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STATISTICAL PATTERN RECOGNITION

Solutions to Examples Paper 2

1. Total number of weights in the system is

• input to hidden layer: (d+ 1)M

• the L− 1 hidden to hidden: (L− 1)M(M + 1)

• hidden to output (M + 1)K

The number of hidden layers determines the decision boundaries that can be pro-
duced (see lecture notes), the activation function determines the nature of the output
- binary (step), sum to one (soft max), continuous (linear) etc. The number of hid-
den units should be large enough to model the problem, but small enough so that
generalisation is not an issue.

2.

φ(z) =
1

1 + exp(−z)
,

∂φ(z)

∂z
=

exp(−z)

(1 + exp(−z))2

= φ(z)(1− φ(z))

The activation function affects the form of the error back propagation algorithm.
The derivation given in lectures assumes a sigmoid, however the output layer can be
more complex if a sum squared error is used with a softmax function (not not if used
with a cross-entropy measure) since in this case the partial derivative for a particular
weight in the output layer depends on all output values due to the normalisation in
the softmax.

3. Need to compute the first and second moments. First moment given by
∫

∞

−∞

φ(x)p(x)dx = α
∫ 0

−∞

xp(x)dx+
∫

∞

0
xp(x)dx =

∫

∞

0
xp(x)dx− α

∫

∞

0
xp(x)dx

It is possible to show that when p(x) = N (x; 0, σ2)

∫

∞

0
xp(x)dx =

σ

2

√

2

π

Hence

∫

∞

−∞

φ(x)p(x)dx = (1− α)
σ

2

√

2

π
= (1− α)σ

√

1

2π

1



and the second moment
∫

∞

−∞

(φ(x))2p(x)dx =
∫ 0

−∞

α2x2p(x)dx+
∫

∞

0
x2φ(x)p(x)dx = (1 + α2)σ2/2

So the total variance on the output is

σ̂2 = (1 + α2)σ2/2− (1− α)2
σ2

2π

The simplest approcah is to ensure that the output variance matches the input vari-
ances for the initialisation (as discussed in lectures). This function has an added
complexity as the mean is non-zero. If the network is deep this could result in a large
offset for some layers. This could be addressed by consifdering an offset on the bias
term initialisation, but is usually ignored.

4. If the gradient is approximately constant then we can write

∆w[τ ] = −η ∇E(w)|
w[0] + α∆w[τ − 1]

Substituting back yields

∆w[τ ] = −η ∇E(w)|
w[0] + α

(

−η ∇E(w)|
w[0] + (....)

)

= −η
(

1 + α + α2 + ...
)

∇E(w)|
w[0]

If α < 1 then the sum of the infinite GP give

∆w[τ ] = −
(

η

1− α

)

∇E(w)|
w[0]

If the solution is oscillating then we can write (approximately)

∆w[τ ] = −η ∇E(w)|
w[0] + α

(

+η ∇E(w)|
w[0] + (....)

)

= −η
(

1− α + α2 − ...
)

∇E(w)|
w[0]

= −η
(

(1− α)(1 + α2 + α4...)
)

∇E(w)|
w[0]

= −η
(1− α)

(1− α2)
∇E(w)|

w[0]

= −
(

η

1 + α

)

∇E(w)|
w[0]

5. (a) The Hessian may be used to obtain the Newton direction. This requires com-
puting H−1g. (see lecture notes for more details).
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(b)

∂E

∂wij

=
n
∑

p=1

(y(xp)− t(xp))
∂y(xp)

∂wij

and

∂2E

∂wij∂wlk

=
n
∑

p=1

∂y(xp)

∂wlk

∂y(xp)

∂wij

+
n
∑

p=1

(y(xp)− t(xp))
∂2y(xp)

∂wij∂wlk

For the conditions described the network will train so that

y(xp) = t(xp)

In this condition the second term is zero.

(c) From the conditions given

HN+1 = HN + g(N+1)(g(N+1))′

Consider the inverse

H−1
N+1 =

(

HN + g(N+1)(g(N+1))′
)

−1

= H−1
N −H−1

N g(N+1)
(

1 + g(N+1)′H−1
N (g(N+1))

)

−1
(g(N+1))′H−1

N

= H−1
N − H−1

N g(N+1)(g(N+1))′H−1
N

1 + g(N+1)′H−1
N (g(N+1))

The calculation of the inverse can be computationally expensive for large numbers of
weights (naive implementation O(W 3)). This scheme directly calculates the inverse.
An initial value is needed for this scheme (H0). The simplest approach is to use a
diagonal matrix with very small values on the leading diagonal (easy to invert and
will not distort the final results).

6. As the name implies linear classifiers only generate decision boundaries of the form
w′x + b = 0. Non linear mappings of the feature can increase the effective dimen-
sionality. A linear decision boundary in this mapped space will be non-linear in the
original space. Note there is an increase in the number of model parameters that
need to be trained for the decision boundary.

A mapping will exist if the points have distinct labels (i.e. no point has multiple
class labels associated with it.)

7. The conditions that must be satisfied are:

αi ≥ 0
m
∑

i=1

αiyi = 0
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The solution from the lecture notes are

α1 = α2 = α3 = α4 =
1

8

By inspection the conditions are satisfied. Consider the value of the mapped points
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The direction of the decision boundary is given by

w =
m
∑

i=1

αiyiΦ(xi)

=
1

2
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To find b substitute into the expression

αi ((yi (〈w,xi〉+ b)− 1)) = 0

Select the point [1, 1]′

1

8
(−1× (−1 + b)− 1) = 0

So b = 0. Check using the point [1,−1]

1

8
(1× (1 + b)− 1) = 0

This is correct (also other points satisfy this). The equation of the decision boundary
is

x1x2 = 0

8. (a) The decision boundary and margins are shown below.
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(b) There are four support vectors

[

1
1

] [

1
0

] [

0
1

] [

2
0

]

(c) There are multiple solutions for α (though a unique decision boundary) to this
as it is an under-specified problem. If the Lagrange multiplier for the fourth
point is set to zero then the associated values of α, 4, 2, 2 and associated class
labels 1, −1 and −1, Again it is possible to check that these points satisfy the
training criteria.

9. From the root node the data is split from −∞ to x1. Assume that the split for the
node occurs at xs. The posterior probability for class ω1 for the root node

P (ω1|N) =

∫ x1

−∞
N (x; 0, 1)dx

∫ x1

−∞
N (x; 0, 1) +N (x; 1, 1)dx

The left node of the hypothesised split

P (ω1|NL) =

∫ xs

−∞
N (x; 0, 1)dx

∫ xs

−∞
N (x; 0, 1) +N (x; 1, 1)dx

For the right node

P (ω1|NR) =

∫ x1

xs

N (x; 0, 1)dx
∫ x1

xs

N (x; 0, 1) +N (x; 1, 1)dx

The fractions assigned to the left node is

nL =

∫ xs

−∞
N (x; 0, 1) +N (x; 1, 1)dx

∫ x1

−∞
N (x; 0, 1) +N (x; 1, 1)dx
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The entropy cost function can then be written as

I(NL) = P (ω1|NL) log(P (ω1|NL)) + (1− P (ω1|NL)) log(1− P (ω1|NL))

These can then be directly substituted into to the overall expression.

10. (a)

E{p̃(x)} = E
{

1

n

n
∑

i=1

1

hn

φ
(

x− xi

hn

)

}

=
1

n

n
∑

i=1

1

hn

E
{

φ
(

x− xi

hn

)}

=
1

hn

E
{

φ
(

x− xi

hn

)}

As φ() is Gaussian distributed then

E
{

N
(

x− xi

hn

; 0, 1
)}

=
∫

N
((

x− v

hn

)

; 0, 1
)

N (v;µ, σ2)dv

=
∫

hnN (x; v, h2
n)N (v;µ, σ2)dv

= hnN (x;µ, σ2 + h2
n)

Hence

E{p̃(x)} = N (x;µ, σ2 + h2
n)

(b) Since each of the individual samples is independent, then the total variance is
a combination of the individual variances. Hence

var[p̃(x)] =
1

n2

n
∑

i=1

(

(

1

hn

)2

E
{

φ2
(

x− xi

hn

)}

− (E{p̃(x)})2
)

=
1

n2

n
∑

i=1

(∫

(

N (x; v, h2
n)
)2N (v;µ, σ2)dv − (E{p̃(x)})2

)

=
1

n

(

1

2hn

√
π
N (x;µ, σ2 +

h2
n

2
)−

(

N (x;µ, σ2 + h2
n)
)2
)

=
1

n





1

2hn

√
π
N (x;µ, σ2 +

h2
n

2
)− 1

2
√

(σ2 + h2
n)π

N (x;µ,
σ2 + h2

n

2
)





As hn gets small

var[p̃(x)] ≈ 1

2nhn

√
π
p(x)
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(c)

p(x)− E{p̃(x)} = N (x;µ, σ2)−N (x;µ, σ2 + h2
n)

=

(

1− N (x;µ, σ2 + h2
n)

N (x;µ, σ2)

)

N (x;µ, σ2)

=



1−
√

√

√

√

σ2

σ2 + h2
n

exp

(

h2
n(x− µ)2

2(σ2 + h2
n)σ

2

)



N (x;µ, σ2)

As hn gets small
√

√

√

√

σ2

σ2 + h2
n

=

√

√

√

√1− h2
n

σ2 + h2
n

≈ 1− h2
n

2(σ2 + h2
n)

exp

(

h2
n(x− µ)2

2(σ2 + h2
n)σ

2

)

≈ 1 +
h2
n(x− µ)2

2(σ2 + h2
n)σ

2

Hence

p(x)− E{p̃(x)} ≈
(

1−
(

1− h2
n

2(σ2 + h2
n)

)(

1 +
h2
n(x− µ)2

2(σ2 + h2
n)σ

2

))

p(x)

≈




h2
n

2σ2
− h2

n

2σ2

(

x− µ

µ

)2


 p(x)

=
h2
n

2σ2



1−
(

(x− µ)

µ

)2


 p(x)

[Note this should strictly be done more carefully including order of expressions]

11. (a) The feature-space maps the variable length verification sequences into a fixed
dimensionality. SVMs (empirically) generalise well for large dimensional feature
spaces which will occur whenM gets large. For the case given the dimensionality
isM+(M(M+1))/2 [noting the symmetry in the second derivative (the function
is twice differentiable and continuous].

(b) We need

∂

∂µi

log

(

T
∏

t=1

M
∑

m=1

cmN (xt;µm, σ
2
m)

)

=
T
∑

t=1

∂

∂µi

log

(

M
∑

m=1

cmN (xt;µm, σ
2
m)

)

This was discussed in the Mixture Model lectures. This can be simply written
as

∂

∂µi

log(P (X1:T )) =
T
∑

t=1

1

p(xt)
ci

∂

∂µi

N (xt;µi, σ
2
i )

=
T
∑

t=1

P (i|xt)
1

σ2
i

(xt − µi)
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(c) From part (b) (note it assumed that i 6= j)

∂2

∂µj∂µi

log(p(X1:T )) =
T
∑

t=1

∂

∂µj

(

P (i|xt)
1

σ2
i

(xt − µi)

)

Only the posterior is a function of the mean of component j. This can be
calculated

∂

∂µj

P (i|xt) = −ciN (xt;µi, σ
2
i )

(p(xt))2
cj

∂

∂µj

N (xt;µj, σ
2
j )

= −P (i|xt)P (j|xt)
1

σ2
j

(xt − µj)

It is simple to see that the form in the question is simply obtained.

∂2

∂µj∂µi

log(p(X1:T )) = −
T
∑

t=1

P (i|xt)P (j|xt)
(xt − µj)(xt − µi)

σ2
i σ

2
j

These second order statistics have the potential for additional information as
they are not a linear transform of the first order statistics. Furthermore it is
not possible to obtain this form from a standard kernel operation on the first
order statistics due to the summation over time.

Mark Gales
November 2003,2007
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