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Abstract

The use of discriminative models is an interesting altéveat

to generative models for speech recognition. This papenexa
ines one form of these models, structured support vector ma-
chines (SVMs), for noise robust speech recognition. One im-
portant aspect of structured SVMs is the form of the joint fea
ture space. In this work features based on generative models
are used, which allows model-based compensation schemes to
be applied to yield robust joint features. However, these fe
tures require the segmentation of frames into words, or sub-
words, to be specified. In previous work this segmentation wa
obtained using generative models. Here the segmentatiens a
refined using the parameters of the structured SVM. A Viterbi
like scheme for obtaining “optimal” segmentations, and ifiod
cations to the training algorithm to allow them to be effitign
used, are described. The performance of the approach is-eval
ated on a noise corrupted continuous digit task: AURORA 2.
Index Terms. speech recognition, structural SVMs, optimal
alignment, large margin, log linear model

1. Introduction

Discriminative training [1] of Hidden Markov Models (HMMs)
has been shown to yield performance gains for automatichpee
recognition (ASR). However the underlying models are still
generative, with the standard HMM conditional independenc
assumptions, and sentence posteriors obtained using 'Bayes
rule. This has led to interest in discriminative models,.,e.g
Structured Conditional Random Fields (SCRF) [2], and struc
tured Log Linear Model (LLM) [3, 4], where the posterior of
the word-sequence given the observatiowlirectly modelled.

For these discriminative models three important decisieed

to be made: the form of the features to use; the appropriate
training criterion; and how to handle continuous speech.

A number of features have been investigated at the frame,
model and word level [2,4]. Features based on generative mod
els are an attractive option as they allow state-of-theetker
adaptation and noise robustness approaches for generatoe
els to be used to handle speaker and noise condition chaiges [
Discriminative models are often trained using Conditidviak-
imum Likelihood (CML) [2, 3]. Alternatively, there has been
interest in large margin [4, 6] and minimum Bayes’ risk [1i} cr
teria. It has been shown that the large margin trained lagalin
models can be viewed as structured SVMs [4]. To handle con-
tinuous speech, structured discriminative models ofteuire
a segmentation of the frames into word, or sub-word units. Fo
approaches such as SCRFs, where word-level features ate use
these segmentations are defined by standard HMM acoustic
models. However for approaches where the underlying aicoust
models are altered [3, 4], the segmentation should be aifumct
of the discriminative model parameters. This paper extémels

previous work with structured SVMs (SSVM) [4] to enable op-
timal segmentations, based on the current discriminativéeai
to be used for both training and inference.

Previously, the segmentation for both training and infer-
ence were based on the generative models (used to obtain the
features). This paper shows that a Viterbi-like algoritham c
be defined to obtain the segmentation with the discrimieativ
model parameters for a particular form of feature-spacds Th
scheme is related to inference with factorial HMMs [7]. léth
segmentation is optimised during training, then it is neags
to modify the structured SVM training algorithm. The convex
problem of standard structured SVM training becomes ardiffe
ence of convex programming problem. The optimization can
be solved using the concave-convex procedure [8] and guttin
plane algorithm [9]. An additional issue for training is tt@m-
putational cost of obtaining the segmentation. To handfeah
“batch”mode update of the structured SVM parameters is pro
posed, where the discriminative model parameters are egdat
after seeing blocks of training data, rather than sequéntia

The impact of the segmentation on speech recognition per-
formance is evaluated on a standard continuous digit noise-
corrupted speech recognition task, AURORA 2.

2. Structured Support Vector Machines

One of the key issues for using structured discriminativelimo
els is to derive an appropriajeint feature spaceg(O,w),

for a given task. This represents the structured relatipnsh
between the observation sequen€e,= {o1,...,or}, and

the corresponding label sequense, = {w1,...,w.}. For
some applications there is a direct mapping between the ob-
servations and the labels, the relationship betw@nw) can

be fully described by the pair itself. However, for contingo
speech recognition, the relationship between the obsengt
the frames, and the labels, words, is normally not known and
must be inferred given some model. This requires an addition
level of latent variabl@ that represents this alignment.

In previous work on structured SVMs for ASR [4], the
model used to infer the alignment was the standard genera-
tive model HMMs. This alignment was fixed for both infer-
ence and throughout training. Thus the joint feature space
&(0O, W; O, A) Was based on the pre-fixed alignmeéts,.

For inference this yields

W = arg max aT¢(O, W O, A),

1)

O = arg max log P(6|0, w; A), (2)
where A are the HMM parameters and are the structured
SVM parameters. AlthougB.., is the most likely alignment
for the generative model, it may not be the best alignment to



describe the relationship betwe@@, w) for the discriminative
models. There may be a mismatch between (1) and (2).

Instead of using pre-fixed values, the alignment vari-
able 6 can be optimised for both decoding and training.
For general feature-spaces it is not possible to define ef-
ficient algorithms for this task.  However for the log-
likelihood feature-spaces this is possible. The alignnént
partitions the observation sequence iftosegmentsO =
{O¢(w1,0): - -+ Ot(w;,0)5 - - -» Ouwy,0) - The resulting joint
feature space is defined as

L
$(0,w,0:A) 2 1 {zs(wi) © " (Oumor V)| @)
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where ® is the tensor productd(w;) is a sparse vector
indicate the position ofw; in the dictionary {v;}+L, and
@ (Oy(w;,0); A) is the generative model based log likelihood
feature space for segmedt ., o)
log(p(0: AtW)))

o(w —v1)
6(w) = |: .
4

One interesting property of this joint feature space is tbe d
product of thep(O, w, 8; X) and structured SVM parameter
can be evaluated by accumulating every segment score [4]
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log(p(O; A(v1)))
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a'¢(0,w,0;0) =

where a = [a®™)', . .a®T  a®wTT, in which
a™ =", ... a,iw) alm

If the segmentation of the observation sequence is allowed
to vary, the decoding formula (1) becomes
W = arg max {meax ()z-r(i)(O7 w, 0; )\)} . (6)
Given the log-likelihood joint feature-space (3) a Vitedtyle
algorithm to solve (6) can be found. Based on (5) it is possibl
to express the maximisation in (6) as
|w

arg max maxz Za(w )logp(Ot(wwg), )\(v’“))
=1 k=1

(@)

This expression is related to forms of factorial HMM infecen
[7]. The search process (7) involves two distinct terms. The
first is, given the alignment the score for each model, the log
likelihood, needs to be computed for each segment. Thisis th
standard forward-backward algorithm for HMMs. The second
is deriving the segmentation which requires a modified ¥iter
search. This two stage process is illustrated in Fig. 1. Yhe
HMMs are shown in parallel witBynchronisation points shown

in black which are determined by the segment boundaries.

The search process to find the optimal segmentation is sim-
ilar to a semi-Markov search process. The best score (agrat-ali
ment history) for the start of the segment is storg@. ),

¢(tse) = maxa' (01, W, 0; A) ®)

Given this start timets:, the forward score for the model
is computed at the end state of each modg|, up-to time t,
log(p(O¢,,.+; A(¥¥))). The best score for the start of the next
segment (the end of the current segment) can be expressed as

M
—max{ (tse) +Za<w)log‘ Otst:t;A(v’“)))} )

tse,w

o(t)

Figure 1: Decoding procedure illustration. The black &sdh-
dicate the synchronisation points where ffeHMM log like-
lihoods are merged.

The above process is based on Viterbi-style search. Alter-
native, more efficient approximations, e.g., Gibbs sangpdind
variational methods [7], could be used to reduce the computa
tion load, but is not investigated in this work.

3. LargeMargin Training

The previous section has shown that givethe optimal align-
ment@ can be inferred. However, during training bathand®

are unknown and dependent on one another. The optimal align-
ment may vary withx; and adjusting the alignments will affect
the optimal value otx. In this section, the joint training of the
structured SVM and the optimal alignment is described.

Given training data pairé0™, w'l)), ... (0B w{),
similar to the latent SVM [10] and structured SVM [9, 11], the
parameters of structured SVM can be trained by solving the fo

lowing optimization problem:

2, O

(T)

(10)
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where¢, > 0 are the slack variables alit{wﬁg, w) is the loss
function. The constraints in (10) can be explained as falow

For every training paifO(™, f:ﬁ) the best score of the cor-
rect pair should be greater than all competing pairs by aimarg
determined by the loss. The difference this form and the-<crit
rion used in previous work is that the reference alignmefit,,
and best competing path alignme#t,are optimised.

Substituting the slack variable in the constraints to the ob
jective function, (10) can be reformulatedragimizing

concave

a3+ = Z: [ max (a »(0",

Wik 07 )

+ max {E(w w)) + a (0" w, 6; )\)H (11)
WA Wres 0 +
convex
where[ ]+ is the hinge-loss function. The constraints in (10)

specify a set of linear functions. They are convex with respe
to a. However, the objective function in (10), as also shown
in (11), is non-convex. To solve this non-convex optimiaati
problem, an approach similar to the concave-convex praeedu
[8,10,11] can be applied. The process is shown in Algorithm 1
There are two search sub-problems in Algorithm 1, the
best reference alignment (12) and the best competing hypoth
esis/alignment (13) in Step. Note by using the approximate



Algorithm 1: Joint learning algorithm foex and 6.
0. Initial: 7 = 0, &/ = [1,0,0...], 6" [0] = 6 ;
1. Fixing a, optimise variable alignmerét for each
training pair(O ™, w”)) using Viterbi algorithm:

ref

w00 (12)

0[r] = arg max o' g0
2. Fixing®" [r] ¥ r, optimisea by minimizing the
following convex upper bound using cutting plane
algorithm in [9] ( (11)< (13)):
|

inear

1 & 7 A
slhedi3+ 537 [~ (a0, w60 ) (3)
r=1

+  max )+ aT¢(o<”,w,9;>\)}]
™) o

ref ’

ref

{E(w,w(r) .

WHEW.

3.7 =7+ 1, go back to Step 1 until converge;

MPE loss [1] it is possible to approximate the I(ESWQ,
at the segment level and incorporate it into (9).

These two search problems can both be solved using the
Viterbi algorithm described in the previous section. Hoerev
the computational load during training is dominated by clear
ing for the best competing hypothesis/alignment. To entiite
form of approach to be applied to reasonable size speecs, task
the sequential update mode of the standard cutting plare alg
rithm is modified to a batch-mode update. This allows Step 2
of Algorithm 1 to be runin parallel on many machines. This
yields a substantial speed-up in the training process.

According to Theoren? in [8], iterating steps 1 and 2 of
Algorithm 1 is guaranteed to monotonically decrease the ob-
jective function (11) and will converge to a minimum or saxddl
point. For the AURORA 2 task, the criterion value for this@lg
rithm against iteration is shown in Fig. 2. Every point in F2g
is a minimum solution of the QP problem (Step 2) under a cer-
tain set of constraints. The objective is increasing bezds
cutting plane algorithm keeps adding constraints. Whematipd
ing 6 the objective function drops because the linear part of
(13) decreases, and the set of previous constraints destard
The gap between the solid curve and dashed curve indicaes th
differences from incorporating the optimal competing hjyee
sis alignmentg in (13), compared to the one obtained from the
generative modeBum [4].

The training criterion in Eq. 11 can be also viewed as large
margin training of log linear models. If the margin for logi
ear models is defined as the log posterior probability ratio o
the best alignment ok{"), 6 and best competing hypothe-

ref?

sis/alignment{w, 8} , the large margin training for log linear
model can be expressed as minimising [4, 6] (considering one

utterancer only)
- )}
+

[ max {E(W,WEQ
ww,)

where the best alignmert”) and @ are the ones that max-
imise the reference and competing path posterior proliaisili
As discussed in [4], introducing a Gaussian prig(a)
N(e;0,CT), and substituting the log linear model into the

w)

P(wOM; 60 X\ )
P(w|0();0,\ a)

1In theory the previous constraints could be kept, howeveinfie
plementation simplicity this was not performed.
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Figure 2: Learning curves for structured SVMs. Dashed curve
standard SSVM, fixed alignments [4]. Vertical dashdotteddi
optimising reference alignments. Solid curve: optimistog-
peting alignments.

above object function, yields (11). Therefore the SSVM used
in this work can also be viewed as a large margin trained log
linear model with the “most discriminative” alignment.

4. Noise Robustness

As previously discussed, one of the advantages of using gen-
erative models to define the features for the structured S¥M i
that it is possible to use state-of-the-art model-basesgenm-
bustness and speaker adaptation approaches. In this wigrk on
noise-robustness is considered. For standard generatide m
els, model-based compensation schemes such as Vector Taylo
Series (VTS) compensation [12] are a successful approach to
handling this problem. Here, the paramet&rassociated with

the generative model for joint feature space are modifiedpe r
resent the target acoustic environment [5]. Considerisgtjue
static feature vector parameters, the compensated meamoand
variance for component: using VTS, are given by

p!™ = Clog (eXP(C'l(uim) + ) + eXp(C'lun))
»nim _ J(m)z}({m)J(m)T +(I— J(m))zn(l _ J(m))T

where the additive noise mean and covariancE, are the pa-
rameters of the noise model estimated from the data using max
mum likelihood estimation [13]. Other terms in above equagi
include the DCT matrixC and Jacobian matrif(™ are fully
described in [12]. Thus in this work discriminative model pa
rameters are noise-independent, whereas the generatiyel mo
parameters are noise-dependent.

5. Experiments

The performance of the proposed structured SVM was evalu-
ated on the AURORA 2 task. AURORA 2 is a standard small
vocabulary digit string recognition task. The vocabulaizes

M is only 12 (one to nine, plus zero, oh and silence). The ut-
terances in this task are one to seven digits long based on the
TIDIGITS database with noise artificially added. The 8440
clean mix-gender training utterances were used to train the
acoustic generative models (HMMs). 39 dimensional observa
tions consisting of 12 MFCCs appended with the zeroth cep-
strum, delta and delta-delta coefficients were used in thrkw

The “simple” back-end was used, thus the HMMs were 16 emit-
ting states whole word digit models, with 3 mixtures perestat
and silence and inter-word pause models. Test set A was used
as the development set for tuning parameters for all systems
such as the penalty factar for the structured SVMs. All three
test sets, A, B and C, were used for final evaluation. The pa-



rameters of SSVM were trained using the same subset of the
multi-condition training data as [5]: three of the four setss
(N2-N4) and three of five SNRs (10dB, 15dB, 20dB). This al-
lows direct comparison with the previously published resul

To evaluate the benefit of structured SVMs and optimising
the alignment in decoding and training, a range of setupg wer
compared. For all configurations the dimensional feature-
space™™ in (4) was used. The baseline generative system
was HMM based with VTS compensation. These compensated
HMMs were also used to derive the noise robust joint feature
space, the word-level segmentation for the binary SVM and
multi-class SVMs, and producing the lattices for the stuted
SVM training and inference [4].

| Modd [SeA[SeB[SaC [ Avg |
HMM 984 | 9.11 ] 9.53 || 9.49
SVM 9.10 | 8.68 | 9.25 || 8.96
Multi-class SVM || 8.27 | 8.06 | 8.64 | 8.26
SSVM Onan /6rm) || 7.78 | 7.31 ] 8.02 || 7.64
SSVM B /0) || 7.55 | 7.15 | 8.01 || 7.49

Table 1: Average WER (%) in all noise conditions of VTS
based HMM, SVM, Multi-class SVM and Structured SVM. For
the SSVM@ indicates optimised alignment,,, indicates the
alignments derived from the HMMs.

Examining the results in Table 1, shows the benefit of us-
ing structured SVM over SVM approaches where the obser-
vation sequence is segmented into words and individual-“seg
mented” words classified with the SVM (these results are re-
peated from [4]). The last line shows the performance of op-
timising the alignment during inferencéhgm./e). Optimising
the alignment yields a small gain in performance over udieg t
original alignmentséhmm/ém), about 2.0% relative reduction
on average.

[ Model ]| Train/Test || SetA [ SetB|SetC [ Avg. |

[HMM [ — [ 984[9.11] 953 ][ 9.49]
(Brmm/Oumn) || 789 | 7.42 ] 8.19 || 7.76

(Sbii:'\r?) (Bum/0) || 7.75 | 7.22 | 8.02 || 7.59
(6/6) 756 | 714 | 777 || 743

Table 2: Average WER (%) among all noise conditions of VTS
based HMM and parallel mode Structured SV#jndicates
optimised alignment®. alignments derived from the HMMs.

To evaluate the impact of optimising the alignment during
training, batch-mode training of the SSVM was required due t
the computational load. Table 2 shows the performance eéthe
batch-mode systems. The first SSVM system used the HMM
alignments for both training and t€@hm /@um). Compared to
the equivalent sequential mode update in Table 1 a slightdeg
dation in average performance from 7.64% to 7.76% WER can
be seen. Using batch-mode updates allows the joint training
of both the alignments and discriminative model parameters
Optimising both the training and inference alignmeri&,0),
yielded a4.3% relative reduction in WER. Just optimising the
inference alignment gav& 1% relative reduction. The overall
gain from using the SSVM over the VTS-compensated HMM
system was over 20%, though it should be noted that the SVM
and SSVM systems made use of a subset of the multi-style train
ing data.

6. Conclusion

This paper has examined the use of structured SVMs for noise
robust ASR. One key part of this work, compared to previ-
ous work, is that the alignment of frames to labels in thetjoin
feature-space is not fixed. Here the alignment is optimised
jointly with the discriminative model parameters. To penfio
this joint training a number of modifications to the previous
published work have been made. First, a Viterbi-style algo-
rithm is described for optimising the alignment based on the
SSVM parameters. This algorithm is related to the inference
of factorial HMMs. Second, to incorporate the optimal align
ments into the training process, the training algorithm @&lm

fied making use of the concave-convex optimisation proadur
Finally to reduce the time for jointly training the alignmemd
discriminative model parameters, a batch-mode trainigg-al
rithm, where the optimal alignment is optimised using npléti
machines, is described. Results on the AURORA 2 task demon-
strate that optimising the alignment yields performanciaga
for both inference and training.

Currently the performance gains from optimising the align-
ments are small. However this is felt to be due to the use of
whole-word models for the AURORA 2 task. Thus the align-
ment is only defined at the word-level. For medium-to-large
vocabulary tasks where the alignment between frames and la-
bels is required at the phone-level, it is expected thatiping
the alignment will have a larger impact.
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