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Abstract
The use of discriminative models is an interesting alternative
to generative models for speech recognition. This paper exam-
ines one form of these models, structured support vector ma-
chines (SVMs), for noise robust speech recognition. One im-
portant aspect of structured SVMs is the form of the joint fea-
ture space. In this work features based on generative models
are used, which allows model-based compensation schemes to
be applied to yield robust joint features. However, these fea-
tures require the segmentation of frames into words, or sub-
words, to be specified. In previous work this segmentation was
obtained using generative models. Here the segmentations are
refined using the parameters of the structured SVM. A Viterbi-
like scheme for obtaining “optimal” segmentations, and modifi-
cations to the training algorithm to allow them to be efficiently
used, are described. The performance of the approach is evalu-
ated on a noise corrupted continuous digit task: AURORA 2.
Index Terms: speech recognition, structural SVMs, optimal
alignment, large margin, log linear model

1. Introduction
Discriminative training [1] of Hidden Markov Models (HMMs)
has been shown to yield performance gains for automatic speech
recognition (ASR). However the underlying models are still
generative, with the standard HMM conditional independence
assumptions, and sentence posteriors obtained using Bayes’
rule. This has led to interest in discriminative models, e.g.,
Structured Conditional Random Fields (SCRF) [2], and struc-
tured Log Linear Model (LLM) [3, 4], where the posterior of
the word-sequence given the observation isdirectly modelled.
For these discriminative models three important decisionsneed
to be made: the form of the features to use; the appropriate
training criterion; and how to handle continuous speech.

A number of features have been investigated at the frame,
model and word level [2,4]. Features based on generative mod-
els are an attractive option as they allow state-of-the-artspeaker
adaptation and noise robustness approaches for generativemod-
els to be used to handle speaker and noise condition changes [5].
Discriminative models are often trained using ConditionalMax-
imum Likelihood (CML) [2, 3]. Alternatively, there has been
interest in large margin [4,6] and minimum Bayes’ risk [1] cri-
teria. It has been shown that the large margin trained log linear
models can be viewed as structured SVMs [4]. To handle con-
tinuous speech, structured discriminative models often require
a segmentation of the frames into word, or sub-word units. For
approaches such as SCRFs, where word-level features are used,
these segmentations are defined by standard HMM acoustic
models. However for approaches where the underlying acoustic
models are altered [3,4], the segmentation should be a function
of the discriminative model parameters. This paper extendsthe

previous work with structured SVMs (SSVM) [4] to enable op-
timal segmentations, based on the current discriminative model,
to be used for both training and inference.

Previously, the segmentation for both training and infer-
ence were based on the generative models (used to obtain the
features). This paper shows that a Viterbi-like algorithm can
be defined to obtain the segmentation with the discriminative
model parameters for a particular form of feature-space. This
scheme is related to inference with factorial HMMs [7]. If the
segmentation is optimised during training, then it is necessary
to modify the structured SVM training algorithm. The convex
problem of standard structured SVM training becomes a differ-
ence of convex programming problem. The optimization can
be solved using the concave-convex procedure [8] and cutting-
plane algorithm [9]. An additional issue for training is thecom-
putational cost of obtaining the segmentation. To handle this a
“batch”-mode update of the structured SVM parameters is pro-
posed, where the discriminative model parameters are updated
after seeing blocks of training data, rather than sequentially.

The impact of the segmentation on speech recognition per-
formance is evaluated on a standard continuous digit noise-
corrupted speech recognition task, AURORA 2.

2. Structured Support Vector Machines
One of the key issues for using structured discriminative mod-
els is to derive an appropriatejoint feature space,φ(O,w),
for a given task. This represents the structured relationship
between the observation sequence,O = {o1, . . . ,oT }, and
the corresponding label sequence,w = {w1, . . . , wL}. For
some applications there is a direct mapping between the ob-
servations and the labels, the relationship between(O,w) can
be fully described by the pair itself. However, for continuous
speech recognition, the relationship between the observations,
the frames, and the labels, words, is normally not known and
must be inferred given some model. This requires an additional
level of latent variableθ that represents this alignment.

In previous work on structured SVMs for ASR [4], the
model used to infer the alignment was the standard genera-
tive model HMMs. This alignment was fixed for both infer-
ence and throughout training. Thus the joint feature space
φ(O,w; θ̂hmm,λ) was based on the pre-fixed alignmentsθ̂hmm.
For inference this yields

ŵ = argmax
w

α
T
φ(O,w; θ̂hmm,λ), (1)

θ̂hmm = argmax
θ

logP (θ|O,w;λ), (2)

whereλ are the HMM parameters andα are the structured
SVM parameters. Althougĥθhmm is the most likely alignment
for the generative model, it may not be the best alignment to



describe the relationship between(O,w) for the discriminative
models. There may be a mismatch between (1) and (2).

Instead of using pre-fixed values, the alignment vari-
able θ can be optimised for both decoding and training.
For general feature-spaces it is not possible to define ef-
ficient algorithms for this task. However for the log-
likelihood feature-spaces this is possible. The alignmentθ
partitions the observation sequence intoL segmentsO =
{Ot(w1,θ), . . . ,Ot(wi,θ), . . . ,Ot(wL,θ)}. The resulting joint
feature space is defined as

φ(O,w,θ;λ) , 1
T

[
L∑

i=1

δ(wi)⊗ ϕ
LL(Ot(wi,θ);λ)

]

(3)

where ⊗ is the tensor product,δ(wi) is a sparse vector
indicate the position ofwi in the dictionary{vk}Mk=1 and
ϕLL(Ot(wi,θ);λ) is the generative model based log likelihood
feature space for segmentOt(wi,θ)

δ(w) =





δ(w − v1)...
δ(w − vM)



 ,ϕLL(O;λ) =






log(p(O;λ(v1)))
...

log(p(O;λ(vM )))




 .

(4)
One interesting property of this joint feature space is the dot-
product of theφ(O,w,θ;λ) and structured SVM parameterα
can be evaluated by accumulating every segment score [4]

α
T
φ(O,w,θ;λ) = 1

T

L∑

i=1

α
(wi)

T

ϕ
LL(Ot(wi,θ);λ), (5)

where α = [α(v1)
T

, . . .α(vk)
T

. . . ,α(vM)T]T
M2 in which

α(w) = [α
(w)
1 , . . . α

(w)
k . . . , α

(w)
M ]T.

If the segmentation of the observation sequence is allowed
to vary, the decoding formula (1) becomes

ŵ = argmax
w

{

max
θ

α
T
φ(O,w, θ;λ)

}

. (6)

Given the log-likelihood joint feature-space (3) a Viterbi-style
algorithm to solve (6) can be found. Based on (5) it is possible
to express the maximisation in (6) as

argmax
w






max

θ

|w|
∑

i=1

M∑

k=1

α
(wi)
k log p(Ot(wi,θ);λ

(vk))






(7)

This expression is related to forms of factorial HMM inference
[7]. The search process (7) involves two distinct terms. The
first is, given the alignment the score for each model, the log-
likelihood, needs to be computed for each segment. This is the
standard forward-backward algorithm for HMMs. The second
is deriving the segmentation which requires a modified Viterbi
search. This two stage process is illustrated in Fig. 1. TheM
HMMs are shown in parallel withsynchronisation points shown
in black which are determined by the segment boundaries.

The search process to find the optimal segmentation is sim-
ilar to a semi-Markov search process. The best score (and align-
ment history) for the start of the segment is stored,φ(tst),

φ(tst) = max
w,θ

α
T
φ(O1:tst ,w,θ;λ) (8)

Given this start time,tst, the forward score for the model
is computed at the end state of each model,vk, up-to time t,
log(p(Otst:t;λ

(vk))). The best score for the start of the next
segment (the end of the current segment) can be expressed as

φ(t) = max
tst,w

{

φ(tst) +
M∑

k=1

α
(w)
k log(p(Otst:t;λ

(vk)))

}

(9)

Figure 1: Decoding procedure illustration. The black circles in-
dicate the synchronisation points where theM HMM log like-
lihoods are merged.

The above process is based on Viterbi-style search. Alter-
native, more efficient approximations, e.g., Gibbs sampling and
variational methods [7], could be used to reduce the computa-
tion load, but is not investigated in this work.

3. Large Margin Training
The previous section has shown that givenα the optimal align-
mentθ can be inferred. However, during training bothα andθ
are unknown and dependent on one another. The optimal align-
ment may vary withα; and adjusting the alignments will affect
the optimal value ofα. In this section, the joint training of the
structured SVM and the optimal alignment is described.

Given training data pairs(O(1),w
(1)
ref

), . . . , (O(R),w
(R)
ref

),
similar to the latent SVM [10] and structured SVM [9, 11], the
parameters of structured SVM can be trained by solving the fol-
lowing optimization problem:

min
α,ξ

1

2
||α||2 +

C

R

R∑

r=1

ξr (10)

s.t. max
θ(r)

α
T
φ(O(r),w

(r)
ref

,θ(r);λ)−max
θ

α
T
φ(O(r),w,θ;λ)

≥ L(w(r)
ref

,w)− ξr, 1 ≤ r ≤ R, ∀w 6= w
(r)
ref

,

whereξr > 0 are the slack variables andL(w(r)
ref

,w) is the loss
function. The constraints in (10) can be explained as follows.
For every training pair(O(r),w

(r)
ref

), the best score of the cor-
rect pair should be greater than all competing pairs by a margin
determined by the loss. The difference this form and the crite-
rion used in previous work is that the reference alignment,θ(r),
and best competing path alignment,θ, are optimised.

Substituting the slack variable in the constraints to the ob-
jective function, (10) can be reformulated asminimizing

1

2
||α||22 +

C

R

R∑

r=1

[

concave
︷ ︸︸ ︷

−max
θ(r)

(

α
T
φ(O(r),w

(r)
ref

,θ(r);λ)
)

+ max
w 6=wref,θ

{

L(w,w
(r)
ref

) +α
T
φ(O(r),w,θ;λ)

}

︸ ︷︷ ︸

convex

]

+
(11)

where[ ]+ is the hinge-loss function. The constraints in (10)
specify a set of linear functions. They are convex with respect
to α. However, the objective function in (10), as also shown
in (11), is non-convex. To solve this non-convex optimization
problem, an approach similar to the concave-convex procedure
[8,10,11] can be applied. The process is shown in Algorithm 1.

There are two search sub-problems in Algorithm 1, the
best reference alignment (12) and the best competing hypoth-
esis/alignment (13) in Step2. Note by using the approximate



Algorithm 1: Joint learning algorithm forα andθ.

0. Initial: τ = 0, α[0] = [1, 0, 0 . . .], θ̂(r)[0] = θ̂
(r)
hmm

;
1. Fixingα, optimise variable alignmentθ for each
training pair(O(r),w

(r)
ref

) using Viterbi algorithm:

θ̂
(r)[τ ] = argmax

θ
α

T
φ(O(r),w

(r)
ref

,θ;λ) (12)

2. Fixing θ̂(r)[τ ] ∀ r, optimiseα by minimizing the
following convex upper bound using cutting plane
algorithm in [9] ( (11)≤ (13)):

1

2
||α||22 +

C

R

R∑

r=1

[

linear
︷ ︸︸ ︷

−
(

αTφ(O(r),w
(r)
ref

, θ̂(r)[τ ];λ)
)

(13)

+ max
w 6=w

(r)
ref

,θ

{

L(w,w
(r)
ref

) +αTφ(O(r),w,θ;λ)
} ]

+

3. τ = τ + 1, go back to Step 1 until converge;

MPE loss [1] it is possible to approximate the lossL(w
(r)
ref

,w)
at the segment level and incorporate it into (9).

These two search problems can both be solved using the
Viterbi algorithm described in the previous section. However
the computational load during training is dominated by search-
ing for the best competing hypothesis/alignment. To enablethis
form of approach to be applied to reasonable size speech tasks,
the sequential update mode of the standard cutting plane algo-
rithm is modified to a batch-mode update. This allows Step 2
of Algorithm 1 to be runin parallel on many machines. This
yields a substantial speed-up in the training process.

According to Theorem2 in [8], iterating steps 1 and 2 of
Algorithm 1 is guaranteed to monotonically decrease the ob-
jective function (11) and will converge to a minimum or saddle
point. For the AURORA 2 task, the criterion value for this algo-
rithm against iteration is shown in Fig. 2. Every point in Fig. 2
is a minimum solution of the QP problem (Step 2) under a cer-
tain set of constraints. The objective is increasing because the
cutting plane algorithm keeps adding constraints. When updat-
ing θ(r) the objective function drops because the linear part of
(13) decreases, and the set of previous constraints discarded 1.
The gap between the solid curve and dashed curve indicates the
differences from incorporating the optimal competing hypothe-
sis alignment,θ in (13), compared to the one obtained from the
generative model,̂θhmm [4].

The training criterion in Eq. 11 can be also viewed as large
margin training of log linear models. If the margin for log lin-
ear models is defined as the log posterior probability ratio of
the best alignment ofw(r)

ref
, θ̂(r), and best competing hypothe-

sis/alignment,{w, θ̂} , the large margin training for log linear
model can be expressed as minimising [4, 6] (considering one
utterancer only)
[

max
w 6=w

(r)
ref

{

L(w,w
(r)
ref

)− log

(

P (w
(r)
ref

|O(r); θ̂(r),λ,α)

P (w|O(r); θ̂,λ,α)

)}]

+

where the best alignment̂θ(r) and θ̂ are the ones that max-
imise the reference and competing path posterior probabilities.
As discussed in [4], introducing a Gaussian priorP (α) =
N (α; 0, CI), and substituting the log linear model into the

1In theory the previous constraints could be kept, however for im-
plementation simplicity this was not performed.
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Figure 2: Learning curves for structured SVMs. Dashed curve:
standard SSVM, fixed alignments [4]. Vertical dashdotted lines:
optimising reference alignments. Solid curve: optimisingcom-
peting alignments.

above object function, yields (11). Therefore the SSVM used
in this work can also be viewed as a large margin trained log
linear model with the “most discriminative” alignment.

4. Noise Robustness
As previously discussed, one of the advantages of using gen-
erative models to define the features for the structured SVM is
that it is possible to use state-of-the-art model-based noise ro-
bustness and speaker adaptation approaches. In this work only
noise-robustness is considered. For standard generative mod-
els, model-based compensation schemes such as Vector Taylor
Series (VTS) compensation [12] are a successful approach to
handling this problem. Here, the parametersλ associated with
the generative model for joint feature space are modified to rep-
resent the target acoustic environment [5]. Considering just the
static feature vector parameters, the compensated mean andco-
variance for componentm using VTS, are given by

µ
(m) = C log

(

exp(C-1(µ(m)
x + µh) + exp(C-1

µn)
)

Σ
(m) = J

(m)
Σ

(m)
x J

(m)T + (I− J
(m))Σn(I− J

(m))T

where the additive noise meanµn and covarianceΣn are the pa-
rameters of the noise model estimated from the data using maxi-
mum likelihood estimation [13]. Other terms in above equations
include the DCT matrixC and Jacobian matrixJ(m) are fully
described in [12]. Thus in this work discriminative model pa-
rameters are noise-independent, whereas the generative model
parameters are noise-dependent.

5. Experiments
The performance of the proposed structured SVM was evalu-
ated on the AURORA 2 task. AURORA 2 is a standard small
vocabulary digit string recognition task. The vocabulary size
M is only 12 (one to nine, plus zero, oh and silence). The ut-
terances in this task are one to seven digits long based on the
TIDIGITS database with noise artificially added. The 8440
clean mix-gender training utterances were used to train the
acoustic generative models (HMMs). 39 dimensional observa-
tions consisting of 12 MFCCs appended with the zeroth cep-
strum, delta and delta-delta coefficients were used in this work.
The “simple” back-end was used, thus the HMMs were 16 emit-
ting states whole word digit models, with 3 mixtures per state
and silence and inter-word pause models. Test set A was used
as the development set for tuning parameters for all systems,
such as the penalty factorC for the structured SVMs. All three
test sets, A, B and C, were used for final evaluation. The pa-



rameters of SSVM were trained using the same subset of the
multi-condition training data as [5]: three of the four subsets
(N2-N4) and three of five SNRs (10dB, 15dB, 20dB). This al-
lows direct comparison with the previously published results.

To evaluate the benefit of structured SVMs and optimising
the alignment in decoding and training, a range of setups were
compared. For all configurations the12 dimensional feature-
spaceϕLL in (4) was used. The baseline generative system
was HMM based with VTS compensation. These compensated
HMMs were also used to derive the noise robust joint feature
space, the word-level segmentation for the binary SVM and
multi-class SVMs, and producing the lattices for the structured
SVM training and inference [4].

Model Set A Set B Set C Avg.
HMM 9.84 9.11 9.53 9.49
SVM 9.10 8.68 9.25 8.96

Multi-class SVM 8.27 8.06 8.64 8.26

SSVM (θ̂hmm/θ̂hmm) 7.78 7.31 8.02 7.64
SSVM (θ̂hmm/θ) 7.55 7.15 8.01 7.49

Table 1: Average WER (%) in all noise conditions of VTS
based HMM, SVM, Multi-class SVM and Structured SVM. For
the SSVMθ indicates optimised alignments,θ̂hmm indicates the
alignments derived from the HMMs.

Examining the results in Table 1, shows the benefit of us-
ing structured SVM over SVM approaches where the obser-
vation sequence is segmented into words and individual “seg-
mented” words classified with the SVM (these results are re-
peated from [4]). The last line shows the performance of op-
timising the alignment during inference (θ̂hmm/θ). Optimising
the alignment yields a small gain in performance over using the
original alignments (̂θhmm/θ̂hmm), about 2.0% relative reduction
on average.

Model Train/Test Set A Set B Set C Avg.
HMM — 9.84 9.11 9.53 9.49

(θ̂hmm/θ̂hmm) 7.89 7.42 8.19 7.76
SSVM

(θ̂hmm/θ) 7.75 7.22 8.02 7.59
(batch)

(θ/θ) 7.56 7.14 7.77 7.43

Table 2: Average WER (%) among all noise conditions of VTS
based HMM and parallel mode Structured SVM,θ indicates
optimised alignments,̂θhmm alignments derived from the HMMs.

To evaluate the impact of optimising the alignment during
training, batch-mode training of the SSVM was required due to
the computational load. Table 2 shows the performance of these
batch-mode systems. The first SSVM system used the HMM
alignments for both training and test(θ̂hmm/θ̂hmm). Compared to
the equivalent sequential mode update in Table 1 a slight degra-
dation in average performance from 7.64% to 7.76% WER can
be seen. Using batch-mode updates allows the joint training
of both the alignments and discriminative model parameters.
Optimising both the training and inference alignments,(θ/θ),
yielded a4.3% relative reduction in WER. Just optimising the
inference alignment gave2.1% relative reduction. The overall
gain from using the SSVM over the VTS-compensated HMM
system was over 20%, though it should be noted that the SVM
and SSVM systems made use of a subset of the multi-style train-
ing data.

6. Conclusion
This paper has examined the use of structured SVMs for noise
robust ASR. One key part of this work, compared to previ-
ous work, is that the alignment of frames to labels in the joint
feature-space is not fixed. Here the alignment is optimised
jointly with the discriminative model parameters. To perform
this joint training a number of modifications to the previous
published work have been made. First, a Viterbi-style algo-
rithm is described for optimising the alignment based on the
SSVM parameters. This algorithm is related to the inference
of factorial HMMs. Second, to incorporate the optimal align-
ments into the training process, the training algorithm is modi-
fied making use of the concave-convex optimisation procedure.
Finally to reduce the time for jointly training the alignment and
discriminative model parameters, a batch-mode training algo-
rithm, where the optimal alignment is optimised using multiple
machines, is described. Results on the AURORA 2 task demon-
strate that optimising the alignment yields performance gains
for both inference and training.

Currently the performance gains from optimising the align-
ments are small. However this is felt to be due to the use of
whole-word models for the AURORA 2 task. Thus the align-
ment is only defined at the word-level. For medium-to-large
vocabulary tasks where the alignment between frames and la-
bels is required at the phone-level, it is expected that optimising
the alignment will have a larger impact.
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