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Abstract

Recently there has been interest in uncertainty decodingofo
bust speech recognition. Here the uncertainty associatbdive
observation in noise is propagated to the recogniser. Byguep-
propriate approximations for this uncertainty, it is pbssito ob-
tain efficient implementations during decoding. The aimhafse
schemes is to obtain performance which is close to that ofdefno
based compensated system, without the computational tiost.
fortunately, in low SNR there is a fundamental issue witimfrend
uncertainty decoding where the model means and varianeegpar
dated according to the features. This is described in desailg
the Joi nt and SPLI CE with uncertainty forms, but is not lim-
ited to these two techniques. A solution for thei nt scheme
is presented along with the implicit approach usedSkLI CE
with uncertainty. In addition, a model-bas@di nt uncertainty
scheme is described, which is more efficient and powerfuh tha
the front-end schemes, and being model-based not affegttish
problem. This issue is illustrated using the AURORA 2.0 Hatze
with these various systems.

Index Terms. model-based noise compensation, robust speech

recognition, uncertainty decoding.

1. Introduction
Speech recognition in noise has been an area of active cbsear

for many years. Powerful model-based compensation schemes

such as Parallel Model Combination (PMC), Vector Taylori&er
(VTS) and more recenthALGONQUI N [1], achieve good per-
formance but are computationally expensive compared toifea
compensation. Recently interest has grown in an eleganpm
mise between model-based and front-end schermasertainty
decoding, so called because a measure of the uncertainty intro-
duced by the background acoustic noise is propagated ieto th
recognition process [2, 8] For front-end uncertainty schemes,
this uncertainty is computed solely from the features.

Despite front-end uncertainty decoding achieving good per
formance for a range of acoustic environments [3], a fundaate
problem arises. By passing a single uncertainty value talthe
coder per frame, when the SNRis low large uncertainties anse
all the model variances to be rendered the same. When thisscc
the recogniser can no longer discriminate in these areashveain
result in large numbers of insertion errors. This is esplgcihe
case when there is no other additional constraints such as-a |
guage model, e.g. in the AURORA digit recognition task [ShisT
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1The uncertainty decoding framework, as described herigrslifrom
the feature variance approach as discussed in [4].

is not only an issue with specific implementations sucBRisl CE
with uncertainty [2] and front-endoi nt [3], but all forms based
on the uncertainty decoding framework presented here.

This paper examines the cause of this fundamental issue with
front-end uncertainty decoding and how these specific imple
tations may be modified to address this problem. A model-
basedJoi nt uncertainty decoding scheme is discussed that is
more effective, and actually more efficient, than standaodtf
end schemes without suffering from this limitation in low BN
conditions. The issues discussed are demonstrated oratiastl
AURORA 2.0 digit string recognition task.

2. TheUncertainty Decoding Framewor k

This section reviews the uncertainty decoding framewoyrB[2A
dynamic Bayesian network, as in figure 1, can represent faetef
of environmental noise. Here, the noise corrupted speesbraed-

Figure 1: Uncertainty Decoding DBN.

tion y, at timet is assumed to be conditionally independent of all
other observations given the clean speg¢ltand the noiseq; at
that time. By also assuming the clean speech and noise age-gen
ated by HMMs with stateg? for the noisé and#; for the clean
speech, the corrupted speech likelihood may be expressed as

Py, | M, A, 0,) = / Py e, M)p(ed M, 0)dz, (1)

wherep(y, |z¢, M) =[p(y,|@:, ni)p(ne| M, 67" )dn, and M the
front-end compensation model. The acoustic modetonsists of
Gaussians each defined by a prio,, mean,u("”, and variance,
(™) The likelihood calculation thus has two distinct parts. In
equation 1, only the first pari(y,|z:, M), is a function of the
noise. Front-end uncertainty decoding takes advantagesofetc-
torisation, by making this conditional independent of theustic
models; a wide variety approaches are then possible to ntioelel
conditional without adversely affecting decoding effidgn

An important consideration in uncertainty decoding is
the form of representation for the conditional distribatio

2A single state is assumed for the noise model in this paper.
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Figure 2: Joint distributiop(z, y).

p(y,|z:, M). The joint distribution of the clean speech, and
the noisy speechy, in the log-spectral domain, where it is as-
sumed thaty = log(exp(z) + exp(n)), shown in figure 2, il-
lustrates this highly non-linear relationship and how tesuitant
conditional distributions may be non-Gaussian. Nevee®l to
model this complexity, uncertainty decoding schemes mpyere

The compensation parameters are then given by

A — Eéﬂ)zéﬁ)-l’ p(m) — M.(Tn) _ A(n)uén) @
2}(}") _ A(n)zén)A(n)T _ 2;71) (8)

Though the feature transform and variance bias may be futhto
Joi nt scheme, they are typically made diagonal for efficiency.
When applying compensation schemes, it is important to as-
sess the computational cost. Normally the computation ef th
front-end uncertainty parameters is dwarfed by the cosppfya
ing the variance bias to the large number of model variantieis.
update is simply the addition of the variance bias, plus mgma-
ing the cached determinant at a costfd). While this compares
favourable with model-based schemes, which are typically?)
due to full matrix operations, unfortunately for front-endcer-
tainty schemes, the bias varies every time the front-encooent
changes, rather than when the acoustic environment changes

3. Limitations of Front-End Schemes

There is a fundamental issue associated with front-endrtaicty

sent the acoustic space with a GMM. From the observed noisy decoding. Consider the joint distribution of the clean speand

data, only the most likely componentis selected for efficiency
and the form of distribution, as specified by that component,
passed to the recogniser. For both 8RLI CE with uncertainty
and theJoi nt schemes, the corrupted speech likelihood for state
0: can be expressed as [3]

P MM, 6) oY e (AT y 45 u™) 5m() (2)

meby

whereA™, b and={™ are derived using different approxima-
tions in theSPLI CE with uncertainty and oi nt schemes.

SPLI CE with uncertainty [2] makes use of Bayes’ rule to ex-
press the conditional probability of the corrupted speecbrgthe
clean speech in terms of the conditional probability of thean
speech given the noisy. This requires an approximationHer t
clean speech distribution. A single global Gaussian is uaét
mean, fi.,;, and variances> ;, for dimensioni, and restricting

A™ andx{™ to be diagonal, gives

(n) 2 (2 _(n) < (n)2
Qi =5 (2 Tvi = @i 0 (3)
Oz, — 9
b =al (" = (5172 /0%) fin) ©)

for dimensioni. The parameters™ and!™? are the means

and variance respectively ¢fc;; — y+;) for the data associated
with component: of the front-end GMM. In order to ensure that
the uncertainty variance biaE,f,”), is positive, the denominator in
equation 3 is floored. In this work, the floor is set to a fractio
of the global clean variancéﬁﬂ-, effectively ceilinga(") where

(n) _ min(1/a 55_’1-/(65_,1- — 571(71)2)) (5)

The next section discusses the effects of this in more detail

In the front-end version of th@oi nt uncertainty decoding
scheme, the joint distribution of the clean and corruptegesh
is extracted. For component of the front-end GMM the joint
distribution is assumed to be Gaussian with parameters

a

(n) (n) (n)
{ ] ~N { () ] o R (6)
Y Ky yT y

noise shown in figure 2. Two conditional distributiop$y|x), are
marked. The first is when there is a relatively high SNR 6)
yielding a highly skewed distribution that heavily peaksuard

x = 6. As the SNR increases this becomes more pronounced
until it reaches a delta function, which does not affect tleac
speech distribution when substituted in equation 1. In I0WRS

e.g. x = 1 the conditional is very different. Here the distribution
is exactly the same as the corrupting noise distributiothigcase

a Gaussian distribution with mean 3 and variance of 1

Py, |z, M) = N (yy; o Zn) 9)

wherep, and X, are the noise mean and variance respectively.
Although this result is not novel, the implication for untzénty
decoding has not been discussed in the literature. Thatlistis
tuted this into equation 1, the distribution of the corrapspeech

is the same as the noise distribution

p(y M, M, 0;) R‘/N(yi;umEn)p(acth,@t)dwt
=N(Yy; gy Tn)

This means irrespective of the recognition model compotient
distribution is always the same. Feny front-end scheme, using
this framework, where a single conditional is estimated apd
plied to all model components, in low SNR conditions a fraore,
worse a sequence of frames, will have no discriminatory powe
between classes. With additional external restraintsh s a
strong language model, these non-discriminatory regiomsnan-
ageable; however for situations where language model rcontst
are weak, for example recognising digit strings in AURORHg t
lack of discriminatory information can result in a large rtaem of
insertions.

This is clearly illustrated with the front-endloi nt uncer-
tainty decoding algorithm presented in [3]. Figure 3 shows
the clean, corrupted and front-erdtbi nt estimate, given by
AMy, + ™, and the bias standard deviation, obtained from
Ef,"), for a simple 16-component system. In regions of higher en-
ergy speech, e.g. frames 180 to 13C(™ is small. But in low
SNR, as in frames 225 to 230, the variance is off the scales as i
theJoi nt estimate of the value. These large variance values are

(10)
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Figure 3: Plot of log energy for snippet from AURORA digitisty
8-6-Zero-1-1-6-2, showing joint estimate,; and variance bias.

reflected in the large values of; associated with those regions. In
frames 225 to 230 the value is around 100. With greater nusnber
of front-end components, these effects are amplified.

The reason for these very large valueszgf and associated
variance biases, becomes clear when examining what happens
low energy speech regions to the joint distribution in etumeé. In
these SNR regions, the corrupted speech distribution witldm-
inated by the noise (the standard masking effect), and theser
variance tern{}) becomes

=) = e{@ - ), -}~ 0 (11)
The clean speech and the corrupted speech will be uncadelat
From equation 7, this lack of correlation drive™ to infinity.
Given equation 11, the relationship to equation 10 becoteeser

by re-expressing equation 2, for componentas
p(yt|M7M7 0i7 m) :N(yt; E;Z)E(mn)-l(”(M)_”(wn)) +M?(Jn)’
snnm(stm_sMsin sty sim)
=N (y;; i, =5Y) (12)

which in low SNR is simply the noise distribution. Hence Vieg
A™ unconstrained may result in large numbers of insertions.
Thus, in theJoi nt scheme, it is inevitable that in low SNR
the correlation matrix, and hence the covariance matrilt,tend
to zero yielding extreme compensation parameters in egudti
This is the correct behaviour given the simple assumptioadan
for efficiency, however to prevent these extremes it woulddoe
sible to limit the possible values for the compensation patars.
The obvious approach is to examine the correlation coeffisie

(Vorray?)”

for dimensioni. The compensation parameters estimates in equa-
tion 7 can then be re-expressed in terms of this coefficient as

(n)

pzy,i o)

Ty,

(n)Q (n)2
z,0 Yy,

(13)

=0

O_(n) (n)2
o) = e = pp a1
p""?y-,io'y-,i pa:yz

for the diagonal form of front-endoi nt uncertainty decoding.
The compensation parameters can then be restricted bycargor
a minimum on the correlation coefficient used in 14 as follows

Cps = max(py). p) (15)

p (p

wherep is an empirically set constant. Increasing the valug of
raises the minimum acceptable correlation, decreasingntpg-
mum variance bias. In the limit, it is possible to get= 1, re-
sulting in a zero variance bias in equation 14. The effecthisf
flooring on the same snippet as figure 3 is shown in figure 4. As
anticipated, the extremes previously observed have disapd.
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Figure 4: Plot of log energy for AURORA digit string 8-6-Zete
1-6-2, with correlation flooringy = 0.1.

As this issue of all distributions becoming the same theo-
retically affects all front-end uncertainty decoding sties, the
SPLI CE with uncertainty decoding should also suffer from it.
However the expected issues have not been observed, fopexam
on the AURORA results presented in [2]. This is becgsiBel CE

with uncertainty limits the maximum value of?) to1l/ainequa-

tion 5. There is also an under-estimate of the valuegﬁf. In
order to make the calculation of ti°LI| CE uncertainty efficient,

a global variance is used in the denominator of equation BceSi
this will be larger than any individual component that shiobé
used, the scaling estimate will be lower than expected. Orier-
estimation becomes larger as the number of front-end GMM-com
ponents increases—exactly the when a component might &xpec
to only be associated with a low-energy noise region. These t

limiting factors ona ™ keep the uncertainty from becoming too

i1 7

large inSPLI CE with uncertainty and causing this issue.

4. Model-Based Joi nt Uncertainty Decoding

All front-end uncertainty decoding schemes may result giaes

of no discrimination because only a single set of compenisata-
rameters is propagated from the front-end model to the réseg
Model-based schemes do not suffer from this problem as fae-ef
tive set of compensation parameters propagated to the niserg

is explicitly linked to the recognition component. With nabd
basedloi nt [3] transforms, instead of linking front-end of com-
ponents to regions of the feature space, each is associdtied w
a set of recognition model components. Similar to the fiemd-
Joi nt scheme, the joint distribution of the clean and corrupted
speech features are required. For example, the crossiaosar
terms between the clean and corrupted speech are given by

Zmérm Tm (t)mty;r
2 mery, Ym(t)
wherev,, (t) is the component posterior at time instan@ndr,,
is the set of recognition components associated with coemton
Having obtained the component parameters, the compensatio
parameters can be derived using equations 7 and 8. During—+ec
nition, in contrast to the front-endloi nt scheme, all the front-
end components are active and pass their measure of untgrtai
to the recogniser. This operation is similar to using a rplati
transform constrained MLLR scheme [6], but with the additad
avariance bias. The model-based scheme is actually maieeffi
than the front-end, since the variance bias applied to tbegra-
tion model-set is fixed given a particular acoustic envirenmin

(r),, (T

i) = T

(16)




contrast to the front-end scheme where it will vary if eittiee
acoustic environment or the front-end component changssllA
the front-end components are active, if one of them is aatexti
with a low energy region, such théIFJy) is very small, then this
will only affect the recognition components in class, not all the
recognition components. Thus there is no problem with regio
lacking discrimination between classes.

5. Experiments

Number of SNR(dB)
System Transforms|| 20 [ 156 | 10 | 5
Diagonal Transformations
1 3.33| 592 | 13.35| 31.96
M-Joi nt 16 247 | 3.82| 7.25]| 16.63
256 190 | 2.73| 5.19| 12.00
| Full Transformations |

M-Joi nt 1 243| 3.82| 6.97| 17.14
16 195| 2.80| 4.23| 9.89

Experiments were conducted on the standard AURORA 2.0 small Table 2: Model-basedloi nt systems’ performance on AURORA

vocabulary digit string recognition task [5]. The referemoustic
model setup was used with an internal version of HTK 3.3 and it
native front-end processing; this resulted in slight dédfeces from
HTK 2.2. Compensation parameters were estimated usingoster
data. This allows the techniques to be assessed withouidenns
ing inaccuracies arising from noise estimation, or appnations

in the mismatch function. In practice, the compensatiorapar
eters can be estimated using PMC or VTS style schemes. Th
front-end uncertainty schemes used diagonal transfoometi

SNR(dB)

System 20 ] 15 ] 10 | 5

Clean 462 | 12.20| 31.13| 59.16
Matched 185| 281| 5.01]| 1141
SPLI CE 1.95| 3.07| 6.13]| 16.47
+Uncertainty,a = 0.1 215| 3.22| 5.95]| 1450
+Uncertainty,c = 0.95 2.00 3.20 5.58 | 12.29
FE-Joi nt 22.67 | 25.82| 28.38 | 34.37
FE-Joi nt,p=0.9 1.81| 2.88| 571| 14.62

Table 1: Clean, matched asPLI CE on AURORA 2.0 test set A,
averaged across N1-N4, WER(%).

Table 1 shows baselin8PLI CE andJoi nt systems’ perfor-
mance. The 256-compone8PLI CE systems approach matched
performance, significantly improving the poor clean systémin-
vestigate the effects of the floorimg from equation 5, oSPLI CE
with uncertainty, a range of values of were tried. Perforoeaat
the cited value olx = 0.1 in [2], can be improved slightly by
increasing it to 0.95. This can be compared against the-godt
Joi nt scheme. As expected, without flooripga vast number
of insertions occur. In contrast, this behaviour was nohsae
Resource Management [3] because of the constraining lgegua
model. Withp set to 0.9, the performance is now comparable to
the variousSPLI CE systems. Both these optimal flooring values
significantly reduce the uncertainty passed to the decoder.

Table 2 summarises the results of the model-bdsacht ap-
proach. The number and form of transforms were exploredrevhe
the diagonal transforms are similar to the front-end sclseams
contrasted with full matrix forms oA("”) and={”. A 16 trans-
form model-basedoi nt scheme performed slightly worse than
appropriately floored 256-component front-end schemes,abu
considerably less computational cost; with the same nuraber
diagonal transforms, the model-based system is superiali t§
the front-end systems examined. Moreover, using a fullsfiam
gave substantial gains. In low SNR, the 16 full transform etod
based system is better than matched. However as the vabase
is a full matrix, there is the impractical cost of performiagull
covariance matrix decode, compared to the diagonal cowzia
matched system. This does indicate an opportunity to olgain
cellent results using this model-baskai nt approach.

€

2.0 test set A, averaged across N1-N4, WER(%).

6. Conclusions

This paper has discussed important differences within tieen
tainty decoding framework between front-end and modettias
approaches. In the former, by only propagating a singleovect
of features and probabilities, during high noise the abititeffec-
tively discriminate can be lost. This causes insertionrsrito the
search if all models are rendered acoustically equivaléfith an-
other source for discrimination, such as a language mdusican
be less of an issue as it guides the search when the SNR is tbw an
uncertainty is high. This issue was explored on the AURORK ta
which practically has no language constraints, usingJtbent
form of uncertainty decoding, where it was found that flogrin
the correlation was beneficial, and t8BLI CE with uncertainty
form, which implicitly floors uncertainty parameters. Hoxee,
model-based schemes are not affected by this problem, thetice
ter results were obtained than in front-end systems withivaqu
lent numbers of parameters. The best system was the moskediba
Joi nt scheme with full matrix parameters; though this increases
the decoding computational cost, it does indicate the plesben-
efits of this framework. Major limitations of this paper atet
experiments are conducted on artificially corrupted dath as:
sume noise stationarity; however, recent work has explosétg
thisJoi nt form on found data such as Broadcast News [7].
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