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Introduction

In the previous lectures generative models with Gaussian
and Gaussian mixture model class-conditional PDFs were dis-
cussed. For mixtures models a linear combination of multi-
variate Gaussian distributions were used, where the weights
(priors) used to combine the likelihoods were trained and
fixed. In this lecture more general forms of combining infor-
mation (distributions/classifiers) together will be discussed.
Rather than referring to component distributions (as in the
GMM) more general experts will be discussed. Two varia-
tions this form of model are possible: mixtures and products
of experts.

In mixtures of experts (MoEs) the weights used to combine
the experts is a function, the gating function, of the obser-
vation. Thus, the weight can vary from observation to ob-
servation. It is possible to combine classifier outputs from
discriminative and generative models.

The second alternative is a product of experts (PoEs). Here
rather than adding likelihood values, the values of the like-
lihoods are producted together and then normalised to yield
the final values. This can be related to taking a geometric
mean rather than an arithmetic mean.

Both these approaches will be discussed in this lecture.
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Mixture of Experts

From the previous lecture the general form for the Mixture
Model was

p(x|θ) =
M
∑

m=1
p(x, ω̃m|θm) =

M
∑

m=1
cmp(x|ω̃m,θm)

where ω̃m indicates the component

cm = P (ω̃m)

The equivalent general form for the Mixture of Experts for
classification is

P (ω|x,θ) =
M
∑

m=1
P (ω̃m,ω|x,θ)

=
M
∑

m=1
P (ω̃m|x,θ)P (ω|x,θm)

where ω̃m indicates the expert and ω indicates the class.

The gating function, that gives P (ω̃m|x,θ) must yield a valid
PMF for all observations x

M
∑

m=1
P (ω̃m|x,θ) = 1; P (ω̃m|x,θ) ≥ 0
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Mixture of Experts Structure
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The diagram shows a simple two expert mixture of experts
(MoEs). The gating function effectively determines the con-
tribution that each of the experts should make, given knowl-
edge of the input vector x.

When specifying an MoE it is necessary to define the form
and be able to train the:

• gating function

• expert

The exact form will vary from task to task.
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Softmax Gating Functions

We have already come across a form of function that is appro-
priate as a gating function. It is guaranteed to yield a valid
PMF for all observations.
For the two class problem - the sigmoid is one option.
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For multiple class, a softmax function can be used. This can
be written as

P (ω̃m|x,θ) =
exp(b′mx + cm)

∑M
m=1 exp(b

′
mx + cm)

It is simple to see that for this case when bm = 0 for all com-
ponents the gating function is independent of the observa-
tions. It then becomes the equivalent of the standard mixture
model.
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Mixture of Experts for Regression

A standard example of the use MoEs is regression. Here
given some observation x we need to predict a continuous
valued output y. If the regression task can be split into dis-
tinct regions it may be better to use multiple experts, rather
than one complicated one.

Consider the simple linear regression case an expert predicts
the output y given an observation x

ŷ = µ′x

If the error on this predictor is assumed to be Gaussian dis-
tributed with variance σ2 then

p(y|x,µ, σ2) = N (y;µ′x, σ2)
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Mixture of Experts for Regression

Now consider the more complicated form
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Using a MoE for prediction with a gating function

P (ω̃1|x,θ) =

⎧

⎪

⎨

⎪

⎩

1; x ≤ 1
0; otherwise
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Training MoEs

To train a MoE for regression two forms and sets of parame-
ters need to be determined:

1. Gating function: how to partition/smooth the space given
the observation x;

2. Expert: for each partition what predictor should be used.

For the simple linear predictor with Gaussian noise (the same
variance is shared over all predictors) with a softmax gating
function, the overall likelihood can be expressed as

p(y|x,θ) =
M
∑

m=1
P (ω̃m|x,θ)p(y|x,µm)

=
M
∑

m=1

⎛

⎜

⎝

exp(b′mx + cm)
∑M
m=1 exp(b

′
mx + cm)

⎞

⎟

⎠N (y;µ′
mx, σ

2
I)

where

N (y;µ′
mx, σ

2
I) =

1

(2πσ2)1/2
exp

⎛

⎜

⎝

−(y − µ′
mx)

2

2σ2

⎞

⎟

⎠

This has similar form to the standard mixture model, except
that the prior (component weight) is a function (softmax) of
the observation.
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Maximum Likelihood Training

To train the predictor/regression supervised,N data samples
are assumed to be available of the form

D = {{x1, y1}, {x2, y2}, . . . , {xN, yN}}

Maximum likelihood training can be used to estimate the pa-
rameters of the MoE model. Again the log-likelihood is usu-
ally optimised:

L(θ) =
N
∑

i=1
log(p(yi|xi,θ))

The model parameters for each expert m are

1. expert: comprises the predictor µm and the (shared) vari-
ance term σ2

2. gating function: {bm, cm}

One option is to use gradient descent based approaches - re-
quire:

∇L(θ) = 0

In the same fashion as standard mixture models this has no
closed-from solution. Alternative is to use EM in the same
fashion as the training of mixture models.
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Expectation Maximisation

The auxiliary function has the same form as the standard
mixture case discussed in the previous lecture. Thus

Q(θ(k),θ(k+1)) =
N
∑

i=1

M
∑

m=1

P (ω̃m|yi,xi,θ
(k))

[

log(P (ω̃m|xi,θ
(k+1))) + log(p(yi|xi, ω̃m,θ

(k+1)))
]

This has split the optimisation into two distinct parts

• Expert: this is the standard optimisation discussed in the
previous lecture. For each expert m need to maximise:

N
∑

i=1
P (ω̃m|yi,xi,θ

(k)) log(p(yi|xi, ω̃m,θ
(k+1)))

This is exactly the same as the standard optimisation prob-
lem for EM.

• Gating function: Need to maximise:

N
∑

i=1

M
∑

m=1
P (ω̃m|yi,xi,θ

(k)) log(P (ω̃m|xi,θ
(k+1)))

where for the sigmoidal case

P (ω̃m|xi,θ) =
exp(b′mxi + cm)

∑M
m=1 exp(b

′
mxi + cm)

Unlike the expert this cannot be split into individual com-
ponent optimisations. However it looks like a weighted
version of logistic regression optimisation from 3F3. This
will be further examined later in the course.
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Expert Posteriors

When we previously examined EM for Gaussian mixture mod-
els the posterior probabilities were defined as P (ω̃m|x,θ) -
this is now given by the gating function! The important dif-
ference for training MoEs for regression is that the posterior
of interest is based on both the input observation and the out-
put regression value.

When training MoEs the posterior we are interested in is
given by

P (ω̃m|yi,xi,θ
(k)) =

p(yi, ω̃m|xi,θ
(k))

∑M
j=1 p(yi, ω̃j|xi,θ

(k))

Consider just the numerator terms

p(ω̃m, yi|xi,θ
(k)) = P (ω̃m|xi,θ

(k))P (yi|ω̃m,xi,θ
(k))

= P (ω̃m|xi,θ
(k))N (yi,x

′
iµm, σ

2)

Two different posteriors for the expert

1. training (EM): P (ω̃m|yi,xi,θ
(k))

2. gating: P (ω̃m|xi,θ
(k))

To emphasise this difference the posterior from the gating
function is sometimes referred to as the prior.
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Mixture of Experts for Classification

Instead of using a mixture of expert framework for predic-
tion it can also be used to combine multiple classifiers.

Here the gating function varies the contribution of the classi-
fier to decision boundary

P (ω|x,θ) =
M
∑

m=1
P (ω̃m|x,θ)P (ω|x,θm)

where ω̃m indicates the expert and ω indicates the class.
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What About Gaussian Experts?

The original example of a mixture model was the Gaussian
mixture model which was a valid probability density func-
tion. Rather than using a fixed prior what happens if a gating
function is used?

For the case of likelihood experts - applying this form yields

p(x|θ) ∝
M
∑

m=1
P (ω̃m|x,θ)p(x|ω̃m,θm)

The likelihood is only proportional to mixture of experts as
generally the product of two probabilities does not yield a
valid distribution (without appropriate normalisation).

This is simple to see from the terms in the summation

P (ω̃m|x,θ)p(x|ω̃m,θm)

This cannot be expressed as a joint distribution.

The value of the normalisation term can be found by inte-
grating over all possible values of x as usual. Unfortunately
for many situations this is not simple.
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Product of Experts

Rather than using a mixture, sum, of the likelihood the prod-
uct can also be used. This has exactly the same problem as
the previous slide. Thus

p(x|θ) =
1

Z

M
∏

m=1
p(x|θm)

λm

=
1

Z
exp

⎛

⎝

M
∑

m=1
λm log(p(x|θm))

⎞

⎠

where

Z =
∫

exp
⎛

⎝

M
∑

m=1
λm log(p(x|θm))

⎞

⎠ dx

to ensure that this is a valid PDF.
There are again two forms of parameter associated with this
model

1. λm: the weight associated to the expert

2. p(x|θm): nature of the expert

It is also possible to use product of experts for classifiers

P (ω|x,θ) =
1

Z

M
∏

m=1
P (ω|x,θm)

λm

Here the normalisation term is required to yield a valid PMF

Z =
∑

ω

⎛

⎝

M
∏

m=1
P (ω|x,θm)

λm

⎞

⎠
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Gaussian Distributions

Conditional Gaussian distribution:
Consider the joint distribution between vectors x1 and x2

⎡

⎢

⎣

x1

x2

⎤

⎥

⎦ ∼ N

⎛

⎜

⎝

⎡

⎢

⎣

µ1

µ2

⎤

⎥

⎦ ,

⎡

⎢

⎣

Σ11 Σ12

Σ21 Σ22

⎤

⎥

⎦

⎞

⎟

⎠

We are interested in the conditional distribution, which itself
is Gaussian

x1|x2 ∼ N (µ1|2,Σ1|2)

where

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2)

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21

Product of Gaussian distributions:
Consider the two distributions

p1(x) = N (x;µ1,Σ1), p2(x) = N (x;µ2,Σ2)

The product is an un-normalised Gaussian

p1(x)p2(x) ∝ N (x;µ,Σ)

where

µ = Σ(Σ−1
1 µ1 +Σ

−1
2 µ2)

Σ =
(

Σ
−1
1 +Σ

−1
2

)−1
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Mixtures and Product of Gaussians
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Product of Gaussians

From the previous slides producting Gaussians together yields
a Gaussian. For the general case of producting M multivari-
ate Gaussian distributions together (setting λm = 1)

p(x|θ) =
1

Z

M
∏

m=1
N (x;µm,Σm)

Using the equalities from the previous slide it is possible to
find the parameters of the producted Gaussian

µ = Σ

⎛

⎝

M
∑

m=1
Σ

−1
m µm

⎞

⎠

Σ =
⎛

⎝

M
∑

m=1
Σ

−1
m

⎞

⎠

−1

It is then easy to show that the appropriate normalisation
term is (see examples paper)

Z =
∏M
m=1(2π)

d/2|Σm|1/2

(2π)d/2|Σ|1/2

The Gaussian normalisation terms for the individual experts
are cancelled by the normalisation term, they can be ignored.
In this case the Gaussians are effectively a set of exponential
experts.
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Product of Gaussian “Pancakes”

From the previous slide if full covariance models are used
then there is no advantage of a product of Gaussians. How-
ever is is not necessary for individual experts to be valid
PDFs, provided that the overall, producted, distribution is
a valid PDF.

This is simply illustrated by considering two Gaussian ex-
perts each only modelling one dimension. Thus the experts
for observation x = [x1, x2]′

dimension 1 N (x1;µ1, σ2
1)

dimension 2 N (x2;µ2, σ2
2)

A product of expert system then becomes

p(x|θ) =
1

(2πσ1σ2)

2
∏

i=1
exp

⎛

⎜

⎝−
(xi − µi)2

2σ2
i

⎞

⎟

⎠

This is a diagonal covariance matrix multivariate Gaussian.

More generally consider exponential experts of the form

exp
⎛

⎝−
1

2
(x− µm)

′
Λm(x− µm)

⎞

⎠

The resultant covariance matrix of the M experts is

Σ
−1 =

⎛

⎝

M
∑

m=1
Λm

⎞

⎠

This is a valid PDF if Σ is of full rank
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Training PoEs

Products of experts can be trained using maximum likeli-
hood. Thus

L(θ) =
N
∑

i=1
log(p(xi|θ))

=
N
∑

i=1

⎡

⎣− log(Z) +
M
∑

m=1
λm log(p(xi|θm))

⎤

⎦

The second term in the above expression is the standard log-
likelihood, weighted by λm. Unfortunately the first term is
problematic.

Consider the simple case of Gaussian experts. Here

Z =
∏M
m=1(2π)

d/2|Σm|1/2

(2π)d/2|Σ|1/2

The means of the Gaussian experts is exactly the same as the
standard Gaussian

∇µ =
N
∑

i=1
λmΣ

−1
m (xi − µm)

If full covariance matrices are used for the Gaussians - the
final distribution is Gaussian - no need to estimate the in-
dividual experts. If the experts are pancakes then gradient
descent can be used.

So far we have assumed that it is possible to get an analytical
solution to the normalisation tern, not always true. How to
estimate the model parameters if it is not possible to find Z?
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Summary

This lecture has described two modifications to the mixture
models described in the previous lectures

• Mixture of Experts (MoEs): the component prior is spec-
ified by a gating function (a function of the observation
x). This allows for example different experts to be spec-
ified (and combined) in different regions of observation
space.

• Product of Experts (PoEs): rather than adding the likeli-
hoods together as in the mixture model, likelihoods are
producted and the resultant value normalised to yield a
valid PDF.

One issue observed with PoE is that training can be problem-
atic because of the normalisation term. The next lecture will
discuss approaches for training models where it is not possi-
ble to get analytic expressions for the normalisation term.


