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Abstract
Recently there has been interest in uncertainty decoding for ro-
bust speech recognition. Here the uncertainty associated with the
observation in noise is propagated to the recogniser. By using ap-
propriate approximations for this uncertainty, it is possible to ob-
tain efficient implementations during decoding. The aim of these
schemes is to obtain performance which is close to that of a model-
based compensated system, without the computational cost.Un-
fortunately, in low SNR there is a fundamental issue with front-end
uncertainty decoding where the model means and variances are up-
dated according to the features. This is described in detailusing
theJoint andSPLICE with uncertainty forms, but is not lim-
ited to these two techniques. A solution for theJoint scheme
is presented along with the implicit approach used inSPLICE
with uncertainty. In addition, a model-basedJoint uncertainty
scheme is described, which is more efficient and powerful than
the front-end schemes, and being model-based not affected by this
problem. This issue is illustrated using the AURORA 2.0 database
with these various systems.
Index Terms: model-based noise compensation, robust speech
recognition, uncertainty decoding.

1. Introduction
Speech recognition in noise has been an area of active research
for many years. Powerful model-based compensation schemes,
such as Parallel Model Combination (PMC), Vector Taylor Series
(VTS) and more recentlyALGONQUIN [1], achieve good per-
formance but are computationally expensive compared to feature
compensation. Recently interest has grown in an elegant compro-
mise between model-based and front-end schemes:uncertainty
decoding, so called because a measure of the uncertainty intro-
duced by the background acoustic noise is propagated into the
recognition process [2, 3]1. For front-end uncertainty schemes,
this uncertainty is computed solely from the features.

Despite front-end uncertainty decoding achieving good per-
formance for a range of acoustic environments [3], a fundamental
problem arises. By passing a single uncertainty value to thede-
coder per frame, when the SNR is low large uncertainties can cause
all the model variances to be rendered the same. When this occurs,
the recogniser can no longer discriminate in these areas which can
result in large numbers of insertion errors. This is especially the
case when there is no other additional constraints such as a lan-
guage model, e.g. in the AURORA digit recognition task [5]. This
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1The uncertainty decoding framework, as described here, differs from

the feature variance approach as discussed in [4].

is not only an issue with specific implementations such asSPLICE
with uncertainty [2] and front-endJoint [3], but all forms based
on the uncertainty decoding framework presented here.

This paper examines the cause of this fundamental issue with
front-end uncertainty decoding and how these specific implemen-
tations may be modified to address this problem. A model-
basedJoint uncertainty decoding scheme is discussed that is
more effective, and actually more efficient, than standard front-
end schemes without suffering from this limitation in low SNR
conditions. The issues discussed are demonstrated on the standard
AURORA 2.0 digit string recognition task.

2. The Uncertainty Decoding Framework
This section reviews the uncertainty decoding framework [2, 3]. A
dynamic Bayesian network, as in figure 1, can represent the effects
of environmental noise. Here, the noise corrupted speech observa-

Figure 1: Uncertainty Decoding DBN.

tion yt at timet is assumed to be conditionally independent of all
other observations given the clean speechxt and the noisent at
that time. By also assuming the clean speech and noise are gener-
ated by HMMs with statesθn

t for the noise2 andθt for the clean
speech, the corrupted speech likelihood may be expressed as

p(yt|M,M̌, θt) =

Z

p(yt|xt,M̌)p(xt|M, θt)dxt (1)

wherep(yt|xt,M̌)=
R

p(yt|xt, nt)p(nt|M̌, θn
t )dnt andM̌ the

front-end compensation model. The acoustic modelM consists of
Gaussians each defined by a prior,cm, mean,µ(m), and variance,
Σ

(m). The likelihood calculation thus has two distinct parts. In
equation 1, only the first part,p(yt|xt,M̌), is a function of the
noise. Front-end uncertainty decoding takes advantage of this fac-
torisation, by making this conditional independent of the acoustic
models; a wide variety approaches are then possible to modelthe
conditional without adversely affecting decoding efficiency.

An important consideration in uncertainty decoding is
the form of representation for the conditional distribution,

2A single state is assumed for the noise model in this paper.
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Figure 2: Joint distributionp(x, y).

p(yt|xt,M̌). The joint distribution of the clean speech,x, and
the noisy speech,y, in the log-spectral domain, where it is as-
sumed thaty = log(exp(x) + exp(n)), shown in figure 2, il-
lustrates this highly non-linear relationship and how the resultant
conditional distributions may be non-Gaussian. Nevertheless, to
model this complexity, uncertainty decoding schemes may repre-
sent the acoustic space with a GMM. From the observed noisy
data, only the most likely componentn is selected for efficiency
and the form of distribution, as specified by that component,is
passed to the recogniser. For both theSPLICE with uncertainty
and theJoint schemes, the corrupted speech likelihood for state
θt can be expressed as [3]

p(yt|M,M̌, θt)∝
X

m∈θt

cmN
“

A
(n)

yt+b
(n); µ(m),Σ(m)+Σ

(n)
b

”

(2)

whereA(n), b(n) andΣ(n)
b

are derived using different approxima-
tions in theSPLICE with uncertainty andJoint schemes.

SPLICE with uncertainty [2] makes use of Bayes’ rule to ex-
press the conditional probability of the corrupted speech given the
clean speech in terms of the conditional probability of the clean
speech given the noisy. This requires an approximation for the
clean speech distribution. A single global Gaussian is used, with
mean,µ̄x,i, and variance,̄σ2

x,i, for dimensioni, and restricting

A(n) andΣ
(n)
b

to be diagonal, gives

a
(n)
ii =

σ̄2
x,i

σ̄2
x,i − σ̌

(n)2
i

, σ
(n)2
bi = a

(n)
ii σ̌

(n)2
i (3)

b
(n)
i =a

(n)
ii

“

µ̌
(n)
i −

“

σ̌
(n)2
i /σ̄2

x,i

”

µ̄x,i

”

(4)

for dimensioni. The parameteršµ(n)
i and σ̌

(n)2
i are the means

and variance respectively of(xti − yti) for the data associated
with componentn of the front-end GMM. In order to ensure that
the uncertainty variance bias,Σ

(n)
b

, is positive, the denominator in
equation 3 is floored. In this work, the floor is set to a fraction α

of the global clean variance,̄σ2
x,i, effectively ceilinga

(n)
ii where

a
(n)
ii = min

`

1/α , σ̄2
x,i/
`

σ̄2
x,i − σ̌

(n)2
i

´´

(5)

The next section discusses the effects of this in more detail.
In the front-end version of theJoint uncertainty decoding

scheme, the joint distribution of the clean and corrupted speech
is extracted. For componentn of the front-end GMM the joint
distribution is assumed to be Gaussian with parameters
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The compensation parameters are then given by

A
(n) = Σ

(n)
x Σ

(n)-1
yx , b

(n) = µ
(n)
x − A

(n)
µ

(n)
y (7)

Σ
(n)
b

= A
(n)

Σ
(n)
y A

(n)T − Σ
(n)
x (8)

Though the feature transform and variance bias may be full for the
Joint scheme, they are typically made diagonal for efficiency.

When applying compensation schemes, it is important to as-
sess the computational cost. Normally the computation of the
front-end uncertainty parameters is dwarfed by the cost of apply-
ing the variance bias to the large number of model variances.This
update is simply the addition of the variance bias, plus recomput-
ing the cached determinant at a cost ofO(d). While this compares
favourable with model-based schemes, which are typicallyO(d2)
due to full matrix operations, unfortunately for front-enduncer-
tainty schemes, the bias varies every time the front-end component
changes, rather than when the acoustic environment changes.

3. Limitations of Front-End Schemes
There is a fundamental issue associated with front-end uncertainty
decoding. Consider the joint distribution of the clean speech and
noise shown in figure 2. Two conditional distributions,p(y|x), are
marked. The first is when there is a relatively high SNR (x = 6)
yielding a highly skewed distribution that heavily peaks around
x = 6. As the SNR increases this becomes more pronounced
until it reaches a delta function, which does not affect the clean
speech distribution when substituted in equation 1. In low SNR ,
e.g. x = 1 the conditional is very different. Here the distribution
is exactly the same as the corrupting noise distribution, inthis case
a Gaussian distribution with mean 3 and variance of 1

p(yt|xt,M̌) ≈ N (yt; µn
,Σn) (9)

whereµ
n

andΣn are the noise mean and variance respectively.
Although this result is not novel, the implication for uncertainty
decoding has not been discussed in the literature. That is, substi-
tuted this into equation 1, the distribution of the corrupted speech
is the same as the noise distribution

p(yt|M,M̌, θt) ≈

Z

N (yt; µn
,Σn)p(xt|M, θt)dxt

= N (yt; µn
,Σn) (10)

This means irrespective of the recognition model componentthe
distribution is always the same. Forany front-end scheme, using
this framework, where a single conditional is estimated andap-
plied to all model components, in low SNR conditions a frame,or
worse a sequence of frames, will have no discriminatory power
between classes. With additional external restraints, such as a
strong language model, these non-discriminatory regions are man-
ageable; however for situations where language model constraints
are weak, for example recognising digit strings in AURORA, the
lack of discriminatory information can result in a large number of
insertions.

This is clearly illustrated with the front-endJoint uncer-
tainty decoding algorithm presented in [3]. Figure 3 shows
the clean, corrupted and front-endJoint estimate, given by
A(n)yt + b(n), and the bias standard deviation, obtained from
Σ

(n)
b

, for a simple 16-component system. In regions of higher en-
ergy speech, e.g. frames 180 to 190,Σ

(n)
b

is small. But in low
SNR, as in frames 225 to 230, the variance is off the scale, as is
theJoint estimate of the value. These large variance values are
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Figure 3: Plot of log energy for snippet from AURORA digit string
8-6-Zero-1-1-6-2, showing joint estimate,aii and variance bias.

reflected in the large values ofaii associated with those regions. In
frames 225 to 230 the value is around 100. With greater numbers
of front-end components, these effects are amplified.

The reason for these very large values ofaii, and associated
variance biases, becomes clear when examining what happensin
low energy speech regions to the joint distribution in equation 6. In
these SNR regions, the corrupted speech distribution will be dom-
inated by the noise (the standard masking effect), and the cross-
variance termΣ(n)

xy becomes

Σ
(n)
xy = E

n

(xt − µ
(n)
x )(yt − µ

(n)
y )T

o

≈ 0 (11)

The clean speech and the corrupted speech will be uncorrelated.
From equation 7, this lack of correlation drivesA(n) to infinity.
Given equation 11, the relationship to equation 10 becomes clearer
by re-expressing equation 2, for componentm, as

p
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(12)

which in low SNR is simply the noise distribution. Hence, leaving
A(n) unconstrained may result in large numbers of insertions.

Thus, in theJoint scheme, it is inevitable that in low SNR
the correlation matrix, and hence the covariance matrix, will tend
to zero yielding extreme compensation parameters in equation 7.
This is the correct behaviour given the simple assumptions made
for efficiency, however to prevent these extremes it would besen-
sible to limit the possible values for the compensation parameters.
The obvious approach is to examine the correlation coefficients

ρ
(n)
xy,i = σ

(n)
xy,i

“

q

σ
(n)2
x,i σ

(n)2
y,i

”-1
(13)

for dimensioni. The compensation parameters estimates in equa-
tion 7 can then be re-expressed in terms of this coefficient as

a
(n)
ii =

σ
(n)
x,i

ρ
(n)
xy,iσ

(n)
y,i

, σ
(n)2
b,i =

σ
(n)2
x,i

ρ
(n)2
xy,i

− σ
(n)2
x,i (14)

for the diagonal form of front-endJoint uncertainty decoding.
The compensation parameters can then be restricted by enforcing
a minimum on the correlation coefficient used in 14 as follows

ρ̂
(n)
xy,i = max(ρ

(n)
xy,i, ρ) (15)

whereρ is an empirically set constant. Increasing the value ofρ
raises the minimum acceptable correlation, decreasing themaxi-
mum variance bias. In the limit, it is possible to setρ = 1, re-
sulting in a zero variance bias in equation 14. The effects ofthis
flooring on the same snippet as figure 3 is shown in figure 4. As
anticipated, the extremes previously observed have disappeared.

180 190 200 210 220 230

−10

0

10

20 Corrupted Speech
Clean Speech
Joint 16 Estimate
Joint +/− Std. Dev

Figure 4: Plot of log energy for AURORA digit string 8-6-Zero-1-
1-6-2, with correlation flooring,ρ = 0.1.

As this issue of all distributions becoming the same theo-
retically affects all front-end uncertainty decoding schemes, the
SPLICE with uncertainty decoding should also suffer from it.
However the expected issues have not been observed, for example
on the AURORA results presented in [2]. This is becauseSPLICE

with uncertainty limits the maximum value ofa
(n)
ii to 1/α in equa-

tion 5. There is also an under-estimate of the value ofa
(n)
ii . In

order to make the calculation of theSPLICE uncertainty efficient,
a global variance is used in the denominator of equation 3. Since
this will be larger than any individual component that should be
used, the scaling estimate will be lower than expected. Thisunder-
estimation becomes larger as the number of front-end GMM com-
ponents increases—exactly the when a component might expected
to only be associated with a low-energy noise region. These two
limiting factors ona

(n)
ii , keep the uncertainty from becoming too

large inSPLICE with uncertainty and causing this issue.

4. Model-Based Joint Uncertainty Decoding
All front-end uncertainty decoding schemes may result in regions
of no discrimination because only a single set of compensation pa-
rameters is propagated from the front-end model to the recogniser.
Model-based schemes do not suffer from this problem as the effec-
tive set of compensation parameters propagated to the recogniser
is explicitly linked to the recognition component. With model-
basedJoint [3] transforms, instead of linking front-end of com-
ponents to regions of the feature space, each is associated with
a set of recognition model components. Similar to the front-end
Joint scheme, the joint distribution of the clean and corrupted
speech features are required. For example, the cross-covariance
terms between the clean and corrupted speech are given by

Σ
(r)
xy =

P

m∈rm
γm(t)xty

T

t
P

m∈rm
γm(t)

− µ
(r)
x µ

(r)T
y (16)

whereγm(t) is the component posterior at time instancet andrm

is the set of recognition components associated with componentr.
Having obtained the component parameters, the compensation

parameters can be derived using equations 7 and 8. During recog-
nition, in contrast to the front-endJoint scheme, all the front-
end components are active and pass their measure of uncertainty
to the recogniser. This operation is similar to using a multiple-
transform constrained MLLR scheme [6], but with the addition of
a variance bias. The model-based scheme is actually more efficient
than the front-end, since the variance bias applied to the recogni-
tion model-set is fixed given a particular acoustic environment, in



contrast to the front-end scheme where it will vary if eitherthe
acoustic environment or the front-end component changes. As all
the front-end components are active, if one of them is associated
with a low energy region, such thatΣ(r)

xy is very small, then this
will only affect the recognition components in classrm, not all the
recognition components. Thus there is no problem with regions
lacking discrimination between classes.

5. Experiments
Experiments were conducted on the standard AURORA 2.0 small
vocabulary digit string recognition task [5]. The reference acoustic
model setup was used with an internal version of HTK 3.3 and its
native front-end processing; this resulted in slight differences from
HTK 2.2. Compensation parameters were estimated using stereo
data. This allows the techniques to be assessed without consider-
ing inaccuracies arising from noise estimation, or approximations
in the mismatch function. In practice, the compensation param-
eters can be estimated using PMC or VTS style schemes. The
front-end uncertainty schemes used diagonal transformations.

SNR(dB)
System 20 15 10 5

Clean 4.62 12.20 31.13 59.16
Matched 1.85 2.81 5.01 11.41

SPLICE 1.95 3.07 6.13 16.47
+Uncertainty,α = 0.1 2.15 3.22 5.95 14.50
+Uncertainty,α = 0.95 2.00 3.20 5.58 12.29
FE-Joint 22.67 25.82 28.38 34.37
FE-Joint, ρ = 0.9 1.81 2.88 5.71 14.62

Table 1: Clean, matched andSPLICE on AURORA 2.0 test set A,
averaged across N1-N4, WER(%).

Table 1 shows baseline,SPLICE andJoint systems’ perfor-
mance. The 256-componentSPLICE systems approach matched
performance, significantly improving the poor clean system. To in-
vestigate the effects of the flooringα, from equation 5, onSPLICE
with uncertainty, a range of values of were tried. Performance at
the cited value ofα = 0.1 in [2], can be improved slightly by
increasing it to 0.95. This can be compared against the front-end
Joint scheme. As expected, without flooringρ, a vast number
of insertions occur. In contrast, this behaviour was not seen on
Resource Management [3] because of the constraining language
model. Withρ set to 0.9, the performance is now comparable to
the variousSPLICE systems. Both these optimal flooring values
significantly reduce the uncertainty passed to the decoder.

Table 2 summarises the results of the model-basedJoint ap-
proach. The number and form of transforms were explored, where
the diagonal transforms are similar to the front-end schemes and
contrasted with full matrix forms ofA(r) andΣ

(r)
b . A 16 trans-

form model-basedJoint scheme performed slightly worse than
appropriately floored 256-component front-end schemes, but at
considerably less computational cost; with the same numberof
diagonal transforms, the model-based system is superior toall of
the front-end systems examined. Moreover, using a full transform
gave substantial gains. In low SNR, the 16 full transform model-
based system is better than matched. However as the variancebias
is a full matrix, there is the impractical cost of performinga full
covariance matrix decode, compared to the diagonal covariance
matched system. This does indicate an opportunity to obtainex-
cellent results using this model-basedJoint approach.

Number of SNR(dB)
System Transforms 20 15 10 5

Diagonal Transformations
1 3.33 5.92 13.35 31.96

M-Joint 16 2.47 3.82 7.25 16.63
256 1.90 2.73 5.19 12.00

Full Transformations

M-Joint
1 2.43 3.82 6.97 17.14
16 1.95 2.80 4.23 9.89

Table 2: Model-basedJoint systems’ performance on AURORA
2.0 test set A, averaged across N1-N4, WER(%).

6. Conclusions
This paper has discussed important differences within the uncer-
tainty decoding framework between front-end and model-based
approaches. In the former, by only propagating a single vector
of features and probabilities, during high noise the ability to effec-
tively discriminate can be lost. This causes insertion errors in the
search if all models are rendered acoustically equivalent.With an-
other source for discrimination, such as a language model, this can
be less of an issue as it guides the search when the SNR is low and
uncertainty is high. This issue was explored on the AURORA task,
which practically has no language constraints, using theJoint
form of uncertainty decoding, where it was found that flooring
the correlation was beneficial, and theSPLICE with uncertainty
form, which implicitly floors uncertainty parameters. However,
model-based schemes are not affected by this problem, hencebet-
ter results were obtained than in front-end systems with equiva-
lent numbers of parameters. The best system was the model-based
Joint scheme with full matrix parameters; though this increases
the decoding computational cost, it does indicate the possible ben-
efits of this framework. Major limitations of this paper are that
experiments are conducted on artificially corrupted data and as-
sume noise stationarity; however, recent work has exploredusing
thisJoint form on found data such as Broadcast News [7].
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