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8. Multi-Layer Perceptrons 1

Reference - Error Back Propagation

Consider a multi-layer perceptron with:

• d-dimensional input data;

• L hidden layers (L + 1 layer including the output layer);

• N (k) units in the kth level;

• K-dimensional output.
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The following notation will be used

• x(k) is the input to the kth layer

• x̃(k) is the extended input to the kth layer

x̃(k) =







x(k)

1







• W(k) is the weight matrix of the kth layer. By definition

this is a N (k) ×N (k−1) matrix.



2 Engineering Part IIB: Module 4F10 Statistical Pattern Processing

Notation (cont)

• W̃(k) is the weight matrix including the bias weight of the

kth layer. By definition this is a N (k) × (N (k−1)+ 1) matrix.

W̃(k) =
[

W(k) b(k)
]

• z(k) is the N (k)-dimensional vector defined as

z(k) = W̃(k)x̃(k)

• y(k) is the output from the kth layer, so

y
(k)
j = φ(z

(k)
j )

All the hidden layer activation functions are assumed to be

the same φ(). Initially we shall also assume that the output

activation function is also φ().

The following matrix notation feed forward equations may

then used for a multi-layer perceptron with input x and out-

put y(x).

x(1) = x

x(k) = y(k−1)

z(k) = W̃(k)x̃(k)

y(k) = φ(z(k))

y(x) = y(L+1)

where 1 ≤ k ≤ L + 1.

The target values for the training of the networks will be de-

noted as t for training example x.
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Error Back Propagation Algorithm

Need to calculate ∂E

∂w̃
(k)
ij

for all layers, k, and all rows and columns

of W̃(k). Applying the chain rule

∂E

∂w̃
(k)
ij

=
∂E

∂z
(k)
i

∂z
(k)
i

∂w̃
(k)
ij

= δ
(k)
i x̃

(k)
j

where

∂E

∂z
(k)
i

= δ
(k)
i

and the δ’s are sometimes known as the individual “errors”

(that are back-propagated).

For the output nodes the evaluation of δi is straightforward

as we saw for the single layer perceptron.

To evaluate the δi’s for hidden layers

δ
(k)
i =

∑

m







∂E

∂z
(k+1)
m

∂z(k+1)
m

∂z
(k)
i







where it is assumed that only the units in layer k + 1 are con-

nected to units in layer k, or

δ
(k)
i = y

(k)
i (1− y

(k)
i )

∑

m
w̃

(k+1)
mi δ(k+1)

m

Note that all that is being done here is evaluating the differ-

entials of the error at the output with respect to the weights

throughout the network by using the chain rule for partial

derivatives.
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Matrix Formulation

In matrix notation we can write

∂E

∂W̃(k)
= δ(k)x̃(k)′

We need to find a recursion for δ(k).

δ(k) =





∂E

∂z(k)





=







∂z(k+1)

∂z(k)











∂E

∂z(k+1)





=







∂y(k)

∂z(k)













∂z(k+1)

∂y(k)





 δ(k+1)

But we know from the forward recursions

∂z(k+1)

∂y(k)
=

∂z(k+1)

∂x(k+1)
= W(k+1)′

This yields the recursion

δ(k) = Λ(k)W(k+1)′δ(k+1)
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Matrix Formulation (cont)

Define the activation derivative matrix for layer k as

Λ(k) =
∂y(k)

∂z(k)
=
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This has given a matrix form of the backward recursion for

the error back propagation algorithm.

We need to have an initialisation of the backward recursion.

This will be from the output layer (layer L + 1)

δ(L+1) =
∂E

∂z(L+1)

=







∂y(L+1)

∂z(L+1)











∂E

∂y(L+1)





= Λ(L+1)







∂E

∂y(x)







Λ(L+1) is the activation derivative matrix for the output layer.


