As this is a larger task, only diagonal versions of NCMLLR
and CMLLR adaptation and adaptive training were implemented. The initial hypotheses for
adaptation was generated using the ML multi-style system for the ML experiments and MPE
multi-style system for the MPE ones. Again 16 base-classes for both CMLLR and NCMLLR were
used.

For this work in-car collected test sets consisting of phone numbers were used. The performance
was evaluated on three different conditions: engine on (ENON) , city driving (CITY) and highway
driving (HWY). The average SNRs for each of the tests are 35dB, 25dB and 18 dB, respectively.
Note, though only digits were used in the evaluation of the system, by using a general state-
clustered triphone system allows the same acoustic model-set to be used for a range of tasks, for
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example the city-names task described in [35].

System Adapt WER (%)
ENON CITY HWY

Multi-style
— 1.11 3.57 6.67

CMLLR 0.31 1.08 2.36
NCMLLR 0.51 1.16 2.09

Adaptive CMLLR 0.30 1.00 2.05
Training NCMLLR 0.28 0.95 1.76

Table 4: Performance of ML multi-style and adaptive training with 16-diagonal transforms CM-
LLR and NCMLLR compensation on Toshiba in-car phone-number task.

Table 4 shows the results on this task for ML multi-style and adaptive training models with
16-diagonal transforms. Similar results to those obtained on the RM database. For ML multi-
style with the highway conditions, NCMLLR was better than CMLLR. However at the the higher
SNR conditions, ENON and CITY conditions, CMLLR was better. ML adaptive training with
NCMLLR outperformed CMLLR for all conditions. These results again illustrate the effectiveness
of NCMLLR especially for data with lower average SNRs.

System Adapt WER (%)
ENON CITY HWY

Multi-style
— 0.79 2.66 4.93

CMLLR 0.26 1.10 1.93
NCMLLR 0.59 1.23 1.93

Adaptive CMLLR 0.21 0.94 1.48
Training NCMLLR 0.24 0.86 1.20

Table 5: Performance of MPE multi-style and adaptive training with 16-diagonal transforms
CMLLR and NCMLLR compensation on Toshiba in-car phone-number task.

Table 5 shows the recognition results for the MPE trained systems. As expected the MPE
multi-style system performed better than the standard ML system for all conditions. Furthermore
adapting the multi-style trained system again produced reductions in WER. Interestingly for the
multi-style MPE trained systems CMLLR always performed better, or the same as NCMLLR.
This is true even for the lower SNR conditions. For disciminatively trained multi-style systems, it
is not clear how much gain can be obtained with the variance bias. Also comparing the ML and
MPE trained multi-style systems with adaptation, there is almost no gain from MPE training over
the ML results for NCMLLR (4% relative on HWY), and smaller gains for CMLLR (18% relative
on HWY), compared to the unadapted gains from MPE training (27% relative on HWY).

Discriminative adaptively trained systems were then evaluated. The results are also shown in
table 5. There are a couple of interesting trends. First, other than at the highest SNR condition,
ENON, NCMLLR adaptation and adaptive training outperformed CMLLR. For the HWY condi-
tion, adaptive training with NCMLLR is 19% relative lower error rate than using CMLLR. The
performance of the two at the highest SNR are very similar. Second, the gains of using adaptive
training are larger with MPE training than for ML. For example using NCMLLR adaptive train-
ing, a 15% relative reduction in error rate on the HWY condition was obtained using ML training,
but a 38% relative reduction using MPE training. For MPE training on data with highly variable
noise conditions, adaptive training appears to be important to obtain the best performance.
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8 Conclusions

This report has described a new version of linear transformation motivated from model-based
noise robustness schemes. The approach, noisy CMLLR (NCMLLR) combines attributes of both
CMLLR and variance bias transforms. This yields a transformation that has the same form as an
efficient model-based scheme, joint uncertainty decoding (JUD), but estimated using maximum
likelihood. The use of this transform for both adaptation and adaptive training are described, along
with its relationship to existing linear transforms and factor-analysed-based covariance modelling
schemes. In addition discriminative adaptive training update formulae are given.

The performance of NCMLLR was compared to CMLLR on two different tasks. The first,
a noise corrupted version of resource management where noise from the NOISEX database have
been artificially added, was medium vocabulary task. The second task used test data collected by
Toshiba Research Europe Ltd, and comprises a continuous digit recognition task under a range of
driving conditions. On both test sets, the use of NCMLLR at low SNR conditions outperformed
CMLLR when using ML-training for both multi-style and adaptive training. For discriminatively
trained systems, the use of adaptive training was found to be important to make the most use of
the discriminative criteria. Again at low SNRs the best performance was obtained using NCMLLR
adaptaive training.

The results presented in this paper indicate the possible advantages of using NCMLLR over
CMLLR when good recognition performance in low-SNR conditions is needed. Further evaluation
on larger, more complex, test sets is required. In particular data collected in low-SNR conditions.
The current schemes are more computationally expensive than using CMLLR. Approximations
and improvements to the transform and parameter estimation to allow full transforms to be used
for large adaptive training tasks are required. Finally it would be interesting to compare the EM-
based adaptive training approach described in this paper to the 2nd-order Newton-based approach
described in [7]. This can be done for both JUD transforms and NCMLLR.
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A EM Estimation for NCMLLR

The auxiliary function in equation 61 may be extended to

Q(T̂ ; T ) = E
[
log p(Z|M, T̂ )|O,M, T

]

=
∑

Θ
P (Θ|O,M, T )E

[
log p(O,S,Θ | M, T̂ ) | O,Θ,M, T

]
(94)

The term in the expectation can be rewritten as

log p(O,S,Θ|M, T̂ ) = log p(O|S,Θ,M, T̂ ) + log p(S|Θ,M, T̂ ) + log p(Θ|M, T̂ ) (95)

We are interested in the first and second terms on the right side of this equation. Assuming
statistically independent observations, these equations are extended to

log p(O|S,Θ,M, T̂ ) + log p(S|Θ,M, T̂ ) =
T∑

t=1

{
log p(ot|st, θt,M, T̂ ) + log p(st|θt,M, T̂ )

}
(96)

The auxiliary function can be rewritten as

Q(T̂ ; T ) =
T∑

t=1

M∑
m=1

γ
(m)
o,t E

[
log p(ot|st, m,M, T̂ ) + log p(st|m,M)|ot,m,M, T

]
(97)

where γ
(m)
o,t is the posterior probability of component m given the observation sequence O, NCM-

LLR parameter set T , and model set M. From equations 54 and 55, we obtain

p(ot|st,m,M, T̂ ) = N
(
ot; Ĥ(rm)st + ĝ(rm), Ψ̂

(rm)
)

(98)

p(st|m,M) = N
(
st; µ(m)

s ,Σ(m)
s

)
(99)

Then the auxiliary function may be extended to

Q(T̂ ; T ) =− 1
2

T∑
t=1

M∑
m=1

γ
(m)
o,t E

[
log |Ψ̂(rm)|

+
(
ot − Ĥ(rm)st − ĝ(rm)

)T

Ψ̂
(rm)-1

(
ot − Ĥ(rm)st − ĝ(rm)

)

+ log |Σ(m)
s |+

(
st − µ(m)

s

)T

Σ(m)-1
s

(
st − µ(m)

s

)
|ot,m,M, T (rm)

]
(100)

B Expectation Step

The sufficient statistics for the M-Step are computed in the E-Step using during a single pass
through the training set. The following expectations are required:

E
[
st|ot,m,M, T (rm)

]
=

∫
stp(st|ot,m,M, T (rm))dst (101)

E
[
stsT

t |ot,m,M, T (rm)
]

=
∫

stsT
t p(st|ot,m,M, T (rm))dst (102)

Using the Bayes rule the posterior probability can be computed as follows:

p(st|ot,m,M, T (rm)) =
p(ot|st, m,M, T (rm))p(st|m,M)∫
p(ot|st,m,M, T (rm))p(st|m,M)dst

(103)
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Then, with a normalisation term C the numerator may be expanded to

p(ot|st,m,M, T (rm))p(st|m,M, T (rm)) ∼ C · N (st; s̃
(m)
t , Σ̃

(m)

s ) (104)

where

Σ̃
(m)

s = (Σ(m)-1
s + H(rm)TΨ(rm)-1H(rm))-1

= (Σ(m)-1
s + Σ(rm)-1

b )-1 (105)

s̃(m)
t = Σ̃

(m)

s (Σ(m)-1
s µ(m)

s + H(rm)TΨ(rm)-1(ot − g(rm)))

= Σ̃
(m)

s H(rm)TΨ(rm)-1ot + Σ̃
(m)

s (Σ(m)-1
s µ(m)

s −H(rm)TΨ(rm)-1g(rm)) (106)

= Ã(m)ot + b̃(m)

and

Ã(m) = Σ̃
(m)

s H(rm)TΨ(rm)-1

= (Σ(m)-1
s + Σ(rm)-1

b )-1Σ(rm)-1
b A(rm) (107)

b̃(m) = Σ̃
(m)

s (Σ(m)-1
s µ(m)

s −H(rm)TΨ(rm)-1g(rm))

= (Σ(m)-1
s + Σ(rm)-1

b )-1(Σ(m)-1
s µ(m)

s + Σ(rm)-1
b b(rm)) (108)

Then,

E
[
st|ot,m,M, T (rmh)

]
= s̃(m)

t (109)

E
[
stsT

t |ot,m,M, T (rm)
]

= Σ̃
(m)

s + s̃(m)
t s̃(m)T

t . (110)

E
[
ζt|ot, m,M, T (rm)

]
and E

[
ζtζ

T
t |ot,m,M, T (rm)

]
can be easily calculated by equations 109

and 110 as follows:

E
[
ζt|ot,m,M, T (rm)

]
= [1 E[sT

t |ot, m,M, T (rm)]]T = [1 s̃(m)T
t ]T (111)

E
[
ζtζ

T
t |ot,m,M, T (rm)

]
=

[
1 s̃(m)T

t

s̃(m)
t Σ̃

(m)

s + s̃(m)
t s̃(m)T

t

]
(112)
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