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Reference - Error Back Propagation

Consider a multi-layer perceptron with:
¢ d-dimensional input data;
e [ hidden layers (L + 1 layer including the output layer);
e N units in the k! level;

e K-dimensional output.

Activation

X(lk) - function
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The following notation will be used
e =% is the input to the k' layer
e ¥ is the extended input to the k" layer
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e W is the weight matrix of the k" layer. By definition
thisisa N x N* =D matrix.
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Notation (cont)

e W) is the weight matrix including the bias weight of the
k'" layer. By definition this is a N*) x (N*~1 + 1) matrix.

W — [ W) p® |

e z(") is the N*)-dimensional vector defined as

0 _ i) 50
e y*) is the output from the k" layer, so
k i
)’ = o(z")

All the hidden layer activation functions are assumed to be
the same ¢(). Initially we shall also assume that the output
activation function is also ¢().

The following matrix notation feed forward equations may
then used for a multi-layer perceptron with input  and out-

put y(x).
1

V) = x

2 = g
LB Y40
y* = ¢(z")
y(x) = y

where 1 < k< L + 1.

The target values for the training of the networks will be de-
noted as ¢ for training example x.
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Error Back Propagation Algorithm

Need to calculate % for all layers, k, and all rows and columns
i

of W), Applying the chain rule

OE  OE 92" ()
owt 9N oal)

ij
where
or

92"
and the 4’s are sometimes known as the individual “errors”
(that are back-propagated).

For the output nodes the evaluation of ¢; is straightforward

as we saw for the single layer perceptron.

To evaluate the ¢,’s for hidden layers
OF 0zlF+1)

Ozt 92

where it is assumed that only the units in layer £ + 1 are con-

nected to units in layer k, or

_ 5%
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Note that all that is being done here is evaluating the differ-
entials of the error at the output with respect to the weights
throughout the network by using the chain rule for partial
derivatives.
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Matrix Formulation

In matrix notation we can write
oF

S () PV
owi 0 °
We need to find a recursion for 6.
OF
(k) _
0 = az(k>>

Oz OF
— oz ) (82("7“))
_(oy®) (920D o
Ozk) 8y(k)

But we know from the forward recursions
Oz k+1) Oz F+1)

_ (k+1)
oy~ ggln WY

This yields the recursion

5B — AR EF1Y g0+1)
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Matrix Formulation (cont)

Define the activation derivative matrix for layer % as

(k)
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This has given a matrix form of the backward recursion for
the error back propagation algorithm.

We need to have an initialisation of the backward recursion.
This will be from the output layer (layer L + 1)

sy _ OF
Oz(L+1)

Oy L+1) OF
- (aZ(LH)) (@y(LH))

- A (655:))

A"V is the activation derivative matrix for the output layer.




