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Introduction

In the last lecture we looked at Gaussian mixture models and
found that an iterative procedure could be used to estimate
the parameters of the Gaussian mixture model.

The iterative procedure for Gaussian Mixtures was a spe-
cific instance of the Expectation-Maximisation (EM) Algo-
rithm which can be applied in many cases when direct max-
imum likelihood parameter estimation is not possible with-
out knowledge of the values of hidden or latent variables. In
the case of the Gaussian mixture model the latent variable
determines which of the Gaussian mixture components is as-
sociated with each vector in the training set for the model.

In this lecture we will examine the

• mathematical basis of EM for Gaussian mixtures

• auxiliary functions

• an alternative general formulation of EM

• application of EM to continuous and discrete latent vari-
ables

The training data (for one class) will be

X = {x1, . . . ,xn}
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GMMs and FA

w
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z

x
Gaussian Mixture Model Factor Analysis

• Gaussian mixture models: these have the form

p(x) =
M
∑

m=1

cmN (x;µ(m),Σ(m))

this may be though as selecting a component from the
PMF (formed of the component priors). Given the se-
lected component w the observation is generated from
the specified Gaussian component.

• Factor analysis: this is best described in terms of a gener-
ative model

z ∼ N (0; I)

x = Cz +w, w ∼ N (0,Σ(w))

p(x) =

∫

p(x|z)p(z)dz

Here ∼ N (0,Σ) means distributed according to a multi-
variate Gaussian distribution of mean 0 and covariance
matrix Σ. The overall covariance matrix is given by

Σ = CC
′ +Σ

(w)
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Latent Variable Examples
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Jensen’s Inequality

One useful inequality, commonly used in the derivation of
the update formulae for mixture models, is Jensen’s inequal-
ity. It states that

f

(

M
∑

m=1

λmxm

)

≥
M
∑

m=1

λmf(xm)

where f() is any concave function and

M
∑

m=1

λm = 1, λm ≥ 0 m = 1, . . . ,M

This can be used in the derivation of the EM algorithm for
Gaussian mixture distributions.

f(x)

xa bc

A simple example is given above. Let c = (1−λ)a+λb. From
the diagram

f(c) = f((1− λ)a + λb) ≥ (1− λ)f(a) + λf(b)
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Jensen’s Inequality
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Log-Likelihood Training

D = {x1, · · · ,xn} ; L(θ) =
n
∑

i=1

log p(xi|θ)

L(θ) =
n
∑

i=1

log

(

M
∑

m=1

cmN (xi;µm,Σm)

)

6
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EM Mixture Updates

L(θ(k+1))− L(θ(k))

=
n
∑

i=1

log

(

1

p(xi|θ(k))

M
∑

m=1

(

p(xi,ωm|θ
(k+1))

)

)

=
n
∑

i=1

log

(

1

p(xi|θ(k))

M
∑

m=1

(

P (ωm|xi,θ(k))p(xi,ωm|θ(k+1))

P (ωm|xi, θ(k))

))

≥
n
∑

i=1

M
∑

m=1

P (ωm|xi,θ
(k))log

(

p(xi,ωm|θ(k+1))

p(xi|θ(k))P (ωm|xi, θ(k))

)

5
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Deriving the EM Mixture Updates

First consider a mixture distribution in which the parameter
values (means, covariances, component priors) are changed
from θ(k) on the kth iteration to θ(k+1) on the k + 1th iteration,
with changes in PDF from p(x|θ(k)) to p(x|θ(k+1)). The in-
crease in log likelihood is

L(θ(k+1))− L(θ(k) =
n
∑

i=1

log

(

p(xi|θ(k+1))

p(xi|θ(k))

)

For a mixture distribution, denoting the mth mixture compo-
nent as ωm,

L(θ(k+1))− L(θ(k))

=
n
∑

i=1

log

(

1

p(xi|θ(k))

M
∑

m=1

(

p(xi,ωm|θ(k+1))
)

)

=
n
∑

i=1

log

(

1

p(xi|θ(k))

M
∑

m=1

(

P (ωm|xi,θ
(k))p(xi,ωm|θ(k+1))

P (ωm|xi,θ
(k))

))

Since log() is strictly concave we can use Jensen’s Inequality
which states that if λm ≥ 0 and

∑

m λm = 1

log

(

M
∑

m=1

λmxm

)

≥
M
∑

m=1

λm log (xm)

Now using the numerator P (ωm|xi,θ
(k)) as λm gives

L(θ(k+1))− L(θ(k)) ≥
n
∑

i=1

M
∑

m=1

P (ωm|xi,θ
(k))log

(

p(xi,ωm|θ(k+1))

p(xi|θ(k))P (ωm|xi,θ
(k))

)
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Auxilliary Function

L(θ(k+1))− L(θ(k)) ≥ Q(θ(k),θ(k+1))−Q(θ(k),θ(k))

where

Q(θ(k),θ(k+1)) =
n
∑

i=1

M
∑

m=1

P (ωm|xi,θ
(k)) log

(

p(xi,ωm|θ
(k+1))

)

7
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Auxiliary Functions

This inequality can be written as

L(θ(k+1))− L(θ(k)) ≥ Q(θ(k),θ(k+1))−Q(θ(k),θ(k))

where

Q(θ(k),θ(k+1)) =
n
∑

i=1

M
∑

m=1

P (ωm|xi,θ
(k)) log

(

p(xi,ωm|θ(k+1))
)

which is known as the auxiliary function (more on this later).

So in other words, the difference

Q(θ(k),θ(k+1))−Q(θ(k),θ(k))

gives a lower bound on the increase in the log likelihood.
Given that Q(θ(k),θ(k)) depends only on the old parameters,
then if we maximise the value of Q(θ(k),θ(k+1)) the value of
the log likelihood lower bound will also be maximised.

To maximise, find the derivatives of Q(θ(k),θ(k+1)) with re-
spect to the new parameters and equate to zero, noting that
for the case of the component priors (mixture weights) again
a Lagrange multiplier solution is needed. It can also be shown
that the maximum that is found here is a global maximum of
the auxiliary function.

This leads to the update equations for the mixture parame-
ters presented earlier
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EM Example

Data generated from the following GMM:

x ∼ 0.4×N (1, 1) + 0.6×N (−1, 1)

Initial estimate of the model parameters is

x(0) ∼ 0.4×N (0.5, 1) + 0.6×N (−1, 1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Log−Likehood
Auxilliary  

Plot shows the variation of the log-likelihood difference and
auxiliary function difference as the estimate of the mean of
component 1

• auxiliary function difference always a lower-bound

• peak of auxiliary function about 0.8

• peak of log-likelihood function 1.0

• gradient at current value (0.5) same for both

How tight is the lower bound?
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EM Example
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Doughnut Data
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Kullback-Leibler Divergence

A related derivation uses properties of the Kullback-Leibler
divergence between two PDFs. Consider two PDFs, p(x) and
q(x). Looking at the relative entropy, or Kullback-Leibler di-
vergence, KL(p(x)||q(x)),

KL(p(x)||q(x)) =

∫

p(x) log

(

p(x)

q(x)

)

dx

= −
∫

p(x) log

(

q(x)

p(x)

)

dx

Using log(y) ≤ y − 1, we can write
∫

p(x) log

(

q(x)

p(x)

)

dx ≤
∫

p(x)

(

q(x)

p(x)
− 1

)

dx

=

∫

(q(x)− p(x)) dx

= 0

This gives the following inequality
∫

p(x) log (p(x)) dx ≥
∫

p(x) log (q(x)) dx

Similarly for the discrete version
∑

∀x
P (x) log (P (x)) ≥

∑

∀x
P (x) log (Q(x)) dx

where Q(x) and P (x) are valid PMFs. It directly follows from
these inequalities that

KL(p(x)||q(x)) ≥ 0
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KL Divergence

KL(p(x)||q(x)) =

∫

p(x) log

(

p(x)

q(x)

)

dx

= −

∫

p(x) log

(

q(x)

p(x)

)

dx

8
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KL Divergence for Gaussians

For the case of two Gaussian distributions the KL divergence
has a simple closed form solution. Consider

p(x) = N (x;µ1,Σ1)

q(x) = N (x;µ2,Σ2)

Then the KL divergence between the two is given by

KL(p(x)||q(x)) =
1

2

(

tr(Σ−1
2 Σ1 − I) + (µ1 − µ2)

′
Σ

−1
2 (µ1 − µ2)

+ log

(

|Σ2|
|Σ1|

))

For a simple example where

p(x) = N (x; 0, 1)

q(x) = N (x;µ, 1)

Then the plot as we vary µ is given by

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
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Expectation Maximisation

EM is a general iterative optimisation technique. We would
like a new estimate so that for the parameters at the k + 1th

iteration

L(θ(k+1)) ≥ L(θ(k))

Alternatively we aim to ensure that

L(θ(k+1))− L(θ(k)) ≥ 0

Consider the situation where the likelihood of the observa-
tions can be expressed in terms of a set of latent variables Z.
Thus

log(p(X|θ(k))) = log

(

∑

∀Z

p(X,Z|θ(k))

)

For the GMM case the latent variable is the component ωk.

The form of auxiliary function for this general case is

Q(θ(k),θ(k+1)) =
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

The continuous latent variable case version is

Q(θ(k),θ(k+1)) =

∫

p(Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

dZ

With these functions it is possible to show (notes at back)

L(θ(k+1))− L(θ(k)) ≥ Q(θ(k),θ(k+1))−Q(θ(k),θ(k))
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Optimisation Example

1

(k+1)θ(k) θ θQ l

L − L2

Q − Q2 1

θ

The diagram above illustrates the optimisation. The graph
shows two lines,

Q(θ(k),θ(k+1))−Q(θ(k),θ(k)), L(θ(k+1))− L(θ(k))

The maxima of the two lines occur at θQ and θl

Using the value at θQ does yield an increase in the log-likelihood,
but has not hit the maximum value. It is necessary to iterate
to find a local maximum of the likelihood. In common with
gradient descent schemes EM is only guaranteed to find a
local, not global, maximum of the likelihood function.
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How Tight is the Bound?

An interesting question is how tight is the bound -
(

L(θ(k+1))− L(θ(k))
)

−
(

Q(θ(k),θ(k+1))−Q(θ(k),θ(k))
)

The tighter the bound the better!

It can be shown (see end of slides) that
(

L(θ(k+1))− L(θ(k))
)

=
(

Q(θ(k),θ(k+1))−Q(θ(k),θ(k))
)

+KL
(

P (Z|X,θ(k))||P (Z|X,θ(k+1))
)

The difference (how tight the bound) is the KL-divergence.

1

(k+1)

KL()

θ(k) θ θQ l

L − L

Q − Q2 1

2

θ
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Size of the “Bound”

1

(k+1)

KL()

θ(k) θ θQ l

L − L

Q − Q2 1

2

θ
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Hidden Variables

The set of variables Z are called hidden or latent variables.
They may be discrete variable (for example in mixture mod-
els), or continuous (for example in Factor Analysis).

The set of data {Z,X} is sometimes referred to as the com-
plete dataset. It consists of the observed data X (the feature
vectors) and unobserved data Z (the hidden variables).

The nature of the latent variable is highly important. It must
be selected so that:

• given the complete dataset {Z,X} it is simple to optimise
Q(θ(k),θ(k+1)) with respect to θ(k+1);

• the difference between the likelihoods and auxiliary func-
tion increases is small (a tight bound). The difference is
given by

KL
(

P (Z|X,θ(k))||P (Z|X,θ(k+1))
)

The increase in the auxiliary function is a lower-bound
on the increase in the log-likelihood, the tighter the bound
the better.

In practise the ability to optimise the auxiliary function is
more important. The second consideration affects the rate
of convergence of the algorithm.
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EM Optimisation

We have seen that simply maximising the auxiliary function
does not (in general) take us to the ML solution we need to
iterate. From the definition of the auxiliary function

Q(θ(k),θ(k+1)) =
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

EM can be seen to have two stages:

1. Expectation: given the current set of parameters θ(k) cal-
culate the posterior PMF of the latent variable, P (Z|X,θ(k)).
Given this distribution calculate the expected value of
log-likelihood of the complete dataset in terms of the new
model parameters, θ(k+1),

Q(θ(k),θ(k+1)) =
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

= E
{

log
(

p(X,Z|θ(k+1))
)

|X,θ(k)
}

where the expectation is over the distribution of the la-
tent variables, Z, given the current model parameters.
The auxiliary function is only a function of the new pa-
rameters θ(k+1).

2. Maximisation: maximise the value of the auxiliary func-
tion, Q(θ(k),θ(k+1)), with respect to θ(k+1).

One major issue is that some initial set of model parameters
θ(0) are required. If there are many local maxima then EM
will only find a local, not global, maximum. Which maxima
is obtained depends on the choice of the initial parameters.
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Mixture Models

Mixture models of a particular family of distributions are
very well suited for estimation using EM (e.g. Gaussian,
Poisson etc). For mixture models the hidden variable is which
component of the mixture should be associated with each
training vector.

We will use a discrete hidden variable to indicate which of
the components of the mixture model generated an observa-
tion:

zij =

{

1 observation xi was generated by component ωj

0 otherwise

If we look at a single point xi and know that it was generated
by component ωj, then we can write

p(zi,xi|θ) = p(xi|ωj,θj)P (ωj) =
M
∏

m=1

[p(xi|ωm,θm)P (ωm))]
zim

As all the data points are independent then the hidden vari-
ables associated with the data points will also be indepen-
dent of one another. The auxiliary function now becomes

Q(θ(k),θ(k+1)) =
M
∑

m=1

[

n
∑

i=1

P (ωm|xi,θ
(k)) log

(

p(xi|ωm,θ
(k+1)
m )

)

]

+
M
∑

m=1

[

n
∑

i=1

P (ωm|xi,θ
(k)) log

(

P (k+1)(ωm)
)

]
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Gaussian Mixture Models Revisited

For Gaussian Mixture Models (or mixtures of Gaussians), the
log likelihood for component ωm (d-dimensional data) is

log (p(x;µm,Σm)) = −1

2

(

log((2π)d|Σm|) + (x− µm)
′
Σ

−1
m (x− µm)

)

The auxiliary function may be written as

Q(θ(k),θ(k+1))

=
M
∑

m=1

[

n
∑

i=1

P (ωm|xi,θ
(k))

(

−1

2
(xi − µ̂m)

′
Σ̂

−1

m (xi − µ̂m)

)

]

+
M
∑

m=1

[

n
∑

i=1

P (ωm|xi,θ
(k))

(

−1

2
log((2π)d|Σ̂m|)

)

]

+
M
∑

m=1

[

n
∑

i=1

P (ωm|xi,θ
(k)) log

(

P (k+1)(ωm)
)

]

where µ̂m and Σ̂m are the mean and covariance matrix of
component ωm at iteration k + 1.
This yields the re-estimation formulae for the mean and co-
variance matrix of component ωj

µ̂j =

∑n
i=1 P (ωj|xi,θ

(k))xi
∑n

i=1 P (ωj|xi,θ
(k))

Σ̂j =

∑n
i=1 P (ωj|xi,θ

(k))(xi − µ̂j)(xi − µ̂j)
′

∑n
i=1 P (ωj|xi,θ

(k))
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Simple Continuous Latent Variable

Given n noisy measurements x1, . . . , xn, with the noise known
to be zero mean and unit variance, and that the “true” data
is Gaussian distributed with variance σ2. What is the mean,
µ of the true data? From the question we know that

xi = ti + z, z ∼ N (0, 1)

ti is the true data at i.

As the noise is independent of the observation, and the sum
of two Gaussian distributed variables is Gaussian distributed,
we therefore know that

p(xi|θ) = N (xi;µ, σ
2 + 1)

Could directly find the ML estimate for the parameters, but
what about using EM?

First the choice of the latent variable need to be made. In this
case the value of the noise at each time instance can be used.
Let the hidden variable be the noise value for a particular
observation, zi. So

p(xi|zi, θ) = N (xi;µ + zi, σ
2)
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Auxiliary Function

The form of the auxiliary function is required

Q(θ(k), θ(k+1)) =

∫

p(Z|X, θ(k)) log
(

p(X,Z|θ(k+1))
)

dZ

=
n
∑

i=1

∫

p(zi|xi, θ(k)) log
(

p(xi, zi|θ(k+1))
)

dzi

where the new estimate of the parameters is θ(k+1) and the
old estimate θ(k).

We first need to compute the posterior p(zi|xi, θ(k))

p(zi|xi, θ(k)) =
p(xi|zi, θ(k))p(zi)

p(xi|θ(k))

= N
(

zi;
(xi − µ(k))

(1 + σ2)
,

σ2

(1 + σ2)

)

So writing down the auxiliary function

Q(θ(k), θ(k+1)) =
n
∑

i=1

∫

p(zi|xi, θ(k)) log(p(xi|zi, θ(k+1)))dzi

+
n
∑

i=1

∫

p(zi|xi, θ(k)) log(p(zi))dzi

The second term is not dependent on the new model param-
eters, the distribution of zi is known.
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Maximisation

Only the first term is needed

Q̃(θ(k), θ(k+1)) =
n
∑

i=1

∫

p(zi|xi, θ(k)) log(p(xi|zi, θ(k+1)))dzi

=
n
∑

i=1

∫

p(zi|xi, θ(k))
[

log

(

1√
2πσ2

)

− (xi − zi − µ(k+1))2

2σ2

]

dzi

=
n
∑

i=1

[

log

(

1√
2πσ2

)

−

(xi − µ(k+1))2 − 2(xi − µ(k+1))E{zi|θ(k), xi} + E{z2i |θ(k), xi}
2σ2

]

We know that

E{zi|θ(k), xi} =
(xi − µ(k))

(1 + σ2)

E{z2i |θ(k), xi} =
σ2

(1 + σ2)
+

(

(xi − µ(k))

(1 + σ2)

)2

Differentiating with respect to µ̂ gives

∂Q̃(θ(k), θ(k+1))

∂µ(k+1)
=

n
∑

i=1

1

σ2

(

xi − µ(k+1) − E{zi|θ(k), xi}
)

so

µ(k+1) =
1

n

n
∑

i=1

(

xi −
(xi − µ(k))

(1 + σ2)

)

=
1

n

n
∑

i=1

(σ2xi + µ(k))

(1 + σ2)

In this case the standard ML estimation for this problem is
trivial, but the above should illustrate the use of EM.
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Optimisation Example
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Optimisation

Take the example where the true data has a mean of 1 and a
variance of 1. The initial estimate of the mean is 0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0
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Log−Likehood
Auxilliary  

The above diagram shows the difference in the log-likelihood
and auxiliary function at this first iteration.
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The above diagram shows the change in estimate of the mean.
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Variational Approaches

So far assumed that it is possible to compute P (Z|X,θ(k)).

sometimes intractable!

An alternative way of expressing the likelihood is

L(θ) =
∫

P (Z|X,θ) log

(

p(Z,X|θ)
P (Z|X,θ)

)

dZ

Simple to show using KL-divergence that

L(θ) ≥
∫

P (Z|X,θ(k)) log

(

p(Z,X|θ)
P (Z|X,θ(k))

)

dZ

Standard auxiliary function.

Introduce a general function of the latent variable q(Z,θ(k)).
Again from KL-divergence

L(θ) ≥
∫

q(Z,θ(k)) log

(

p(Z,X|θ)
q(Z,θ(k))

)

dZ

Variational auxiliary function

• no need to compute P (Z|X,θ(k))

• but not guaranteed to increase likelihood



4F10: Statistical Pattern Processing

Variational EM

L(θ(k)) =

∫

P (Z|X,θ(k)) log

(

p(Z,X|θ(k))

P (Z|X,θ(k))

)

dZ

≤

∫

P (Z|X,θ(k)) log

(

p(Z,X|θ(k+1))

P (Z|X,θ(k))

)

dZ ≤ L(θ(k+1))

L(θ(k)) ≥

∫

q(Z,θ(k)) log

(

p(Z,X|θ(k))

q(Z,θ(k))

)

dZ

≤

∫

q(Z,θ(k)) log

(

p(Z,X|θ(k+1))

q(Z,θ(k))

)

dZ ≤ L(θ(k+1))

6
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EM Proof/Bound Tightness (slide 9)

Interested in ensuring that

L(θ(k+1)) ≥ L(θ(k))

From the definition of a PMF we can write

log(p(x|θ(k+1)))− log(p(X|θ(k))) =
∑

∀Z

P (Z|X,θ(k))
(

log(p(X|θ(k+1)))− log(p(X|θ(k)))
)

since
∑

∀Z

P (Z|X,θ(k)) log(p(X|θ(k+1))) = log(p(X|θ(k+1)))
∑

∀Z

P (Z|X,θ(k))

= log(p(X|θ(k+1)))

From the definition of conditional probability

p(X|θ(k+1)) =
p(Z,X|θ(k+1))

P (Z|X,θ(k+1))

so
∑

∀Z

P (Z|X,θ(k)) log(p(X|θ(k+1))) =

∑

∀Z

P (Z|X,θ(k)) log

(

p(X,Z|θ(k+1))

P (Z|X,θ(k+1))

)

and similarly for the second term.
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EM Proof (cont)

We can now write

L(θ(k+1))− L(θ(k)) =
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

−
∑

∀Z

P (Z|X,θ(k)) log
(

P (Z|X,θ(k+1))
)

−
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k))
)

+
∑

∀Z

P (Z|X,θ(k)) log
(

P (Z|X,θ(k))
)

From the discussion about the KL-divergence

KL(P (Z|X,θ(k))||P (Z|x,θ(k+1))) =
∑

∀Z

P (Z|X,θ(k)) log

(

P (Z|X,θ(k))

P (Z|X,θ(k+1))

)

≥ 0

So it follows that

L(θ(k+1))− L(θ(k)) ≥
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

−
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k))
)

where the difference between the left and right-hand sides is
the KL divergence given above.
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EM Proof (cont)

If we can ensure that the right-hand size is positive then the
left-hand side must also be positive. So EM states that if

∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

≥

∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k))
)

then

L(θ(k+1)) ≥ L(θ(k))

It is common to define the auxiliary function as

Q(θ(k),θ(k+1)) =
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

and for the continuous version

Q(θ(k),θ(k+1)) =

∫

p(Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

dZ

Thus the auxiliary function is the expected value of the log
likelihood of the joint distribution of Z and X.

Note that if the auxiliary function increases then the likeli-
hood is guaranteed increase, i.e. if

Q(θ(k),θ(k+1)) ≥ Q(θ(k),θ(k))

then

L(θ(k+1)) ≥ L(θ(k))
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Mixture Model Expectation (slide 14)

As mentioned in the expectation stage we need to compute
P (Z|X,θ(k)). As all the observations are independent we
need only consider P (zi|xi,θ

(k)), where

Z = {z1, . . . , zn} , zi =

⎡

⎣

zi1
...

ziM

⎤

⎦

As the observations are independent

p(Z,X|θ) =
n
∏

i=1

p(zi,xi|θ)

Recall that we will need the probability that the observation
xi was generated by component ωj, which we saw before
may be simply written as

P (ωj|xi,θ
(k)) =

p(xi|ωj,θ
(k)
j )P (k)(ωj)

∑M
m=1 p(xi|ωm,θ

(k)
m )P (k)(ωm)

This will use the fact that

n
∑

i=1

∑

∀zi

P (zi|xi)
M
∑

m=1

zim log(p(xi|ωm)) =

M
∑

m=1

[

n
∑

i=1

P (ωm|xi) log(p(xi|ωm))

]
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Mixture Model Maximisation

Now we need to maximise the auxiliary function, Q(θ(k),θ(k+1)).
This may be written as

Q(θ(k),θ(k+1)) =
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

=
n
∑

i=1

∑

∀zi

P (zi|xi,θ
(k)) log

(

p(xi, zi|θ(k+1))
)

=
n
∑

i=1

∑

∀zi

P (zi|xi,θ
(k))

M
∑

m=1

zim log
(

p(xi|ωm,θ
(k+1)
m )

)

+
n
∑

i=1

∑

∀zi

P (zi|xi,θ
(k))

M
∑

m=1

zim log
(

P (k+1)(ωm)
)

=
M
∑

m=1

[

n
∑

i=1

P (ωm|xi,θ
(k)) log

(

p(xi|ωm,θ
(k+1)
m )

)

]

+
M
∑

m=1

[

n
∑

i=1

P (ωm|xi,θ
(k)) log

(

P (k+1)(ωm)
)

]

Compare this to the ML estimation of the parameters of a
single Gaussian PDF

L(θ) =
n
∑

i=1

log (p(xi|θ))

So, as we saw before, in EM we simply weight each of the ob-
servations log-likelihoods according to the hidden variable
PMF.
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Maximisation Details

Here is a more detailed derivation for the previous slide. Us-
ing the fact that the observations and latent variables for each
training example are independent of one another, so

p(Z,X|θ) =
n
∏

i=1

p(zi,xi|θ)

Then note that summing over all Z that have a specific value
for zi
∑

Z:zi∈Z
P (Z|X,θ(k))f(zi) =

∑

Z:zi∈Z
f(zi)

n
∏

j=1

P (zj|xj,θ
(k))

= P (zi|xi,θ
(k))f(zi)

n
∏

j ̸=i

⎛

⎝

∑

∀zj

P (zj|xj,θ
(k))

⎞

⎠

= P (zi|xi,θ
(k))f(zi)

The following set of equalities can be written

Q(θ(k),θ(k+1)) =
∑

∀Z

P (Z|X,θ(k)) log
(

p(X,Z|θ(k+1))
)

=
∑

∀Z

P (Z|X,θ(k))
n
∑

i=1

log
(

p(xi, zi|θ(k+1))
)

=
n
∑

i=1

∑

∀zi

∑

Z:zi∈Z
P (Z|X,θ(k)) log

(

p(xi, zi|θ(k+1))
)

=
n
∑

i=1

∑

∀zi

P (zi|xi,θ
(k)) log

(

p(xi, zi|θ(k+1))
)


